Class: Bignum
Instance Method Summary collapse
-
#% ⇒ Object
Returns big modulo other.
-
#&(numeric) ⇒ Integer
Performs bitwise
and
between big and numeric. -
#*(other) ⇒ Numeric
Multiplies big and other, returning the result.
-
#**(exponent# = > numeric)) ⇒ Object
Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number).
-
#+(other) ⇒ Numeric
Adds big and other, returning the result.
-
#-(other) ⇒ Numeric
Subtracts other from big, returning the result.
-
#- ⇒ Object
Unary minus (returns a new Bignum whose value is 0-big).
-
#/ ⇒ Object
Divides big by other, returning the result.
-
#<<(numeric) ⇒ Integer
Shifts big left numeric positions (right if numeric is negative).
-
#<=>(numeric) ⇒ -1, ...
Comparison---Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric.
-
#==(obj) ⇒ Boolean
Returns
true
only if obj has the same value as big. -
#>>(numeric) ⇒ Integer
Shifts big right numeric positions (left if numeric is negative).
-
#[](n) ⇒ 0, 1
Bit Reference---Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.
-
#^(numeric) ⇒ Integer
Performs bitwise exclusive or between big and numeric.
-
#abs ⇒ Bignum
Returns the absolute value of big.
-
#coerce ⇒ Object
MISSING: documentation.
-
#div ⇒ Object
Divides big by other, returning the result.
-
#divmod(numeric) ⇒ Array
See
Numeric#divmod
. -
#eql?(obj) ⇒ Boolean
Returns
true
only if obj is aBignum
with the same value as big. -
#fdiv ⇒ Object
Returns the floating point result of dividing big by numeric.
-
#hash ⇒ Fixnum
Compute a hash based on the value of big.
-
#modulo ⇒ Object
Returns big modulo other.
-
#quo ⇒ Object
Returns the floating point result of dividing big by numeric.
-
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing big by numeric.
-
#size ⇒ Integer
Returns the number of bytes in the machine representation of big.
-
#to_f ⇒ Float
Converts big to a
Float
. -
#to_s(base = 10) ⇒ String
Returns a string containing the representation of big radix base (2 through 36).
-
#|(numeric) ⇒ Integer
Performs bitwise
or
between big and numeric. -
#~ ⇒ Integer
Inverts the bits in big.
Methods inherited from Integer
#ceil, #chr, #downto, #even?, #floor, induced_from, #integer?, #next, #odd?, #ord, #pred, #round, #succ, #times, #to_i, #to_int, #truncate, #upto
Methods included from Precision
included, #prec, #prec_f, #prec_i
Methods inherited from Numeric
#+@, #ceil, #floor, #initialize_copy, #integer?, #nonzero?, #round, #singleton_method_added, #step, #to_int, #truncate, #zero?
Methods included from Comparable
Instance Method Details
#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric
Returns big modulo other. See Numeric.divmod for more information.
|
# File 'bignum.c'
/*
* call-seq:
* big % other => Numeric
* big.modulo(other) => Numeric
*
* Returns big modulo other. See Numeric.divmod for more
* information.
*/
static VALUE
rb_big_modulo(x, y)
VALUE x, y;
{
VALUE z;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivmod(x, y, 0, &z);
return bignorm(z);
}
|
#&(numeric) ⇒ Integer
Performs bitwise and
between big and numeric.
|
# File 'bignum.c'
/*
* call-seq:
* big & numeric => integer
*
* Performs bitwise +and+ between _big_ and _numeric_.
*/
VALUE
rb_big_and(xx, yy)
VALUE xx, yy;
{
volatile VALUE x, y, z;
BDIGIT *ds1, *ds2, *zds;
long i, l1, l2;
char sign;
x = xx;
y = rb_to_int(yy);
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
if (!RBIGNUM(y)->sign) {
y = rb_big_clone(y);
get2comp(y);
}
if (!RBIGNUM(x)->sign) {
x = rb_big_clone(x);
get2comp(x);
}
if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
l1 = RBIGNUM(y)->len;
l2 = RBIGNUM(x)->len;
ds1 = BDIGITS(y);
ds2 = BDIGITS(x);
sign = RBIGNUM(y)->sign;
}
else {
l1 = RBIGNUM(x)->len;
l2 = RBIGNUM(y)->len;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
sign = RBIGNUM(x)->sign;
}
z = bignew(l2, RBIGNUM(x)->sign || RBIGNUM(y)->sign);
zds = BDIGITS(z);
for (i=0; i<l1; i++) {
zds[i] = ds1[i] & ds2[i];
}
for (; i<l2; i++) {
zds[i] = sign?0:ds2[i];
}
if (!RBIGNUM(z)->sign) get2comp(z);
return bignorm(z);
}
|
#*(other) ⇒ Numeric
Multiplies big and other, returning the result.
