Class: Array
Overview
Arrays are ordered, integer-indexed collections of any object. Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array---that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.
Class Method Summary collapse
-
.[] ⇒ Object
Returns a new array populated with the given objects.
-
.try_convert(obj) ⇒ Array?
Try to convert obj into an array, using
to_ary
method.
Instance Method Summary collapse
-
#&(other_ary) ⇒ Object
Set Intersection---Returns a new array containing elements common to the two arrays, with no duplicates.
-
#* ⇒ Object
Repetition---With a String argument, equivalent to self.join(str).
-
#+(other_ary) ⇒ Object
Concatenation---Returns a new array built by concatenating the two arrays together to produce a third array.
-
#-(other_ary) ⇒ Object
Array Difference---Returns a new array that is a copy of the original array, removing any items that also appear in other_ary.
-
#<<(obj) ⇒ Object
Append---Pushes the given object on to the end of this array.
-
#<=>(other_ary) ⇒ -1, ...
Comparison---Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary.
-
#==(other_ary) ⇒ Boolean
Equality---Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object.==) the corresponding element in the other array.
-
#[] ⇒ Object
Element Reference---Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range.
-
#[]= ⇒ Object
Element Assignment---Sets the element at index, or replaces a subarray starting at start and continuing for length elements, or replaces a subarray specified by range.
-
#assoc(obj) ⇒ nil
Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==.
-
#at(index) ⇒ Object?
Returns the element at index.
-
#clear ⇒ Object
Removes all elements from
self
. -
#collect ⇒ Object
Invokes block once for each element of
self
. -
#collect! ⇒ Object
Invokes the block once for each element of
self
, replacing the element with the value returned by block. -
#combination ⇒ Object
When invoked with a block, yields all combinations of length n of elements from ary and then returns ary itself.
-
#compact ⇒ Object
Returns a copy of
self
with allnil
elements removed. -
#compact! ⇒ nil
Removes
nil
elements from the array. -
#concat(other_ary) ⇒ Object
Appends the elements of other_ary to
self
. -
#count ⇒ Object
Returns the number of elements.
-
#cycle ⇒ Object
Calls block for each element repeatedly n times or forever if none or
nil
is given. -
#delete ⇒ Object
Deletes items from
self
that are equal to obj. -
#delete_at(index) ⇒ Object?
Deletes the element at the specified index, returning that element, or
nil
if the index is out of range. -
#delete_if ⇒ Object
Deletes every element of
self
for which block evaluates to true. -
#drop(n) ⇒ Object
Drops first n elements from
ary
and returns the rest of the elements in an array. -
#drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns
nil
orfalse
and returns an array containing the remaining elements. -
#each ⇒ Object
Calls block once for each element in
self
, passing that element as a parameter. -
#each_index ⇒ Object
Same as
Array#each
, but passes the index of the element instead of the element itself. -
#empty? ⇒ Boolean
Returns
true
ifself
contains no elements. -
#eql?(other) ⇒ Boolean
Returns
true
ifself
and other are the same object, or are both arrays with the same content. -
#fetch ⇒ Object
Tries to return the element at position index.
-
#fill ⇒ Object
The first three forms set the selected elements of
self
(which may be the entire array) to obj. -
#find_index ⇒ Object
Returns the index of the first object in
self
such that the object is==
to obj. -
#first ⇒ Object
Returns the first element, or the first
n
elements, of the array. -
#flatten ⇒ Object
Returns a new array that is a one-dimensional flattening of this array (recursively).
-
#flatten! ⇒ Object
Flattens
self
in place. -
#frozen? ⇒ Boolean
Return
true
if this array is frozen (or temporarily frozen while being sorted). -
#hash ⇒ Fixnum
Compute a hash-code for this array.
-
#include?(obj) ⇒ Boolean
Returns
true
if the given object is present inself
(that is, if any object==
anObject),false
otherwise. -
#index ⇒ Object
Returns the index of the first object in
self
such that the object is==
to obj. -
#initialize ⇒ Object
constructor
Returns a new array.
-
#replace(other_ary) ⇒ Object
Replaces the contents of
self
with the contents of other_ary, truncating or expanding if necessary. -
#insert(index, obj...) ⇒ Object
Inserts the given values before the element with the given index (which may be negative).
-
#inspect ⇒ Object
(also: #to_s)
Creates a string representation of
self
. -
#join(sep = $,) ⇒ String
Returns a string created by converting each element of the array to a string, separated by sep.
-
#keep_if ⇒ Object
Deletes every element of
self
for which block evaluates to false. -
#last ⇒ Object
Returns the last element(s) of
self
. -
#length ⇒ Integer
(also: #size)
Returns the number of elements in
self
. -
#map ⇒ Object
Invokes block once for each element of
self
. -
#map! ⇒ Object
Invokes the block once for each element of
self
, replacing the element with the value returned by block. -
#pack ⇒ Object
Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives "A," "a," and "Z" may be followed by a count, which gives the width of the resulting field.
-
#permutation ⇒ Object
When invoked with a block, yield all permutations of length n of the elements of ary, then return the array itself.
-
#pop ⇒ Object
Removes the last element from
self
and returns it, ornil
if the array is empty. -
#product ⇒ Object
Returns an array of all combinations of elements from all arrays.
-
#push(obj, ...) ⇒ Object
Append---Pushes the given object(s) on to the end of this array.
-
#rassoc(obj) ⇒ nil
Searches through the array whose elements are also arrays.
-
#reject ⇒ Object
Returns a new array containing the items in
self
for which the block is not true. -
#reject! ⇒ Object
Equivalent to
Array#delete_if
, deleting elements fromself
for which the block evaluates to true, but returnsnil
if no changes were made. -
#repeated_combination ⇒ Object
When invoked with a block, yields all repeated combinations of length n of elements from ary and then returns ary itself.
-
#repeated_permutation ⇒ Object
When invoked with a block, yield all repeated permutations of length n of the elements of ary, then return the array itself.
-
#replace(other_ary) ⇒ Object
Replaces the contents of
self
with the contents of other_ary, truncating or expanding if necessary. -
#reverse ⇒ Object
Returns a new array containing
self
's elements in reverse order. -
#reverse! ⇒ Object
Reverses
self
in place. -
#reverse_each ⇒ Object
Same as
Array#each
, but traversesself
in reverse order. -
#rindex ⇒ Object
Returns the index of the last object in
self
==
to obj. -
#rotate(cnt = 1) ⇒ Object
Returns new array by rotating
self
so that the element atcnt
inself
is the first element of the new array. -
#rotate!(cnt = 1) ⇒ Object
Rotates
self
in place so that the element atcnt
comes first, and returnsself
. -
#sample ⇒ Object
Choose a random element or
n
random elements from the array. -
#select ⇒ Object
Invokes the block passing in successive elements from
self
, returning an array containing those elements for which the block returns a true value (equivalent toEnumerable#select
). -
#select! ⇒ Object
Invokes the block passing in successive elements from
self
, deleting elements for which the block returns a false value. -
#shift ⇒ Object
Returns the first element of
self
and removes it (shifting all other elements down by one). -
#shuffle ⇒ Object
Returns a new array with elements of this array shuffled.
