Class: Module
Overview
A Module
is a collection of methods and constants. The methods in a module may be instance methods or module methods. Instance methods appear as methods in a class when the module is included, module methods do not. Conversely, module methods may be called without creating an encapsulating object, while instance methods may not. (See Module#module_function
)
In the descriptions that follow, the parameter sym refers to a symbol, which is either a quoted string or a Symbol
(such as :name
).
module Mod
include Math
CONST = 1
def meth
# ...
end
end
Mod.class #=> Module
Mod.constants #=> [:CONST, :PI, :E]
Mod.instance_methods #=> [:meth]
Direct Known Subclasses
Class Method Summary collapse
-
.constants ⇒ Object
In the first form, returns an array of the names of all constants accessible from the point of call.
-
.nesting ⇒ Array
Returns the list of
Modules
nested at the point of call.
Instance Method Summary collapse
-
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other.
-
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other.
-
#<=>(other_mod) ⇒ -1, ...
Comparison---Returns -1 if mod includes other_mod, 0 if mod is the same as other_mod, and +1 if mod is included by other_mod.
-
#== ⇒ Object
Equality---At the
Object
level,==
returnstrue
only if obj and other are the same object. -
#===(obj) ⇒ Boolean
Case Equality---Returns
true
if anObject is an instance of mod or one of mod's descendants. -
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other.
-
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same.
-
#alias_method(new_name, old_name) ⇒ Module
Makes new_name a new copy of the method old_name.
-
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
-
#append_features(mod) ⇒ Object
When this module is included in another, Ruby calls
append_features
in this module, passing it the receiving module in mod. - #attr ⇒ Object
-
#attr_accessor(symbol, ...) ⇒ nil
Defines a named attribute for this module, where the name is symbol.
id2name
, creating an instance variable (@name
) and a corresponding access method to read it. -
#attr_reader ⇒ Object
Creates instance variables and corresponding methods that return the value of each instance variable.
-
#attr_writer(symbol, ...) ⇒ nil
Creates an accessor method to allow assignment to the attribute aSymbol
.id2name
. -
#autoload ⇒ nil
Registers filename to be loaded (using
Kernel::require
) the first time that module (which may be aString
or a symbol) is accessed in the namespace of mod. -
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod. -
#class_eval ⇒ Object
Evaluates the string or block in the context of mod.
-
#class_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#class_variable_defined?(symbol) ⇒ Boolean
Returns
true
if the given class variable is defined in obj. -
#class_variable_get(symbol) ⇒ Object
Returns the value of the given class variable (or throws a
NameError
exception). -
#class_variable_set(symbol, obj) ⇒ Object
Sets the class variable names by symbol to object.
-
#class_variables ⇒ Array
Returns an array of the names of class variables in mod.
-
#const_defined?(sym, inherit = true) ⇒ Boolean
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (andObject
if mod is aModule
.). -
#const_get(sym, inherit = true) ⇒ Object
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (andObject
if mod is aModule
.). -
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod.
-
#const_set(sym, obj) ⇒ Object
Sets the named constant to the given object, returning that object.
-
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod.
-
#define_method ⇒ Object
Defines an instance method in the receiver.
-
#extend_object(obj) ⇒ Object
Extends the specified object by adding this module's constants and methods (which are added as singleton methods).
-
#extended ⇒ Object
Not documented.
-
#freeze ⇒ Object
Prevents further modifications to mod.
-
#include ⇒ Module
Invokes
Module.append_features
on each parameter in reverse order. -
#include? ⇒ Boolean
Returns
true
if module is included in mod or one of mod's ancestors. -
#included(othermod) ⇒ Object
Callback invoked whenever the receiver is included in another module or class.
-
#included_modules ⇒ Array
Returns the list of modules included in mod.
-
#new ⇒ Object
constructor
Returns a new BasicObject.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#instance_method(symbol) ⇒ Object
Returns an
UnboundMethod
representing the given instance method in mod. -
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver.
-
#method_added(method_name) ⇒ Object
Invoked as a callback whenever an instance method is added to the receiver.
-
#method_defined?(symbol) ⇒ Boolean
Returns
true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#method_removed(method_name) ⇒ Object
Invoked as a callback whenever an instance method is removed from the receiver.
-
#method_undefined ⇒ Object
Not documented.
-
#module_eval ⇒ Object
Evaluates the string or block in the context of mod.
-
#module_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#module_function(symbol, ...) ⇒ Module
Creates module functions for the named methods.
-
#name ⇒ String
Returns the name of the module mod.