|
# File 'bignum.c'
/*
* call-seq:
* big * other => Numeric
*
* Multiplies big and other, returning the result.
*/
VALUE
rb_big_mul(x, y)
VALUE x, y;
{
return bignorm(rb_big_mul0(x, y));
}
|
#**(exponent# = > numeric)) ⇒ Object
Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float
123456789 ** 2 #=> 15241578750190521
123456789 ** 1.2 #=> 5126464716.09932
123456789 ** -2 #=> 6.5610001194102e-17
|
# File 'bignum.c'
/*
* call-seq:
* big ** exponent #=> numeric
*
* Raises _big_ to the _exponent_ power (which may be an integer, float,
* or anything that will coerce to a number). The result may be
* a Fixnum, Bignum, or Float
*
* 123456789 ** 2 #=> 15241578750190521
* 123456789 ** 1.2 #=> 5126464716.09932
* 123456789 ** -2 #=> 6.5610001194102e-17
*/
VALUE
rb_big_pow(x, y)
VALUE x, y;
{
double d;
long yy;
if (y == INT2FIX(0)) return INT2FIX(1);
switch (TYPE(y)) {
case T_FLOAT:
d = RFLOAT(y)->value;
break;
case T_BIGNUM:
rb_warn("in a**b, b may be too big");
d = rb_big2dbl(y);
break;
case T_FIXNUM:
yy = FIX2LONG(y);
if (yy > 0) {
VALUE z = 0;
long mask;
const long BIGLEN_LIMIT = 1024*1024 / SIZEOF_BDIGITS;
if ((RBIGNUM(x)->len > BIGLEN_LIMIT) ||
(RBIGNUM(x)->len > BIGLEN_LIMIT / yy)) {
rb_warn("in a**b, b may be too big");
d = (double)yy;
break;
}
for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
if (z) z = bigtrunc(bigsqr(z));
if (yy & mask) {
z = z ? bigtrunc(rb_big_mul0(z, x)) : x;
}
}
return bignorm(z);
}
d = (double)yy;
break;
default:
return rb_num_coerce_bin(x, y);
}
return rb_float_new(pow(rb_big2dbl(x), d));
}
|
#+(other) ⇒ Numeric
Adds big and other, returning the result.
|
# File 'bignum.c'
/*
* call-seq:
* big + other => Numeric
*
* Adds big and other, returning the result.
*/
VALUE
rb_big_plus(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
/* fall through */
case T_BIGNUM:
return bignorm(bigadd(x, y, 1));
case T_FLOAT:
return rb_float_new(rb_big2dbl(x) + RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
|
#-(other) ⇒ Numeric
Subtracts other from big, returning the result.
|
# File 'bignum.c'
/*
* call-seq:
* big - other => Numeric
*
* Subtracts other from big, returning the result.
*/
VALUE
rb_big_minus(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
/* fall through */
case T_BIGNUM:
return bignorm(bigadd(x, y, 0));
case T_FLOAT:
return rb_float_new(rb_big2dbl(x) - RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
|
#- ⇒ Object
Unary minus (returns a new Bignum whose value is 0-big)
|
# File 'bignum.c'
/*
* call-seq:
* -big => other_big
*
* Unary minus (returns a new Bignum whose value is 0-big)
*/
static VALUE
rb_big_uminus(x)
VALUE x;
{
VALUE z = rb_big_clone(x);
RBIGNUM(z)->sign = !RBIGNUM(x)->sign;
return bignorm(z);
}
|
#/(other) ⇒ Numeric #div(other) ⇒ Numeric
Divides big by other, returning the result.
|
# File 'bignum.c'
/*
* call-seq:
* big / other => Numeric
* big.div(other) => Numeric
*
* Divides big by other, returning the result.