-
#shuffle! ⇒ Object
Shuffles elements in
self
in place. -
#slice ⇒ Object
Element Reference---Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range.
-
#slice! ⇒ Object
Deletes the element(s) given by an index (optionally with a length) or by a range.
-
#sort ⇒ Object
Returns a new array created by sorting
self
. -
#sort! ⇒ Object
Sorts
self
. -
#sort_by! ⇒ Object
Sorts
self
in place using a set of keys generated by mapping the values inself
through the given block. -
#take(n) ⇒ Object
Returns first n elements from ary.
-
#take_while ⇒ Object
Passes elements to the block until the block returns
nil
orfalse
, then stops iterating and returns an array of all prior elements. -
#to_a ⇒ Object
Returns
self
. -
#to_ary ⇒ Object
Returns
self
. -
#transpose ⇒ Object
Assumes that
self
is an array of arrays and transposes the rows and columns. -
#uniq ⇒ Object
Returns a new array by removing duplicate values in
self
. -
#uniq! ⇒ nil
Removes duplicate elements from
self
. -
#unshift(obj, ...) ⇒ Object
Prepends objects to the front of
self
, moving other elements upwards. -
#values_at(selector, ...) ⇒ Object
Returns an array containing the elements in
self
corresponding to the given selector(s). -
#zip ⇒ Object
Converts any arguments to arrays, then merges elements of
self
with corresponding elements from each argument. -
#|(other_ary) ⇒ Object
Set Union---Returns a new array by joining this array with other_ary, removing duplicates.
Methods included from Enumerable
#all?, #any?, #chunk, #collect_concat, #detect, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #find, #find_all, #flat_map, #grep, #group_by, #inject, #max, #max_by, #member?, #min, #min_by, #minmax, #minmax_by, #none?, #one?, #partition, #reduce, #slice_before, #sort_by
Constructor Details
#new(size = 0, obj = nil) ⇒ Object #new(array) ⇒ Object #new(size) {|index| ... } ⇒ Object
Returns a new array. In the first form, the new array is empty. In the second it is created with size copies of obj (that is, size references to the same obj). The third form creates a copy of the array passed as a parameter (the array is generated by calling to_ary on the parameter). In the last form, an array of the given size is created. Each element in this array is calculated by passing the element's index to the given block and storing the return value.
Array.new
Array.new(2)
Array.new(5, "A")
# only one copy of the object is created
a = Array.new(2, Hash.new)
a[0]['cat'] = 'feline'
a
a[1]['cat'] = 'Felix'
a
# here multiple copies are created
a = Array.new(2) { Hash.new }
a[0]['cat'] = 'feline'
a
squares = Array.new(5) {|i| i*i}
squares
copy = Array.new(squares)
|
# File 'array.c'
static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
long len;
VALUE size, val;
rb_ary_modify(ary);
if (argc == 0) {
if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
xfree(RARRAY_PTR(ary));
}
|
Class Method Details
.[] ⇒ Object
Returns a new array populated with the given objects.
Array.[]( 1, 'a', /^A/ )
Array[ 1, 'a', /^A/ ]
[ 1, 'a', /^A/ ]
|
# File 'array.c'
static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE ary = ary_new(klass, argc);
if (argc > 0 && argv) {
MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
ARY_SET_LEN(ary, argc);
}
|
.try_convert(obj) ⇒ Array?
Try to convert obj into an array, using to_ary
method. Returns converted array or nil
if obj cannot be converted for any reason. This method can be used to check if an argument is an array.
Array.try_convert([1]) #=> [1]
Array.try_convert("1") #=> nil
if tmp = Array.try_convert(arg)
# the argument is an array
elsif tmp = String.try_convert(arg)
# the argument is a string
end
|
# File 'array.c'
static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
return rb_check_array_type(ary);
}
|
Instance Method Details
#&(other_ary) ⇒ Object
Set Intersection---Returns a new array containing elements common to the two arrays, with no duplicates.
[ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
|
# File 'array.c'
static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
VALUE hash, ary3, v;
st_data_t vv;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
hash = ary_make_hash(ary2);
if (RHASH_EMPTY_P(hash))
return ary3;
for (i=0; i<RARRAY_LEN(ary1); i++) {
vv = (st_data_t)(v = rb_ary_elt(ary1, i));
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
rb_ary_push(ary3, v);
}
|
#*(int) ⇒ Object #*(str) ⇒ Object
Repetition---With a String argument, equivalent to self.join(str). Otherwise, returns a new array built by concatenating the int copies of self
.
[ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3 ] * "," #=> "1,2,3"
|
# File 'array.c'
static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
VALUE ary2, tmp, *ptr, *ptr2;
long t, len;
tmp = rb_check_string_type(times);
if (!NIL_P(tmp)) {
return rb_ary_join(ary, tmp);
}
|
#+(other_ary) ⇒ Object
Concatenation---Returns a new array built by concatenating the two arrays together to produce a third array.
[ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
|
# File 'array.c'
VALUE
rb_ary_plus(VALUE x, VALUE y)
{
VALUE z;
long len;
y = to_ary(y);
len = RARRAY_LEN(x) + RARRAY_LEN(y);
z = rb_ary_new2(len);
MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
ARY_SET_LEN(z, len);
return z;
}
|
#-(other_ary) ⇒ Object
Array Difference---Returns a new array that is a copy of the original array, removing any items that also appear in other_ary. (If you need set-like behavior, see the library class Set.)
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
|
# File 'array.c'
static VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
VALUE ary3;
volatile VALUE hash;
long i;
hash = ary_make_hash(to_ary(ary2));
ary3 = rb_ary_new();
for (i=0; i<RARRAY_LEN(ary1); i++) {
if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
rb_ary_push(ary3, rb_ary_elt(ary1, i));
}
|
#<<(obj) ⇒ Object
Append---Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.
[ 1, 2 ] << "c" << "d" << [ 3, 4 ]
#=> [ 1, 2, "c", "d", [ 3, 4 ] ]
|
# File 'array.c'
VALUE
rb_ary_push(VALUE ary, VALUE item)
{
rb_ary_modify(ary);
return rb_ary_push_1(ary, item);
}
|
#<=>(other_ary) ⇒ -1, ...
Comparison---Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary. Each object in each array is compared (using <=>). If any value isn't equal, then that inequality is the return value. If all the values found are equal, then the return is based on a comparison of the array lengths. Thus, two arrays are "equal" according to Array#<=>
if and only if they have the same length and the value of each element is equal to the value of the corresponding element in the other array.
[ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
[ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
|
# File 'array.c'
VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
long len;
VALUE v;
ary2 = rb_check_array_type(ary2);
if (NIL_P(ary2)) return Qnil;
if (ary1 == ary2) return INT2FIX(0);
v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
if (v != Qundef) return v;
len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
if (len == 0) return INT2FIX(0);
if (len > 0) return INT2FIX(1);
return INT2FIX(-1);
}
|
#==(other_ary) ⇒ Boolean
Equality---Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object.==) the corresponding element in the other array.
[ "a", "c" ] == [ "a", "c", 7 ] #=> false
[ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
[ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
|
# File 'array.c'
static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) {
if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
return Qfalse;
}
|
#[](index) ⇒ Object? #[](start, length) ⇒ nil #[](range) ⇒ nil #slice(index) ⇒ Object? #slice(start, length) ⇒ nil #slice(range) ⇒ nil
Element Reference---Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ]
a[2] + a[0] + a[1] #=> "cab"
a[6] #=> nil
a[1, 2] #=> [ "b", "c" ]
a[1..3] #=> [ "b", "c", "d" ]
a[4..7] #=> [ "e" ]
a[6..10] #=> nil
a[-3, 3] #=> [ "c", "d", "e" ]
# special cases
a[5] #=> nil
a[5, 1] #=> []
a[5..10] #=> []
|
# File 'array.c'
VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
VALUE arg;
long beg, len;
if (argc == 2) {
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
if (beg < 0) {
beg += RARRAY_LEN(ary);
}
|
#[]=(index) ⇒ Object #[]=(start, length) ⇒ Object? #[]=(range) ⇒ Object?
Element Assignment---Sets the element at index, or replaces a subarray starting at start and continuing for length elements, or replaces a subarray specified by range. If indices are greater than the current capacity of the array, the array grows automatically. A negative indices will count backward from the end of the array. Inserts elements if length is zero. An IndexError
is raised if a negative index points past the beginning of the array. See also Array#push
, and Array#unshift
.
a = Array.new
a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
a[0, 2] = "?" #=> ["?", 2, nil, "4"]
a[0..2] = "A" #=> ["A", "4"]
a[-1] = "Z" #=> ["A", "Z"]
a[1..-1] = nil #=> ["A", nil]
a[1..-1] = [] #=> ["A"]
|
# File 'array.c'
static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
long offset, beg, len;
if (argc == 3) {
rb_ary_modify_check(ary);
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
rb_ary_splice(ary, beg, len, argv[2]);
return argv[2];
}
|
#assoc(obj) ⇒ nil
Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==. Returns the first contained array that matches (that is, the first associated array), or nil
if no match is found. See also Array#rassoc
.
s1 = [ "colors", "red", "blue", "green" ]
s2 = [ "letters", "a", "b", "c" ]
s3 = "foo"
a = [ s1, s2, s3 ]
a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
a.assoc("foo") #=> nil
|
# File 'array.c'
VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
long i;
VALUE v;
for (i = 0; i < RARRAY_LEN(ary); ++i) {
v = rb_check_array_type(RARRAY_PTR(ary)[i]);
if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
rb_equal(RARRAY_PTR(v)[0], key))
return v;
}
|
#at(index) ⇒ Object?
Returns the element at index. A negative index counts from the end of self
. Returns nil
if the index is out of range. See also Array#[]
.
a = [ "a", "b", "c", "d", "e" ]
a.at(0) #=> "a"
a.at(-1) #=> "e"
|
# File 'array.c'
static VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
return rb_ary_entry(ary, NUM2LONG(pos));
}
|
#clear ⇒ Object
Removes all elements from self
.
a = [ "a", "b", "c", "d", "e" ]
a.clear #=> [ ]
|
# File 'array.c'
VALUE
rb_ary_clear(VALUE ary)
{
rb_ary_modify_check(ary);
ARY_SET_LEN(ary, 0);
if (ARY_SHARED_P(ary)) {
if (!ARY_EMBED_P(ary)) {
rb_ary_unshare(ary);
FL_SET_EMBED(ary);
}
|
#collect {|item| ... } ⇒ Object #map {|item| ... } ⇒ Object #collect ⇒ Object #map ⇒ Object
Invokes block once for each element of self
. Creates a new array containing the values returned by the block. See also Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ]
a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
a #=> ["a", "b", "c", "d"]
|
# File 'array.c'
static VALUE
rb_ary_collect(VALUE ary)
{
long i;
VALUE collect;
RETURN_ENUMERATOR(ary, 0, 0);
collect = rb_ary_new2(RARRAY_LEN(ary));
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
}
|
#collect! {|item| ... } ⇒ Object #map! {|item| ... } ⇒ Object #collect ⇒ Object #map ⇒ Object
Invokes the block once for each element of self
, replacing the element with the value returned by block. See also Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ]
a.collect! {|x| x + "!" }
a #=> [ "a!", "b!", "c!", "d!" ]
|
# File 'array.c'
static VALUE
rb_ary_collect_bang(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
rb_ary_modify(ary);
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
}
|
#combination(n) {|c| ... } ⇒ Object #combination(n) ⇒ Object
When invoked with a block, yields all combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the combinations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3, 4]
a.combination(1).to_a #=> [[1],[2],[3],[4]]
a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
a.combination(4).to_a #=> [[1,2,3,4]]
a.combination(0).to_a #=> [[]] # one combination of length 0
a.combination(5).to_a #=> [] # no combinations of length 5
|
# File 'array.c'
static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
long n, i, len;
n = NUM2LONG(num);
RETURN_ENUMERATOR(ary, 1, &num);
len = RARRAY_LEN(ary);
if (n < 0 || len < n) {
/* yield nothing */
}
|
#compact ⇒ Object
Returns a copy of self
with all nil
elements removed.
[ "a", nil, "b", nil, "c", nil ].compact
#=> [ "a", "b", "c" ]
|
# File 'array.c'
static VALUE
rb_ary_compact(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_compact_bang(ary);
return ary;
}
|
#compact! ⇒ nil
Removes nil
elements from the array. Returns nil
if no changes were made, otherwise returns ary.
[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact! #=> nil
|
# File 'array.c'
static VALUE
rb_ary_compact_bang(VALUE ary)
{
VALUE *p, *t, *end;
long n;
rb_ary_modify(ary);
p = t = RARRAY_PTR(ary);
end = p + RARRAY_LEN(ary);
while (t < end) {
if (NIL_P(*t)) t++;
else *p++ = *t++;
}
|
#concat(other_ary) ⇒ Object
Appends the elements of other_ary to self
.