-
#private ⇒ Object
With no arguments, sets the default visibility for subsequently defined methods to private.
-
#private_class_method(symbol, ...) ⇒ Object
Makes existing class methods private.
- #private_constant ⇒ Object
-
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod.
-
#private_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). -
#protected ⇒ Object
With no arguments, sets the default visibility for subsequently defined methods to protected.
-
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod.
-
#protected_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#public ⇒ Object
With no arguments, sets the default visibility for subsequently defined methods to public.
-
#public_class_method(symbol, ...) ⇒ Object
Makes a list of existing class methods public.
- #public_constant ⇒ Object
-
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
-
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod.
-
#public_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant's value.
-
#remove_const(sym) ⇒ Object
Removes the definition of the given constant, returning that constant's previous value.
-
#remove_method(symbol) ⇒ Module
Removes the method identified by symbol from the current class.
-
#to_s ⇒ String
Return a string representing this module or class.
-
#undef_method(symbol) ⇒ Module
Prevents the current class from responding to calls to the named method.
Constructor Details
#new ⇒ Object
Returns a new BasicObject.
|
# File 'object.c'
/*
* call-seq:
* Module.new -> mod
* Module.new {|mod| block } -> mod
*
* Creates a new anonymous module. If a block is given, it is passed
* the module object, and the block is evaluated in the context of this
* module using <code>module_eval</code>.
*
* fred = Module.new do
* def meth1
* "hello"
* end
* def meth2
* "bye"
* end
* end
* a = "my string"
* a.extend(fred) #=> "my string"
* a.meth1 #=> "hello"
* a.meth2 #=> "bye"
*
* Assign the module to a constant (name starting uppercase) if you
* want to treat it like a regular module.
*/
static VALUE
rb_mod_initialize(VALUE module)
{
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
|
Class Method Details
.constants ⇒ Array .constants(inherited) ⇒ Array
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4)
# => [:ARGF, :ARGV, :ArgumentError, :Array]
Module.constants.include?(:SEEK_SET) # => false
class IO
Module.constants.include?(:SEEK_SET) # => true
end
The second form calls the instance method constants
.
|
# File 'eval.c'
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const NODE *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0) {
return rb_mod_constants(argc, argv, rb_cModule);
}
|
.nesting ⇒ Array
Returns the list of Modules
nested at the point of call.
module M1
module M2
$a = Module.nesting
end
end
$a #=> [M1::M2, M1]
$a[0].name #=> "M1::M2"
|
# File 'eval.c'
static VALUE
rb_mod_nesting(void)
{
VALUE ary = rb_ary_new();
const NODE *cref = rb_vm_cref();
while (cref && cref->nd_next) {
VALUE klass = cref->nd_clss;
if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
|
Instance Method Details
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "A<B").
|
# File 'object.c'
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
|
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "A<B").
|
# File 'object.c'
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
VALUE start = mod;
if (mod == arg) return Qtrue;
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
|
#<=>(other_mod) ⇒ -1, ...
Comparison---Returns -1 if mod includes other_mod, 0 if mod is the same as other_mod, and +1 if mod is included by other_mod. Returns nil
if mod has no relationship with other_mod or if other_mod is not a module.
|
# File 'object.c'
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
return Qnil;
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality---At the Object
level, ==
returns true
only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses: it is used to determine object identity (that is, a.equal?(b)
iff a
is the same object as b
).
The eql?
method returns true
if obj and anObject have the same value. Used by Hash
to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
|
# File 'object.c'
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#===(obj) ⇒ Boolean
Case Equality---Returns true
if anObject is an instance of mod or one of mod's descendants. Of limited use for modules, but can be used in case
statements to classify objects by class.
|
# File 'object.c'
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
|
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "B>A").
|
# File 'object.c'
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
|
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "B>A").
|
# File 'object.c'
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
|
#alias_method(new_name, old_name) ⇒ Module
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod
alias_method :orig_exit, :exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)
end
end
include Mod
exit(99)
produces:
Exiting with code 99
|
# File 'vm_method.c'
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
rb_alias(mod, rb_to_id(newname), rb_to_id(oldname));
return mod;
}
|
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
module Mod
include Math
include Comparable
end
Mod.ancestors #=> [Mod, Comparable, Math]
Math.ancestors #=> [Math]
|
# File 'object.c'
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (FL_TEST(p, FL_SINGLETON))
continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
|
#append_features(mod) ⇒ Object
When this module is included in another, Ruby calls append_features
in this module, passing it the receiving module in mod. Ruby's default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include
.