*/
static VALUE
rb_big_div(x, y)
VALUE x, y;
{
VALUE z;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivmod(x, y, &z, 0);
return bignorm(z);
}
|
#<<(numeric) ⇒ Integer
Shifts big left numeric positions (right if numeric is negative).
|
# File 'bignum.c'
/*
* call-seq:
* big << numeric => integer
*
* Shifts big left _numeric_ positions (right if _numeric_ is negative).
*/
VALUE
rb_big_lshift(x, y)
VALUE x, y;
{
long shift;
int neg = 0;
for (;;) {
if (FIXNUM_P(y)) {
shift = FIX2LONG(y);
if (shift < 0) {
neg = 1;
shift = -shift;
}
break;
}
else if (TYPE(y) == T_BIGNUM) {
if (!RBIGNUM(y)->sign) {
VALUE t = check_shiftdown(y, x);
if (!NIL_P(t)) return t;
neg = 1;
}
shift = big2ulong(y, "long");
break;
}
y = rb_to_int(y);
}
x = neg ? big_rshift(x, shift) : big_lshift(x, shift);
return bignorm(x);
}
|
#<=>(numeric) ⇒ -1, ...
Comparison---Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable
.
|
# File 'bignum.c'
/*
* call-seq:
* big <=> numeric => -1, 0, +1
*
* Comparison---Returns -1, 0, or +1 depending on whether <i>big</i> is
* less than, equal to, or greater than <i>numeric</i>. This is the
* basis for the tests in <code>Comparable</code>.
*
*/
static VALUE
rb_big_cmp(x, y)
VALUE x, y;
{
long xlen = RBIGNUM(x)->len;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
case T_FLOAT:
return rb_dbl_cmp(rb_big2dbl(x), RFLOAT(y)->value);
default:
return rb_num_coerce_cmp(x, y);
}
if (RBIGNUM(x)->sign > RBIGNUM(y)->sign) return INT2FIX(1);
if (RBIGNUM(x)->sign < RBIGNUM(y)->sign) return INT2FIX(-1);
if (xlen < RBIGNUM(y)->len)
return (RBIGNUM(x)->sign) ? INT2FIX(-1) : INT2FIX(1);
if (xlen > RBIGNUM(y)->len)
return (RBIGNUM(x)->sign) ? INT2FIX(1) : INT2FIX(-1);
while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen]));
if (-1 == xlen) return INT2FIX(0);
return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ?
(RBIGNUM(x)->sign ? INT2FIX(1) : INT2FIX(-1)) :
(RBIGNUM(x)->sign ? INT2FIX(-1) : INT2FIX(1));
}
|
#==(obj) ⇒ Boolean
Returns true
only if obj has the same value as big. Contrast this with Bignum#eql?
, which requires obj to be a Bignum
.
68719476736 == 68719476736.0 #=> true
|
# File 'bignum.c'
/*
* call-seq:
* big == obj => true or false
*
* Returns <code>true</code> only if <i>obj</i> has the same value
* as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
* requires <i>obj</i> to be a <code>Bignum</code>.
*
* 68719476736 == 68719476736.0 #=> true
*/
static VALUE
rb_big_eq(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
case T_FLOAT:
{
volatile double a, b;
a = RFLOAT(y)->value;
if (isnan(a)) return Qfalse;
b = rb_big2dbl(x);
return (a == b)?Qtrue:Qfalse;
}
default:
return rb_equal(y, x);
}
if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse;
if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse;
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse;
return Qtrue;
}
|
#>>(numeric) ⇒ Integer
Shifts big right numeric positions (left if numeric is negative).
|
# File 'bignum.c'
/*
* call-seq:
* big >> numeric => integer
*
* Shifts big right _numeric_ positions (left if _numeric_ is negative).