[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
|
# File 'array.c'
VALUE
rb_ary_concat(VALUE x, VALUE y)
{
rb_ary_modify_check(x);
y = to_ary(y);
if (RARRAY_LEN(y) > 0) {
rb_ary_splice(x, RARRAY_LEN(x), 0, y);
}
|
#count ⇒ Integer #count(obj) ⇒ Integer #count {|item| ... } ⇒ Integer
Returns the number of elements. If an argument is given, counts the number of elements which equals to obj. If a block is given, counts the number of elements yielding a true value.
ary = [1, 2, 4, 2]
ary.count #=> 4
ary.count(2) #=> 2
ary.count{|x|x%2==0} #=> 3
|
# File 'array.c'
static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
long n = 0;
if (argc == 0) {
VALUE *p, *pend;
if (!rb_block_given_p())
return LONG2NUM(RARRAY_LEN(ary));
for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
if (RTEST(rb_yield(*p))) n++;
}
|
#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object
Calls block for each element repeatedly n times or forever if none or nil
is given. If a non-positive number is given or the array is empty, does nothing. Returns nil
if the loop has finished without getting interrupted.
If no block is given, an enumerator is returned instead.
a = ["a", "b", "c"]
a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
|
# File 'array.c'
static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
long n, i;
VALUE nv = Qnil;
rb_scan_args(argc, argv, "01", &nv);
RETURN_ENUMERATOR(ary, argc, argv);
if (NIL_P(nv)) {
n = -1;
}
|
#delete(obj) ⇒ Object? #delete(obj) { ... } ⇒ Object?
Deletes items from self
that are equal to obj. If any items are found, returns obj. If the item is not found, returns nil
. If the optional code block is given, returns the result of block if the item is not found. (To remove nil
elements and get an informative return value, use #compact!)
a = [ "a", "b", "b", "b", "c" ]
a.delete("b") #=> "b"
a #=> ["a", "c"]
a.delete("z") #=> nil
a.delete("z") { "not found" } #=> "not found"
|
# File 'array.c'
VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
VALUE v = item;
long i1, i2;
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
VALUE e = RARRAY_PTR(ary)[i1];
if (rb_equal(e, item)) {
v = e;
continue;
}
|
#delete_at(index) ⇒ Object?
Deletes the element at the specified index, returning that element, or nil
if the index is out of range. See also Array#slice!
.
a = %w( ant bat cat dog )
a.delete_at(2) #=> "cat"
a #=> ["ant", "bat", "dog"]
a.delete_at(99) #=> nil
|
# File 'array.c'
static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
return rb_ary_delete_at(ary, NUM2LONG(pos));
}
|
#delete_if {|item| ... } ⇒ Object #delete_if ⇒ Object
Deletes every element of self
for which block evaluates to true. The array is changed instantly every time the block is called and not after the iteration is over. See also Array#reject!
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ]
a.delete_if {|x| x >= "b" } #=> ["a"]
|
# File 'array.c'
static VALUE
rb_ary_delete_if(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ary_reject_bang(ary);
return ary;
}
|
#drop(n) ⇒ Object
Drops first n elements from ary
and returns the rest of the elements in an array.
a = [1, 2, 3, 4, 5, 0]
a.drop(3) #=> [4, 5, 0]
|
# File 'array.c'
static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
VALUE result;
long pos = NUM2LONG(n);
if (pos < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
|
#drop_while {|arr| ... } ⇒ Object #drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns nil
or false
and returns an array containing the remaining elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0]
|
# File 'array.c'
static VALUE
rb_ary_drop_while(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
for (i = 0; i < RARRAY_LEN(ary); i++) {
if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
}
|
#each {|item| ... } ⇒ Object #each ⇒ Object
Calls block once for each element in self
, passing that element as a parameter.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ]
a.each {|x| print x, " -- " }
produces:
a -- b -- c --
|
# File 'array.c'
VALUE
rb_ary_each(VALUE array)
{
long i;
volatile VALUE ary = array;
RETURN_ENUMERATOR(ary, 0, 0);
for (i=0; i<RARRAY_LEN(ary); i++) {
rb_yield(RARRAY_PTR(ary)[i]);
}
|
#each_index {|index| ... } ⇒ Object #each_index ⇒ Object
Same as Array#each
, but passes the index of the element instead of the element itself.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }
produces:
0 -- 1 -- 2 --
|
# File 'array.c'
static VALUE
rb_ary_each_index(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
for (i=0; i<RARRAY_LEN(ary); i++) {
rb_yield(LONG2NUM(i));
}
|
#empty? ⇒ Boolean
Returns true
if self
contains no elements.
[].empty? #=> true
|
# File 'array.c'
static VALUE
rb_ary_empty_p(VALUE ary)
{
if (RARRAY_LEN(ary) == 0)
return Qtrue;
return Qfalse;
}
|
#eql?(other) ⇒ Boolean
Returns true
if self
and other are the same object, or are both arrays with the same content.
|
# File 'array.c'
static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) return Qfalse;
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}
|
#fetch(index) ⇒ Object #fetch(index, default) ⇒ Object #fetch(index) {|index| ... } ⇒ Object
Tries to return the element at position index. If the index lies outside the array, the first form throws an IndexError
exception, the second form returns default, and the third form returns the value of invoking the block, passing in the index. Negative values of index count from the end of the array.
a = [ 11, 22, 33, 44 ]
a.fetch(1) #=> 22
a.fetch(-1) #=> 44
a.fetch(4, 'cat') #=> "cat"
a.fetch(4) { |i| i*i } #=> 16
|
# File 'array.c'
static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
VALUE pos, ifnone;
long block_given;
long idx;
rb_scan_args(argc, argv, "11", &pos, &ifnone);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
|
#fill(obj) ⇒ Object #fill(obj, start[, length]) ⇒ Object #fill(obj, range) ⇒ Object #fill {|index| ... } ⇒ Object #fill(start[, length]) {|index| ... } ⇒ Object #fill(range) {|index| ... } ⇒ Object
The first three forms set the selected elements of self
(which may be the entire array) to obj. A start of nil
is equivalent to zero. A length of nil
is equivalent to self.length. The last three forms fill the array with the value of the block. The block is passed the absolute index of each element to be filled. Negative values of start count from the end of the array.
a = [ "a", "b", "c", "d" ]
a.fill("x") #=> ["x", "x", "x", "x"]
a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
a.fill {|i| i*i} #=> [0, 1, 4, 9]
a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
|
# File 'array.c'
static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
VALUE item, arg1, arg2;
long beg = 0, end = 0, len = 0;
VALUE *p, *pend;
int block_p = FALSE;
if (rb_block_given_p()) {
block_p = TRUE;
rb_scan_args(argc, argv, "02", &arg1, &arg2);
argc += 1; /* hackish */
}
|
#index(obj) ⇒ Integer? #index {|item| ... } ⇒ Integer? #index ⇒ Object
Returns the index of the first object in self
such that the object is ==
to obj. If a block is given instead of an argument, returns index of first object for which block is true. Returns nil
if no match is found. See also Array#rindex
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "c" ]
a.index("b") #=> 1
a.index("z") #=> nil
a.index{|x|x=="b"} #=> 1
This is an alias of #find_index
.