|
# File 'eval.c'
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
switch (TYPE(include)) {
case T_CLASS:
case T_MODULE:
break;
default:
Check_Type(include, T_CLASS);
break;
}
|
#attr ⇒ Object
#attr_accessor(symbol, ...) ⇒ nil
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute.
module Mod
attr_accessor(:one, :two)
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
|
# File 'object.c'
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), TRUE, TRUE, TRUE);
}
|
#attr_reader(symbol, ...) ⇒ nil #attr(symbol, ...) ⇒ nil
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling "attr
:name" on each name in turn.
|
# File 'object.c'
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), TRUE, FALSE, TRUE);
}
|
#attr_writer(symbol, ...) ⇒ nil
Creates an accessor method to allow assignment to the attribute aSymbol.id2name
.
|
# File 'object.c'
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), FALSE, TRUE, TRUE);
}
|
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require
) the first time that module (which may be a String
or a symbol) is accessed in the namespace of mod.
module A
end
A.autoload(:B, "b")
A::B.doit # autoloads "b"
|
# File 'load.c'
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
ID id = rb_to_id(sym);
FilePathValue(file);
rb_autoload(mod, id, RSTRING_PTR(file));
return Qnil;
}
|
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as autoload
in the namespace of mod.
module A
end
A.autoload(:B, "b")
A.autoload?(:B) #=> "b"
|
# File 'load.c'
static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
return rb_autoload_p(mod, rb_to_id(sym));
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
|
# File 'vm_eval.c'
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
|
# File 'vm_eval.c'
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#class_variable_defined?(symbol) ⇒ Boolean
Returns true
if the given class variable is defined in obj.
class Fred
@@foo = 99
end
Fred.class_variable_defined?(:@@foo) #=> true
Fred.class_variable_defined?(:@@bar) #=> false
|
# File 'object.c'
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
|
#class_variable_get(symbol) ⇒ Object
Returns the value of the given class variable (or throws a NameError
exception). The @@
part of the variable name should be included for regular class variables
class Fred
@@foo = 99
end
Fred.class_variable_get(:@@foo) #=> 99
|
# File 'object.c'
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
|
#class_variable_set(symbol, obj) ⇒ Object
Sets the class variable names by symbol to object.
class Fred
@@foo = 99
def foo
@@foo
end
end
Fred.class_variable_set(:@@foo, 101) #=> 101
Fred.new.foo #=> 101
|
# File 'object.c'
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
|
#class_variables ⇒ Array
Returns an array of the names of class variables in mod.
class One
@@var1 = 1
end
class Two < One
@@var2 = 2
end
One.class_variables #=> [:@@var1]
Two.class_variables #=> [:@@var2]
|
# File 'object.c'
VALUE
rb_mod_class_variables(VALUE obj)
{
VALUE ary = rb_ary_new();
if (RCLASS_IV_TBL(obj)) {
st_foreach_safe(RCLASS_IV_TBL(obj), cv_i, ary);
}
|
#const_defined?(sym, inherit = true) ⇒ Boolean
Checks for a constant with the given name in mod If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
.)
Returns whether or not a definition is found:
Math.const_defined? "PI" #=> true
IO.const_defined? :SYNC #=> true
IO.const_defined? :SYNC, false #=> false
|
# File 'object.c'
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
|
#const_get(sym, inherit = true) ⇒ Object
Checks for a constant with the given name in mod If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
.)
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
|
# File 'object.c'
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
|
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name)
name # return the constant name as Symbol
end
Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.
def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"
end
|
# File 'object.c'
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
rb_frame_pop(); /* pop frame for "const_missing" */
uninitialized_constant(klass, rb_to_id(name));
return Qnil; /* not reached */
}
|
#const_set(sym, obj) ⇒ Object
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
|
# File 'object.c'
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
|
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the all parameter is set to false
.
IO.constants.include?(:SYNC) #=> true
IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
|
# File 'object.c'
VALUE
rb_mod_constants(int argc, VALUE *argv, VALUE mod)
{
VALUE inherit;
st_table *tbl;
if (argc == 0) {
inherit = Qtrue;
}
|
#define_method(symbol, method) ⇒ Object #define_method(symbol) { ... } ⇒ Proc
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. This block is evaluated using instance_eval
, a point that is tricky to demonstrate because define_method
is private. (This is why we resort to the send
hack in this example.)
class A
def fred
puts "In Fred"
end
def create_method(name, &block)
self.class.send(:define_method, name, &block)
end
define_method(:wilma) { puts "Charge it!" }
end
class B < A
define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.create_method(:betty) { p self }
a.betty
produces:
In Fred
Charge it!