*/
VALUE
rb_big_rshift(x, y)
VALUE x, y;
{
long shift;
int neg = 0;
for (;;) {
if (FIXNUM_P(y)) {
shift = FIX2LONG(y);
if (shift < 0) {
neg = 1;
shift = -shift;
}
break;
}
else if (TYPE(y) == T_BIGNUM) {
if (RBIGNUM(y)->sign) {
VALUE t = check_shiftdown(y, x);
if (!NIL_P(t)) return t;
}
else {
neg = 1;
}
shift = big2ulong(y, "long");
break;
}
y = rb_to_int(y);
}
x = neg ? big_lshift(x, shift) : big_rshift(x, shift);
return bignorm(x);
}
|
#[](n) ⇒ 0, 1
Bit Reference---Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.
a = 9**15
50.downto(0) do |n|
print a[n]
end
produces:
000101110110100000111000011110010100111100010111001
|
# File 'bignum.c'
/*
* call-seq:
* big[n] -> 0, 1
*
* Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
* representation of <i>big</i>, where <i>big</i>[0] is the least
* significant bit.
*
* a = 9**15
* 50.downto(0) do |n|
* print a[n]
* end
*
* <em>produces:</em>
*
* 000101110110100000111000011110010100111100010111001
*
*/
static VALUE
rb_big_aref(x, y)
VALUE x, y;
{
BDIGIT *xds;
BDIGIT_DBL num;
unsigned long shift;
long i, s1, s2;
if (TYPE(y) == T_BIGNUM) {
if (!RBIGNUM(y)->sign)
return INT2FIX(0);
if (RBIGNUM(bigtrunc(y))->len > SIZEOF_LONG/SIZEOF_BDIGITS) {
out_of_range:
return RBIGNUM(x)->sign ? INT2FIX(0) : INT2FIX(1);
}
shift = big2ulong(y, "long");
}
else {
i = NUM2LONG(y);
if (i < 0) return INT2FIX(0);
shift = (VALUE)i;
}
s1 = shift/BITSPERDIG;
s2 = shift%BITSPERDIG;
if (s1 >= RBIGNUM(x)->len) goto out_of_range;
if (!RBIGNUM(x)->sign) {
xds = BDIGITS(x);
i = 0; num = 1;
while (num += ~xds[i], ++i <= s1) {
num = BIGDN(num);
}
}
else {
num = BDIGITS(x)[s1];
}
if (num & ((BDIGIT_DBL)1<<s2))
return INT2FIX(1);
return INT2FIX(0);
}
|
#^(numeric) ⇒ Integer
Performs bitwise exclusive or between big and numeric.
|
# File 'bignum.c'
/*
* call-seq:
* big ^ numeric => integer
*
* Performs bitwise +exclusive or+ between _big_ and _numeric_.
*/
VALUE
rb_big_xor(xx, yy)
VALUE xx, yy;
{
volatile VALUE x, y;
VALUE z;
BDIGIT *ds1, *ds2, *zds;
long i, l1, l2;
char sign;
x = xx;
y = rb_to_int(yy);
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
if (!RBIGNUM(y)->sign) {
y = rb_big_clone(y);
get2comp(y);
}
if (!RBIGNUM(x)->sign) {
x = rb_big_clone(x);
get2comp(x);
}
if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
l1 = RBIGNUM(y)->len;
l2 = RBIGNUM(x)->len;
ds1 = BDIGITS(y);
ds2 = BDIGITS(x);
sign = RBIGNUM(y)->sign;
}
else {
l1 = RBIGNUM(x)->len;
l2 = RBIGNUM(y)->len;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
sign = RBIGNUM(x)->sign;
}
RBIGNUM(x)->sign = RBIGNUM(x)->sign?1:0;
RBIGNUM(y)->sign = RBIGNUM(y)->sign?1:0;
z = bignew(l2, !(RBIGNUM(x)->sign ^ RBIGNUM(y)->sign));
zds = BDIGITS(z);
for (i=0; i<l1; i++) {
zds[i] = ds1[i] ^ ds2[i];
}
for (; i<l2; i++) {
zds[i] = sign?ds2[i]:~ds2[i];
}
if (!RBIGNUM(z)->sign) get2comp(z);
return bignorm(z);
}
|
#abs ⇒ Bignum
Returns the absolute value of big.
-1234567890987654321.abs #=> 1234567890987654321
|
# File 'bignum.c'
/*
* call-seq:
* big.abs -> aBignum
*
* Returns the absolute value of <i>big</i>.