|
# File 'array.c'
static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
VALUE val;
long i;
if (argc == 0) {
RETURN_ENUMERATOR(ary, 0, 0);
for (i=0; i<RARRAY_LEN(ary); i++) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
return LONG2NUM(i);
}
|
#first ⇒ Object? #first(n) ⇒ Object
Returns the first element, or the first n
elements, of the array. If the array is empty, the first form returns nil
, and the second form returns an empty array.
a = [ "q", "r", "s", "t" ]
a.first #=> "q"
a.first(2) #=> ["q", "r"]
|
# File 'array.c'
static VALUE
rb_ary_first(int argc, VALUE *argv, VALUE ary)
{
if (argc == 0) {
if (RARRAY_LEN(ary) == 0) return Qnil;
return RARRAY_PTR(ary)[0];
}
|
#flatten ⇒ Object #flatten(level) ⇒ Object
Returns a new array that is a one-dimensional flattening of this array (recursively). That is, for every element that is an array, extract its elements into the new array. If the optional level argument determines the level of recursion to flatten.
s = [ 1, 2, 3 ] #=> [1, 2, 3]
t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten(1) #=> [1, 2, 3, [4, 5]]
|
# File 'array.c'
static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
int mod = 0, level = -1;
VALUE result, lv;
rb_scan_args(argc, argv, "01", &lv);
if (!NIL_P(lv)) level = NUM2INT(lv);
if (level == 0) return ary_make_shared_copy(ary);
result = flatten(ary, level, &mod);
OBJ_INFECT(result, ary);
return result;
}
|
#flatten! ⇒ nil #flatten!(level) ⇒ Array?
Flattens self
in place. Returns nil
if no modifications were made (i.e., ary contains no subarrays.) If the optional level argument determines the level of recursion to flatten.
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten! #=> [1, 2, 3, 4, 5]
a.flatten! #=> nil
a #=> [1, 2, 3, 4, 5]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!(1) #=> [1, 2, 3, [4, 5]]
|
# File 'array.c'
static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
int mod = 0, level = -1;
VALUE result, lv;
rb_scan_args(argc, argv, "01", &lv);
rb_ary_modify_check(ary);
if (!NIL_P(lv)) level = NUM2INT(lv);
if (level == 0) return Qnil;
result = flatten(ary, level, &mod);
if (mod == 0) {
ary_discard(result);
return Qnil;
}
|
#frozen? ⇒ Boolean
Return true
if this array is frozen (or temporarily frozen while being sorted).
|
# File 'array.c'
static VALUE
rb_ary_frozen_p(VALUE ary)
{
if (OBJ_FROZEN(ary)) return Qtrue;
return Qfalse;
}
|
#hash ⇒ Fixnum
Compute a hash-code for this array. Two arrays with the same content will have the same hash code (and will compare using eql?
).
|
# File 'array.c'
static VALUE
rb_ary_hash(VALUE ary)
{
return rb_exec_recursive_outer(recursive_hash, ary, 0);
}
|
#include?(obj) ⇒ Boolean
Returns true
if the given object is present in self
(that is, if any object ==
anObject), false
otherwise.
a = [ "a", "b", "c" ]
a.include?("b") #=> true
a.include?("z") #=> false
|
# File 'array.c'
VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
long i;
for (i=0; i<RARRAY_LEN(ary); i++) {
if (rb_equal(RARRAY_PTR(ary)[i], item)) {
return Qtrue;
}
|
#index(obj) ⇒ Integer? #index {|item| ... } ⇒ Integer? #index ⇒ Object
Returns the index of the first object in self
such that the object is ==
to obj. If a block is given instead of an argument, returns index of first object for which block is true. Returns nil
if no match is found. See also Array#rindex
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "c" ]
a.index("b") #=> 1
a.index("z") #=> nil
a.index{|x|x=="b"} #=> 1
This is an alias of #find_index
.
|
# File 'array.c'
static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
VALUE val;
long i;
if (argc == 0) {
RETURN_ENUMERATOR(ary, 0, 0);
for (i=0; i<RARRAY_LEN(ary); i++) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
return LONG2NUM(i);
}
|
#replace(other_ary) ⇒ Object
Replaces the contents of self
with the contents of other_ary, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
a #=> ["x", "y", "z"]
|
# File 'array.c'
VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
rb_ary_modify_check(copy);
orig = to_ary(orig);
if (copy == orig) return copy;
if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
VALUE *ptr;
VALUE shared = 0;
if (ARY_OWNS_HEAP_P(copy)) {
xfree(RARRAY_PTR(copy));
}
|
#insert(index, obj...) ⇒ Object
Inserts the given values before the element with the given index (which may be negative).
a = %w{ a b c d }
a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
|
# File 'array.c'
static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
long pos;
if (argc < 1) {
rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
}
|
#to_s ⇒ String #inspect ⇒ String Also known as: to_s
Creates a string representation of self
.
|
# File 'array.c'
static VALUE
rb_ary_inspect(VALUE ary)
{
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
return rb_exec_recursive(inspect_ary, ary, 0);
}
|
#join(sep = $,) ⇒ String
Returns a string created by converting each element of the array to a string, separated by sep.
[ "a", "b", "c" ].join #=> "abc"
[ "a", "b", "c" ].join("-") #=> "a-b-c"
|
# File 'array.c'
static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
VALUE sep;
rb_scan_args(argc, argv, "01", &sep);
if (NIL_P(sep)) sep = rb_output_fs;
return rb_ary_join(ary, sep);
}
|
#keep_if {|item| ... } ⇒ Object #keep_if ⇒ Object
Deletes every element of self
for which block evaluates to false. See also Array#select!
If no block is given, an enumerator is returned instead.
a = %w{ a b c d e f }
a.keep_if {|v| v =~ /[aeiou]/} #=> ["a", "e"]
|
# File 'array.c'
static VALUE
rb_ary_keep_if(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
rb_ary_select_bang(ary);
return ary;
}
|
#last ⇒ Object? #last(n) ⇒ Object
Returns the last element(s) of self
. If the array is empty, the first form returns nil
.
a = [ "w", "x", "y", "z" ]
a.last #=> "z"
a.last(2) #=> ["y", "z"]
|
# File 'array.c'
VALUE
rb_ary_last(int argc, VALUE *argv, VALUE ary)
{
if (argc == 0) {
if (RARRAY_LEN(ary) == 0) return Qnil;
return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
}
|
#length ⇒ Integer Also known as: size
Returns the number of elements in self
. May be zero.
