Module: LUSolve
- Included in:
- Newton
- Defined in:
- lib/bigdecimal/ludcmp.rb
Overview
Solves a*x = b for x, using LU decomposition.
Class Method Summary collapse
-
.ludecomp(a, n, zero = 0, one = 1) ⇒ Object
Performs LU decomposition of the n by n matrix a.
-
.lusolve(a, b, ps, zero = 0.0) ⇒ Object
Solves a*x = b for x, using LU decomposition.
Class Method Details
.ludecomp(a, n, zero = 0, one = 1) ⇒ Object
Performs LU decomposition of the n by n matrix a.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/bigdecimal/ludcmp.rb', line 10 def ludecomp(a,n,zero=0,one=1) prec = BigDecimal.limit(nil) ps = [] scales = [] for i in 0...n do # pick up largest(abs. val.) element in each row. ps <<= i nrmrow = zero ixn = i*n for j in 0...n do biggst = a[ixn+j].abs nrmrow = biggst if biggst>nrmrow end if nrmrow>zero then scales <<= one.div(nrmrow,prec) else raise "Singular matrix" end end n1 = n - 1 for k in 0...n1 do # Gaussian elimination with partial pivoting. biggst = zero; for i in k...n do size = a[ps[i]*n+k].abs*scales[ps[i]] if size>biggst then biggst = size pividx = i end end raise "Singular matrix" if biggst<=zero if pividx!=k then j = ps[k] ps[k] = ps[pividx] ps[pividx] = j end pivot = a[ps[k]*n+k] for i in (k+1)...n do psin = ps[i]*n a[psin+k] = mult = a[psin+k].div(pivot,prec) if mult!=zero then pskn = ps[k]*n for j in (k+1)...n do a[psin+j] -= mult.mult(a[pskn+j],prec) end end end end raise "Singular matrix" if a[ps[n1]*n+n1] == zero ps end |
.lusolve(a, b, ps, zero = 0.0) ⇒ Object
Solves a*x = b for x, using LU decomposition.
a is a matrix, b is a constant vector, x is the solution vector.
ps is the pivot, a vector which indicates the permutation of rows performed during LU decomposition.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/bigdecimal/ludcmp.rb', line 66 def lusolve(a,b,ps,zero=0.0) prec = BigDecimal.limit(nil) n = ps.size x = [] for i in 0...n do dot = zero psin = ps[i]*n for j in 0...i do dot = a[psin+j].mult(x[j],prec) + dot end x <<= b[ps[i]] - dot end (n-1).downto(0) do |i| dot = zero psin = ps[i]*n for j in (i+1)...n do dot = a[psin+j].mult(x[j],prec) + dot end x[i] = (x[i]-dot).div(a[psin+i],prec) end x end |