*
* -1234567890987654321.abs #=> 1234567890987654321
*/
static VALUE
rb_big_abs(x)
VALUE x;
{
if (!RBIGNUM(x)->sign) {
x = rb_big_clone(x);
RBIGNUM(x)->sign = 1;
}
return x;
}
|
#coerce ⇒ Object
MISSING: documentation
|
# File 'bignum.c'
/*
* MISSING: documentation
*/
static VALUE
rb_big_coerce(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
return rb_assoc_new(rb_int2big(FIX2LONG(y)), x);
}
else if (TYPE(y) == T_BIGNUM) {
return rb_assoc_new(y, x);
}
else {
rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
rb_obj_classname(y));
}
/* not reached */
return Qnil;
}
|
#/(other) ⇒ Numeric #div(other) ⇒ Numeric
Divides big by other, returning the result.
|
# File 'bignum.c'
/*
* call-seq:
* big / other => Numeric
* big.div(other) => Numeric
*
* Divides big by other, returning the result.
*/
static VALUE
rb_big_div(x, y)
VALUE x, y;
{
VALUE z;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivmod(x, y, &z, 0);
return bignorm(z);
}
|
#divmod(numeric) ⇒ Array
See Numeric#divmod
.
|
# File 'bignum.c'
/*
* call-seq:
* big.divmod(numeric) => array
*
* See <code>Numeric#divmod</code>.
*
*/
VALUE
rb_big_divmod(x, y)
VALUE x, y;
{
VALUE div, mod;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivmod(x, y, &div, &mod);
return rb_assoc_new(bignorm(div), bignorm(mod));
}
|
#eql?(obj) ⇒ Boolean
Returns true
only if obj is a Bignum
with the same value as big. Contrast this with Bignum#==
, which performs type conversions.
68719476736.eql?(68719476736.0) #=> false
|
# File 'bignum.c'
/*
* call-seq:
* big.eql?(obj) => true or false
*
* Returns <code>true</code> only if <i>obj</i> is a
* <code>Bignum</code> with the same value as <i>big</i>. Contrast this
* with <code>Bignum#==</code>, which performs type conversions.
*
* 68719476736.eql?(68719476736.0) #=> false
*/
static VALUE
rb_big_eql(x, y)
VALUE x, y;
{
if (TYPE(y) != T_BIGNUM) return Qfalse;
if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse;
if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse;
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse;
return Qtrue;
}
|
#quo(numeric) ⇒ Float #fdiv(numeric) ⇒ Float
Returns the floating point result of dividing big by numeric.
-1234567890987654321.quo(13731) #=> -89910996357705.5
-1234567890987654321.quo(13731.24) #=> -89909424858035.7
|
# File 'bignum.c'
/*
* call-seq:
* big.quo(numeric) -> float
* big.fdiv(numeric) -> float
*
* Returns the floating point result of dividing <i>big</i> by
* <i>numeric</i>.
*
* -1234567890987654321.quo(13731) #=> -89910996357705.5
* -1234567890987654321.quo(13731.24) #=> -89909424858035.7
*
*/
static VALUE
rb_big_quo(x, y)
VALUE x, y;
{
double dx = big2dbl(x);
double dy;
if (isinf(dx)) {
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
VALUE z;
int ex, ey;
ex = (RBIGNUM(bigtrunc(x))->len - 1) * BITSPERDIG;
ex += bdigbitsize(BDIGITS(x)[RBIGNUM(x)->len - 1]);
ex -= 2 * DBL_BIGDIG * BITSPERDIG;
if (ex) x = big_shift(x, ex);
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
case T_BIGNUM: {
ey = (RBIGNUM(bigtrunc(y))->len - 1) * BITSPERDIG;
ey += bdigbitsize(BDIGITS(y)[RBIGNUM(y)->len - 1]);
ey -= DBL_BIGDIG * BITSPERDIG;
if (ey) y = big_shift(y, ey);
bignum:
bigdivrem(x, y, &z, 0);
return rb_float_new(ldexp(big2dbl(z), ex - ey));
}
case T_FLOAT:
y = dbl2big(ldexp(frexp(RFLOAT(y)->value, &ey), DBL_MANT_DIG));
ey -= DBL_MANT_DIG;
goto bignum;
}
}
switch (TYPE(y)) {
case T_FIXNUM:
dy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
dy = rb_big2dbl(y);
break;
case T_FLOAT:
dy = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_bin(x, y);
}
return rb_float_new(dx / dy);
}
|
#hash ⇒ Fixnum
Compute a hash based on the value of big.
|
# File 'bignum.c'
/*
* call-seq:
* big.hash => fixnum
*
* Compute a hash based on the value of _big_.