[ 1, 2, 3, 4, 5 ].length #=> 5
|
# File 'array.c'
static VALUE
rb_ary_length(VALUE ary)
{
long len = RARRAY_LEN(ary);
return LONG2NUM(len);
}
|
#collect {|item| ... } ⇒ Object #map {|item| ... } ⇒ Object #collect ⇒ Object #map ⇒ Object
Invokes block once for each element of self
. Creates a new array containing the values returned by the block. See also Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ]
a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
a #=> ["a", "b", "c", "d"]
|
# File 'array.c'
static VALUE
rb_ary_collect(VALUE ary)
{
long i;
VALUE collect;
RETURN_ENUMERATOR(ary, 0, 0);
collect = rb_ary_new2(RARRAY_LEN(ary));
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
}
|
#collect! {|item| ... } ⇒ Object #map! {|item| ... } ⇒ Object #collect ⇒ Object #map ⇒ Object
Invokes the block once for each element of self
, replacing the element with the value returned by block. See also Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ]
a.collect! {|x| x + "!" }
a #=> [ "a!", "b!", "c!", "d!" ]
|
# File 'array.c'
static VALUE
rb_ary_collect_bang(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
rb_ary_modify(ary);
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
}
|
#pack ⇒ Object
Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives "A," "a," and "Z" may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk ("*
"), all remaining array elements will be converted. Any of the directives "sSiIlL
" may be followed by an underscore ("_
") or exclamation mark ("!
") to use the underlying platform's native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack
.
a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3") #=> "a b c "
a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000"
n.pack("ccc") #=> "ABC"
Directives for pack
.
Integer | Array |
Directive | Element | Meaning
---------------------------------------------------------------------------
C | Integer | 8-bit unsigned (unsigned char)
S | Integer | 16-bit unsigned, native endian (uint16_t)
L | Integer | 32-bit unsigned, native endian (uint32_t)
Q | Integer | 64-bit unsigned, native endian (uint64_t)
| |
c | Integer | 8-bit signed (signed char)
s | Integer | 16-bit signed, native endian (int16_t)
l | Integer | 32-bit signed, native endian (int32_t)
q | Integer | 64-bit signed, native endian (int64_t)
| |
S_, S! | Integer | unsigned short, native endian
I, I_, I! | Integer | unsigned int, native endian
L_, L! | Integer | unsigned long, native endian
| |
s_, s! | Integer | signed short, native endian
i, i_, i! | Integer | signed int, native endian
l_, l! | Integer | signed long, native endian
| |
S> L> Q> | Integer | same as the directives without ">" except
s> l> q> | | big endian
S!> I!> | | (available since Ruby 1.9.3)
L!> | | "S>" is same as "n"
s!> i!> | | "L>" is same as "N"
l!> | |
| |
S< L< Q< | Integer | same as the directives without "<" except
s< l< q< | | little endian
S!< I!< | | (available since Ruby 1.9.3)
L!< | | "S<" is same as "v"
s!< i!< | | "L<" is same as "V"
l!< | |
| |
n | Integer | 16-bit unsigned, network (big-endian) byte order
N | Integer | 32-bit unsigned, network (big-endian) byte order
v | Integer | 16-bit unsigned, VAX (little-endian) byte order
V | Integer | 32-bit unsigned, VAX (little-endian) byte order
| |
U | Integer | UTF-8 character
w | Integer | BER-compressed integer
Float | |
Directive | | Meaning
---------------------------------------------------------------------------
D, d | Float | double-precision, native format
F, f | Float | single-precision, native format
E | Float | double-precision, little-endian byte order
e | Float | single-precision, little-endian byte order
G | Float | double-precision, network (big-endian) byte order
g | Float | single-precision, network (big-endian) byte order
String | |
Directive | | Meaning
---------------------------------------------------------------------------
A | String | arbitrary binary string (space padded, count is width)
a | String | arbitrary binary string (null padded, count is width)
Z | String | same as ``a'', except that null is added with *
B | String | bit string (MSB first)
b | String | bit string (LSB first)
H | String | hex string (high nibble first)
h | String | hex string (low nibble first)
u | String | UU-encoded string
M | String | quoted printable, MIME encoding (see RFC2045)
m | String | base64 encoded string (see RFC 2045, count is width)
| | (if count is 0, no line feed are added, see RFC 4648)
P | String | pointer to a structure (fixed-length string)
p | String | pointer to a null-terminated string
Misc. | |
Directive | | Meaning
---------------------------------------------------------------------------
@ | --- | moves to absolute position
X | --- | back up a byte
x | --- | null byte
|
# File 'pack.c'
static VALUE
pack_pack(VALUE ary, VALUE fmt)
{
static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0";
static const char spc10[] = " ";
const char *p, *pend;
VALUE res, from, associates = 0;
char type;
long items, len, idx, plen;
const char *ptr;
int enc_info = 1; /* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */
#ifdef NATINT_PACK
int natint; /* native integer */
#endif
int signed_p, integer_size, bigendian_p;
StringValue(fmt);
p = RSTRING_PTR(fmt);
pend = p + RSTRING_LEN(fmt);
res = rb_str_buf_new(0);
items = RARRAY_LEN(ary);
idx = 0;
#define TOO_FEW (rb_raise(rb_eArgError, toofew), 0)
#define THISFROM (items > 0 ? RARRAY_PTR(ary)[idx] : TOO_FEW)
#define NEXTFROM (items-- > 0 ? RARRAY_PTR(ary)[idx++] : TOO_FEW)
while (p < pend) {
int explicit_endian = 0;
if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) {
rb_raise(rb_eRuntimeError, "format string modified");
}
|
#permutation {|p| ... } ⇒ Object #permutation ⇒ Object #permutation(n) {|p| ... } ⇒ Object #permutation(n) ⇒ Object
When invoked with a block, yield all permutations of length n of the elements of ary, then return the array itself. If n is not specified, yield all permutations of all elements. The implementation makes no guarantees about the order in which the permutations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3]
a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(1).to_a #=> [[1],[2],[3]]
a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(0).to_a #=> [[]] # one permutation of length 0
a.permutation(4).to_a #=> [] # no permutations of length 4
|
# File 'array.c'
static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
VALUE num;
long r, n, i;
n = RARRAY_LEN(ary); /* Array length */
RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */
rb_scan_args(argc, argv, "01", &num);
r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
if (r < 0 || n < r) {
/* no permutations: yield nothing */
}
|
#pop ⇒ Object? #pop(n) ⇒ Object
Removes the last element from self
and returns it, or nil
if the array is empty.
If a number n is given, returns an array of the last n elements (or less) just like array.slice!(-n, n)
does.
a = [ "a", "b", "c", "d" ]
a.pop #=> "d"
a.pop(2) #=> ["b", "c"]
a #=> ["a"]
|
# File 'array.c'
static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
VALUE result;
if (argc == 0) {
return rb_ary_pop(ary);
}
|
#product(other_ary, ...) ⇒ Object #product(other_ary, ...) {|p| ... } ⇒ Object
Returns an array of all combinations of elements from all arrays. The length of the returned array is the product of the length of self
and the argument arrays. If given a block, product will yield all combinations and return self
instead.