#<B:0x401b39e8>
|
# File 'proc.c'
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
int noex = NOEX_PUBLIC;
if (argc == 1) {
id = rb_to_id(argv[0]);
body = rb_block_lambda();
}
|
#extend_object(obj) ⇒ Object
Extends the specified object by adding this module's constants and methods (which are added as singleton methods). This is the callback method used by Object#extend
.
module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"
else
puts "Picky added to #{o.class}"
super
end
end
end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky
produces:
Picky added to Array
Can't add Picky to a String
|
# File 'eval.c'
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
|
#extended ⇒ Object
Not documented
|
# File 'object.c'
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#freeze ⇒ Object
Prevents further modifications to mod.
This method returns self.
|
# File 'object.c'
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
|
#include ⇒ Module
Invokes Module.append_features
on each parameter in reverse order.
|
# File 'eval.c'
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], rb_intern("append_features"), 1, module);
rb_funcall(argv[argc], rb_intern("included"), 1, module);
}
|
#include? ⇒ Boolean
Returns true
if module is included in mod or one of mod's ancestors.
module A
end
class B
include A
end
class C < B
end
B.include?(A) #=> true
C.include?(A) #=> true
A.include?(A) #=> false
|
# File 'object.c'
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
|
#included(othermod) ⇒ Object
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features
if your code wants to perform some action when a module is included in another.
module A
def A.included(mod)
puts "#{self} included in #{mod}"
end
end
module Enumerable
include A
end
|
# File 'object.c'
/*
* Not documented
*/
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#included_modules ⇒ Array
Returns the list of modules included in mod.
module Mixin
end
module Outer
include Mixin
end
Mixin.included_modules #=> []
Outer.included_modules #=> [Mixin]
|
# File 'object.c'
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
|
#initialize_copy ⇒ Object
:nodoc:
|
# File 'object.c'
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
rb_obj_init_copy(clone, orig);
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC(clone)->klass = rb_singleton_class_clone(orig);
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
}
|
#instance_method(symbol) ⇒ Object
Returns an UnboundMethod
representing the given instance method in mod.
class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end
Dispatcher = {
"a" => instance_method(:do_a),
"d" => instance_method(:do_d),
"e" => instance_method(:do_e),
"v" => instance_method(:do_v)
}
def interpret(string)
string.each_char {|b| Dispatcher[b].bind(self).call }
end
end
interpreter = Interpreter.new
interpreter.interpret('dave')
produces:
Hello there, Dave!
|
# File 'proc.c'
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, FALSE);
}
|
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. With no argument, or with an argument that is false
, the instance methods in mod are returned, otherwise the methods in mod and mod's superclasses are returned.
module A
def method1() end
end
class B
def method2() end
end
class C < B
def method3() end
end
A.instance_methods #=> [:method1]
B.instance_methods(false) #=> [:method2]
C.instance_methods(false) #=> [:method3]
C.instance_methods(true).length #=> 43
|
# File 'object.c'
VALUE
rb_class_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
|
#method_added(method_name) ⇒ Object
Invoked as a callback whenever an instance method is added to the receiver.
module Chatty
def self.method_added(method_name)
puts "Adding #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
end
produces:
Adding :some_instance_method
|
# File 'object.c'
/*
* Not documented
*/
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_defined?(symbol) ⇒ Boolean
Returns true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched.
module A
def method1() end
end
class B
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.method_defined? "method1" #=> true
C.method_defined? "method2" #=> true
C.method_defined? "method3" #=> true
C.method_defined? "method4" #=> false
|
# File 'vm_method.c'
static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
if (!rb_method_boundp(mod, rb_to_id(mid), 1)) {
return Qfalse;
}
|
#method_removed(method_name) ⇒ Object
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty
def self.method_removed(method_name)
puts "Removing #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
class << self
remove_method :some_class_method
end
remove_method :some_instance_method
end
produces:
Removing :some_instance_method
|
# File 'object.c'
/*
* Not documented
*/
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_undefined ⇒ Object
Not documented
|
# File 'object.c'
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
|
# File 'vm_eval.c'
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
|
# File 'vm_eval.c'
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#module_function(symbol, ...) ⇒ Module
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions.
module Mod
def one
"This is one"
end
module_function :one
end
class Cls
include Mod
def call_one
one
end
end
Mod.one #=> "This is one"
c = Cls.new
c.call_one #=> "This is one"
module Mod
def one
"This is the new one"
end
end
Mod.one #=> "This is one"
c.call_one #=> "This is the new one"
|
# File 'vm_method.c'
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
const rb_method_entry_t *me;
if (TYPE(module) != T_MODULE) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
|
#name ⇒ String
Returns the name of the module mod. Returns nil for anonymous modules.