*/
static VALUE
rb_big_hash(x)
VALUE x;
{
long i, len, key;
BDIGIT *digits;
key = 0; digits = BDIGITS(x); len = RBIGNUM(x)->len;
for (i=0; i<len; i++) {
key ^= *digits++;
}
return LONG2FIX(key);
}
|
#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric
Returns big modulo other. See Numeric.divmod for more information.
|
# File 'bignum.c'
/*
* call-seq:
* big % other => Numeric
* big.modulo(other) => Numeric
*
* Returns big modulo other. See Numeric.divmod for more
* information.
*/
static VALUE
rb_big_modulo(x, y)
VALUE x, y;
{
VALUE z;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivmod(x, y, 0, &z);
return bignorm(z);
}
|
#quo(numeric) ⇒ Float #fdiv(numeric) ⇒ Float
Returns the floating point result of dividing big by numeric.
-1234567890987654321.quo(13731) #=> -89910996357705.5
-1234567890987654321.quo(13731.24) #=> -89909424858035.7
|
# File 'bignum.c'
/*
* call-seq:
* big.quo(numeric) -> float
* big.fdiv(numeric) -> float
*
* Returns the floating point result of dividing <i>big</i> by
* <i>numeric</i>.
*
* -1234567890987654321.quo(13731) #=> -89910996357705.5
* -1234567890987654321.quo(13731.24) #=> -89909424858035.7
*
*/
static VALUE
rb_big_quo(x, y)
VALUE x, y;
{
double dx = big2dbl(x);
double dy;
if (isinf(dx)) {
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
VALUE z;
int ex, ey;
ex = (RBIGNUM(bigtrunc(x))->len - 1) * BITSPERDIG;
ex += bdigbitsize(BDIGITS(x)[RBIGNUM(x)->len - 1]);
ex -= 2 * DBL_BIGDIG * BITSPERDIG;
if (ex) x = big_shift(x, ex);
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
case T_BIGNUM: {
ey = (RBIGNUM(bigtrunc(y))->len - 1) * BITSPERDIG;
ey += bdigbitsize(BDIGITS(y)[RBIGNUM(y)->len - 1]);
ey -= DBL_BIGDIG * BITSPERDIG;
if (ey) y = big_shift(y, ey);
bignum:
bigdivrem(x, y, &z, 0);
return rb_float_new(ldexp(big2dbl(z), ex - ey));
}
case T_FLOAT:
y = dbl2big(ldexp(frexp(RFLOAT(y)->value, &ey), DBL_MANT_DIG));
ey -= DBL_MANT_DIG;
goto bignum;
}
}
switch (TYPE(y)) {
case T_FIXNUM:
dy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
dy = rb_big2dbl(y);
break;
case T_FLOAT:
dy = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_bin(x, y);
}
return rb_float_new(dx / dy);
}
|
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing big by numeric.
-1234567890987654321.remainder(13731) #=> -6966
-1234567890987654321.remainder(13731.24) #=> -9906.22531493148
|
# File 'bignum.c'
/*
* call-seq:
* big.remainder(numeric) => number
*
* Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
*
* -1234567890987654321.remainder(13731) #=> -6966
* -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
*/
static VALUE
rb_big_remainder(x, y)
VALUE x, y;
{
VALUE z;
switch (TYPE(y)) {
case T_FIXNUM:
y = rb_int2big(FIX2LONG(y));
break;
case T_BIGNUM:
break;
default:
return rb_num_coerce_bin(x, y);
}
bigdivrem(x, y, 0, &z);
return bignorm(z);
}
|
#size ⇒ Integer
Returns the number of bytes in the machine representation of big.
(256**10 - 1).size #=> 12
(256**20 - 1).size #=> 20
(256**40 - 1).size #=> 40
|
# File 'bignum.c'
/*
* call-seq:
* big.size -> integer
*
* Returns the number of bytes in the machine representation of
* <i>big</i>.