[1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
[1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]]
[1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
# [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
[1,2].product() #=> [[1],[2]]
[1,2].product([]) #=> []
|
# File 'array.c'
static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
int n = argc+1; /* How many arrays we're operating on */
volatile VALUE t0 = tmpary(n);
volatile VALUE t1 = tmpbuf(n, sizeof(int));
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
VALUE result = Qnil; /* The array we'll be returning, when no block given */
long i,j;
long resultlen = 1;
RBASIC(t0)->klass = 0;
RBASIC(t1)->klass = 0;
/* initialize the arrays of arrays */
ARY_SET_LEN(t0, n);
arrays[0] = ary;
for (i = 1; i < n; i++) arrays[i] = Qnil;
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
/* initialize the counters for the arrays */
for (i = 0; i < n; i++) counters[i] = 0;
/* Otherwise, allocate and fill in an array of results */
if (rb_block_given_p()) {
/* Make defensive copies of arrays; exit if any is empty */
for (i = 0; i < n; i++) {
if (RARRAY_LEN(arrays[i]) == 0) goto done;
arrays[i] = ary_make_shared_copy(arrays[i]);
}
|
#push(obj, ...) ⇒ Object
Append---Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together.
a = [ "a", "b", "c" ]
a.push("d", "e", "f")
#=> ["a", "b", "c", "d", "e", "f"]
|
# File 'array.c'
static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
rb_ary_modify(ary);
while (argc--) {
rb_ary_push_1(ary, *argv++);
}
|
#rassoc(obj) ⇒ nil
Searches through the array whose elements are also arrays. Compares obj with the second element of each contained array using ==
. Returns the first contained array that matches. See also Array#assoc
.
a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
a.rassoc("two") #=> [2, "two"]
a.rassoc("four") #=> nil
|
# File 'array.c'
VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
long i;
VALUE v;
for (i = 0; i < RARRAY_LEN(ary); ++i) {
v = RARRAY_PTR(ary)[i];
if (TYPE(v) == T_ARRAY &&
RARRAY_LEN(v) > 1 &&
rb_equal(RARRAY_PTR(v)[1], value))
return v;
}
|
#reject {|item| ... } ⇒ Object #reject ⇒ Object
Returns a new array containing the items in self
for which the block is not true. See also Array#delete_if
If no block is given, an enumerator is returned instead.
|
# File 'array.c'
static VALUE
rb_ary_reject(VALUE ary)
{
VALUE rejected_ary;
RETURN_ENUMERATOR(ary, 0, 0);
rejected_ary = rb_ary_new();
ary_reject(ary, rejected_ary);
return rejected_ary;
}
|
#reject! {|item| ... } ⇒ nil #reject! ⇒ Object
Equivalent to Array#delete_if
, deleting elements from self
for which the block evaluates to true, but returns nil
if no changes were made. The array is changed instantly every time the block is called and not after the iteration is over. See also Enumerable#reject
and Array#delete_if
.
If no block is given, an enumerator is returned instead.
|
# File 'array.c'
static VALUE
rb_ary_reject_bang(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
return ary_reject_bang(ary);
}
|
#repeated_combination(n) {|c| ... } ⇒ Object #repeated_combination(n) ⇒ Object
When invoked with a block, yields all repeated combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the repeated combinations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3]
a.repeated_combination(1).to_a #=> [[1], [2], [3]]
a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
# [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
# [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
# [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
|
# File 'array.c'
static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
long n, i, len;
n = NUM2LONG(num); /* Combination size from argument */
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
len = RARRAY_LEN(ary);
if (n < 0) {
/* yield nothing */
}
|
#repeated_permutation(n) {|p| ... } ⇒ Object #repeated_permutation(n) ⇒ Object
When invoked with a block, yield all repeated permutations of length n of the elements of ary, then return the array itself. The implementation makes no guarantees about the order in which the repeated permutations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2]
a.repeated_permutation(1).to_a #=> [[1], [2]]
a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]]
a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
# [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
|
# File 'array.c'
static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
long r, n, i;
n = RARRAY_LEN(ary); /* Array length */
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
r = NUM2LONG(num); /* Permutation size from argument */
if (r < 0) {
/* no permutations: yield nothing */
}
|
#replace(other_ary) ⇒ Object
Replaces the contents of self
with the contents of other_ary, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
a #=> ["x", "y", "z"]
|
# File 'array.c'
VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
rb_ary_modify_check(copy);
orig = to_ary(orig);
if (copy == orig) return copy;
if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
VALUE *ptr;
VALUE shared = 0;
if (ARY_OWNS_HEAP_P(copy)) {
xfree(RARRAY_PTR(copy));
}
|
#reverse ⇒ Object
Returns a new array containing self
's elements in reverse order.
[ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
[ 1 ].reverse #=> [1]
|
# File 'array.c'
static VALUE
rb_ary_reverse_m(VALUE ary)
{
long len = RARRAY_LEN(ary);
VALUE dup = rb_ary_new2(len);
if (len > 0) {
VALUE *p1 = RARRAY_PTR(ary);
VALUE *p2 = RARRAY_PTR(dup) + len - 1;
do *p2-- = *p1++; while (--len > 0);
}
|
#reverse! ⇒ Object
Reverses self
in place.
a = [ "a", "b", "c" ]
a.reverse! #=> ["c", "b", "a"]
a #=> ["c", "b", "a"]
|
# File 'array.c'
static VALUE
rb_ary_reverse_bang(VALUE ary)
{
return rb_ary_reverse(ary);
}
|
#reverse_each {|item| ... } ⇒ Object #reverse_each ⇒ Object
Same as Array#each
, but traverses self
in reverse order.
a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }
produces:
c b a
|
# File 'array.c'
static VALUE
rb_ary_reverse_each(VALUE ary)
{
long len;
RETURN_ENUMERATOR(ary, 0, 0);
len = RARRAY_LEN(ary);
while (len--) {
rb_yield(RARRAY_PTR(ary)[len]);
if (RARRAY_LEN(ary) < len) {
len = RARRAY_LEN(ary);
}
|
#rindex(obj) ⇒ Integer? #rindex {|item| ... } ⇒ Integer? #rindex ⇒ Object
Returns the index of the last object in self
==
to obj. If a block is given instead of an argument, returns index of first object for which block is true, starting from the last object. Returns nil
if no match is found. See also Array#index
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "b", "b", "c" ]
a.rindex("b") #=> 3
a.rindex("z") #=> nil
a.rindex{|x|x=="b"} #=> 3
|
# File 'array.c'
static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
VALUE val;
long i = RARRAY_LEN(ary);
if (argc == 0) {
RETURN_ENUMERATOR(ary, 0, 0);
while (i--) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
return LONG2NUM(i);
if (i > RARRAY_LEN(ary)) {
i = RARRAY_LEN(ary);
}
|
#rotate(cnt = 1) ⇒ Object
Returns new array by rotating self
so that the element at cnt
in self
is the first element of the new array. If cnt
is negative then it rotates in the opposite direction.