|
# File 'object.c'
VALUE
rb_mod_name(VALUE mod)
{
VALUE path = classname(mod);
if (!NIL_P(path)) return rb_str_dup(path);
return path;
}
|
#private ⇒ Module #private(symbol, ...) ⇒ Module
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility.
module Mod
def a() end
def b() end
private
def c() end
private :a
end
Mod.private_instance_methods #=> [:a, :c]
|
# File 'vm_method.c'
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PRIVATE);
}
|
#private_class_method(symbol, ...) ⇒ Object
Makes existing class methods private. Often used to hide the default constructor new
.
class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me
end
end
|
# File 'vm_method.c'
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PRIVATE);
return obj;
}
|
#private_constant ⇒ Object
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
module Mod
def method1() end
private :method1
def method2() end
end
Mod.instance_methods #=> [:method2]
Mod.private_instance_methods #=> [:method1]
|
# File 'object.c'
VALUE
rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
|
#private_method_defined?(symbol) ⇒ Boolean
Returns true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
private
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.private_method_defined? "method1" #=> false
C.private_method_defined? "method2" #=> true
C.method_defined? "method2" #=> false
|
# File 'vm_method.c'
static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, rb_to_id(mid), NOEX_PRIVATE);
}
|
#protected ⇒ Module #protected(symbol, ...) ⇒ Module
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility.
|
# File 'vm_method.c'
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PROTECTED);
}
|
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
|
# File 'object.c'
VALUE
rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
|
#protected_method_defined?(symbol) ⇒ Boolean
Returns true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.protected_method_defined? "method1" #=> false
C.protected_method_defined? "method2" #=> true
C.method_defined? "method2" #=> true
|
# File 'vm_method.c'
static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, rb_to_id(mid), NOEX_PROTECTED);
}
|
#public ⇒ Module #public(symbol, ...) ⇒ Module
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility.
|
# File 'vm_method.c'
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PUBLIC);
}
|
#public_class_method(symbol, ...) ⇒ Object
Makes a list of existing class methods public.
|
# File 'vm_method.c'
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PUBLIC);
return obj;
}
|
#public_constant ⇒ Object
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
|
# File 'proc.c'
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, TRUE);
}
|
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
|
# File 'object.c'
VALUE
rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
|
#public_method_defined?(symbol) ⇒ Boolean
Returns true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.public_method_defined? "method1" #=> true
C.public_method_defined? "method2" #=> false
C.method_defined? "method2" #=> true
|
# File 'vm_method.c'
static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, rb_to_id(mid), NOEX_PUBLIC);
}
|
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant's value.
class Dummy
@@var = 99
puts @@var
remove_class_variable(:@@var)
p(defined? @@var)
end
produces:
99
nil
|
# File 'object.c'
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
const ID id = rb_to_id(name);
st_data_t val, n = id;
if (!rb_is_class_id(id)) {
rb_name_error(id, "wrong class variable name %s", rb_id2name(id));
}
|
#remove_const(sym) ⇒ Object
Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.
|
# File 'object.c'
VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
const ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "`%s' is not allowed as a constant name", rb_id2name(id));
}
|
#remove_method(symbol) ⇒ Module
Removes the method identified by symbol from the current class. For an example, see Module.undef_method
.
|
# File 'vm_method.c'
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
remove_method(mod, rb_to_id(argv[i]));
}
|
#to_s ⇒ String
Return a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.
|
# File 'object.c'
static VALUE
rb_mod_to_s(VALUE klass)
{
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<");
VALUE v = rb_iv_get(klass, "__attached__");
rb_str_cat2(s, "Class:");
switch (TYPE(v)) {
case T_CLASS: case T_MODULE:
rb_str_append(s, rb_inspect(v));
break;
default:
rb_str_append(s, rb_any_to_s(v));
break;
}
|
#undef_method(symbol) ⇒ Module
Prevents the current class from responding to calls to the named method. Contrast this with remove_method
, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver.
class Parent
def hello
puts "In parent"
end
end
class Child < Parent
def hello
puts "In child"
end
end
c = Child.new
c.hello
class Child
remove_method :hello # remove from child, still in parent
end
c.hello
class Child
undef_method :hello # prevent any calls to 'hello'
end
c.hello
produces:
In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
|
# File 'vm_method.c'
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
rb_undef(mod, rb_to_id(argv[i]));
}
|