*
* (256**10 - 1).size #=> 12
* (256**20 - 1).size #=> 20
* (256**40 - 1).size #=> 40
*/
static VALUE
rb_big_size(big)
VALUE big;
{
return LONG2FIX(RBIGNUM(big)->len*SIZEOF_BDIGITS);
}
|
#to_f ⇒ Float
Converts big to a Float
. If big doesn't fit in a Float
, the result is infinity.
|
# File 'bignum.c'
/*
* call-seq:
* big.to_f -> float
*
* Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
* fit in a <code>Float</code>, the result is infinity.
*
*/
static VALUE
rb_big_to_f(x)
VALUE x;
{
return rb_float_new(rb_big2dbl(x));
}
|
#to_s(base = 10) ⇒ String
Returns a string containing the representation of big radix base (2 through 36).
12345654321.to_s #=> "12345654321"
12345654321.to_s(2) #=> "1011011111110110111011110000110001"
12345654321.to_s(8) #=> "133766736061"
12345654321.to_s(16) #=> "2dfdbbc31"
78546939656932.to_s(36) #=> "rubyrules"
|
# File 'bignum.c'
/*
* call-seq:
* big.to_s(base=10) => string
*
* Returns a string containing the representation of <i>big</i> radix
* <i>base</i> (2 through 36).
*
* 12345654321.to_s #=> "12345654321"
* 12345654321.to_s(2) #=> "1011011111110110111011110000110001"
* 12345654321.to_s(8) #=> "133766736061"
* 12345654321.to_s(16) #=> "2dfdbbc31"
* 78546939656932.to_s(36) #=> "rubyrules"
*/
static VALUE
rb_big_to_s(argc, argv, x)
int argc;
VALUE *argv;
VALUE x;
{
VALUE b;
int base;
rb_scan_args(argc, argv, "01", &b);
if (argc == 0) base = 10;
else base = NUM2INT(b);
return rb_big2str(x, base);
}
|
#|(numeric) ⇒ Integer
Performs bitwise or
between big and numeric.
|
# File 'bignum.c'
/*
* call-seq:
* big | numeric => integer
*
* Performs bitwise +or+ between _big_ and _numeric_.
*/
VALUE
rb_big_or(xx, yy)
VALUE xx, yy;
{
volatile VALUE x, y, z;
BDIGIT *ds1, *ds2, *zds;
long i, l1, l2;
char sign;
x = xx;
y = rb_to_int(yy);
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
if (!RBIGNUM(y)->sign) {
y = rb_big_clone(y);
get2comp(y);
}
if (!RBIGNUM(x)->sign) {
x = rb_big_clone(x);
get2comp(x);
}
if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
l1 = RBIGNUM(y)->len;
l2 = RBIGNUM(x)->len;
ds1 = BDIGITS(y);
ds2 = BDIGITS(x);
sign = RBIGNUM(y)->sign;
}
else {
l1 = RBIGNUM(x)->len;
l2 = RBIGNUM(y)->len;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
sign = RBIGNUM(x)->sign;
}
z = bignew(l2, RBIGNUM(x)->sign && RBIGNUM(y)->sign);
zds = BDIGITS(z);
for (i=0; i<l1; i++) {
zds[i] = ds1[i] | ds2[i];
}
for (; i<l2; i++) {
zds[i] = sign?ds2[i]:(BIGRAD-1);
}
if (!RBIGNUM(z)->sign) get2comp(z);
return bignorm(z);
}
|
#~ ⇒ Integer
Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
|
# File 'bignum.c'
/*
* call-seq:
* ~big => integer
*
* Inverts the bits in big. As Bignums are conceptually infinite
* length, the result acts as if it had an infinite number of one
* bits to the left. In hex representations, this is displayed
* as two periods to the left of the digits.
*
* sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
*/
static VALUE
rb_big_neg(x)
VALUE x;
{
VALUE z = rb_big_clone(x);
long i;
BDIGIT *ds;
if (!RBIGNUM(x)->sign) get2comp(z);
ds = BDIGITS(z);
i = RBIGNUM(x)->len;
if (!i) return INT2FIX(~0);
while (i--) ds[i] = ~ds[i];
RBIGNUM(z)->sign = !RBIGNUM(z)->sign;
if (RBIGNUM(x)->sign) get2comp(z);
return bignorm(z);
}
|