a = [ "a", "b", "c", "d" ]
a.rotate #=> ["b", "c", "d", "a"]
a #=> ["a", "b", "c", "d"]
a.rotate(2) #=> ["c", "d", "a", "b"]
a.rotate(-3) #=> ["b", "c", "d", "a"]
|
# File 'array.c'
static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
VALUE rotated, *ptr, *ptr2;
long len, cnt = 1;
switch (argc) {
case 1: cnt = NUM2LONG(argv[0]);
case 0: break;
default: rb_scan_args(argc, argv, "01", NULL);
}
|
#rotate!(cnt = 1) ⇒ Object
Rotates self
in place so that the element at cnt
comes first, and returns self
. If cnt
is negative then it rotates in the opposite direction.
a = [ "a", "b", "c", "d" ]
a.rotate! #=> ["b", "c", "d", "a"]
a #=> ["b", "c", "d", "a"]
a.rotate!(2) #=> ["d", "a", "b", "c"]
a.rotate!(-3) #=> ["a", "b", "c", "d"]
|
# File 'array.c'
static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
long n = 1;
switch (argc) {
case 1: n = NUM2LONG(argv[0]);
case 0: break;
default: rb_scan_args(argc, argv, "01", NULL);
}
|
#sample ⇒ Object #sample(random:rng) ⇒ Object #sample(n) ⇒ Object #sample(n, random:rng) ⇒ Object
Choose a random element or n
random elements from the array. The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn't repeat itself unless the array already contained duplicate elements. If the array is empty the first form returns nil
and the second form returns an empty array.
If rng
is given, it will be used as the random number generator.
|
# File 'array.c'
static VALUE
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
{
VALUE nv, result, *ptr;
VALUE opts, randgen = rb_cRandom;
long n, len, i, j, k, idx[10];
double rnds[numberof(idx)];
if (OPTHASH_GIVEN_P(opts)) {
randgen = rb_hash_lookup2(opts, sym_random, randgen);
}
|
#select {|item| ... } ⇒ Object #select ⇒ Object
Invokes the block passing in successive elements from self
, returning an array containing those elements for which the block returns a true value (equivalent to Enumerable#select
).
If no block is given, an enumerator is returned instead.
a = %w{ a b c d e f }
a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
|
# File 'array.c'
static VALUE
rb_ary_select(VALUE ary)
{
VALUE result;
long i;
RETURN_ENUMERATOR(ary, 0, 0);
result = rb_ary_new2(RARRAY_LEN(ary));
for (i = 0; i < RARRAY_LEN(ary); i++) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
rb_ary_push(result, rb_ary_elt(ary, i));
}
|
#select! {|item| ... } ⇒ nil #select! ⇒ Object
Invokes the block passing in successive elements from self
, deleting elements for which the block returns a false value. It returns self
if changes were made, otherwise it returns nil
. See also Array#keep_if
If no block is given, an enumerator is returned instead.
|
# File 'array.c'
static VALUE
rb_ary_select_bang(VALUE ary)
{
long i1, i2;
RETURN_ENUMERATOR(ary, 0, 0);
rb_ary_modify(ary);
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
VALUE v = RARRAY_PTR(ary)[i1];
if (!RTEST(rb_yield(v))) continue;
if (i1 != i2) {
rb_ary_store(ary, i2, v);
}
|
#shift ⇒ Object? #shift(n) ⇒ Object
Returns the first element of self
and removes it (shifting all other elements down by one). Returns nil
if the array is empty.
If a number n is given, returns an array of the first n elements (or less) just like array.slice!(0, n)
does.
args = [ "-m", "-q", "filename" ]
args.shift #=> "-m"
args #=> ["-q", "filename"]
args = [ "-m", "-q", "filename" ]
args.shift(2) #=> ["-m", "-q"]
args #=> ["filename"]
|
# File 'array.c'
static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
VALUE result;
long n;
if (argc == 0) {
return rb_ary_shift(ary);
}
|
#shuffle ⇒ Object #shuffle(random:rng) ⇒ Object
Returns a new array with elements of this array shuffled.
a = [ 1, 2, 3 ] #=> [1, 2, 3]
a.shuffle #=> [2, 3, 1]
If rng
is given, it will be used as the random number generator.
a.shuffle(random: Random.new(1)) #=> [1, 3, 2]
|
# File 'array.c'
static VALUE
rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_shuffle_bang(argc, argv, ary);
return ary;
}
|
#shuffle! ⇒ Object #shuffle!(random:rng) ⇒ Object
Shuffles elements in self
in place. If rng
is given, it will be used as the random number generator.
|
# File 'array.c'
static VALUE
rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
{
VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
long i, snap_len;
if (OPTHASH_GIVEN_P(opts)) {
randgen = rb_hash_lookup2(opts, sym_random, randgen);
}
|
#[](index) ⇒ Object? #[](start, length) ⇒ nil #[](range) ⇒ nil #slice(index) ⇒ Object? #slice(start, length) ⇒ nil #slice(range) ⇒ nil
Element Reference---Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ]
a[2] + a[0] + a[1] #=> "cab"
a[6] #=> nil
a[1, 2] #=> [ "b", "c" ]
a[1..3] #=> [ "b", "c", "d" ]
a[4..7] #=> [ "e" ]
a[6..10] #=> nil
a[-3, 3] #=> [ "c", "d", "e" ]
# special cases
a[5] #=> nil
a[5, 1] #=> []
a[5..10] #=> []
|
# File 'array.c'
VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
VALUE arg;
long beg, len;
if (argc == 2) {
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
if (beg < 0) {
beg += RARRAY_LEN(ary);
}
|
#slice!(index) ⇒ Object? #slice!(start, length) ⇒ nil #slice!(range) ⇒ nil
Deletes the element(s) given by an index (optionally with a length) or by a range. Returns the deleted object (or objects), or nil
if the index is out of range.
a = [ "a", "b", "c" ]
a.slice!(1) #=> "b"
a #=> ["a", "c"]
a.slice!(-1) #=> "c"
a #=> ["a"]
a.slice!(100) #=> nil
a #=> ["a"]
|
# File 'array.c'
static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
VALUE arg1, arg2;
long pos, len, orig_len;
rb_ary_modify_check(ary);
if (argc == 2) {
pos = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
delete_pos_len:
if (len < 0) return Qnil;
orig_len = RARRAY_LEN(ary);
if (pos < 0) {
pos += orig_len;
if (pos < 0) return Qnil;
}
|
#sort ⇒ Object #sort {|a, b| ... } ⇒ Object
Returns a new array created by sorting self
. Comparisons for the sort will be done using the <=>
operator or using an optional code block. The block implements a comparison between a and b, returning -1, 0, or +1. See also Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ]
a.sort #=> ["a", "b", "c", "d", "e"]
a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
|
# File 'array.c'
VALUE
rb_ary_sort(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_sort_bang(ary);
return ary;
}
|
#sort! ⇒ Object #sort! {|a, b| ... } ⇒ Object
Sorts self
. Comparisons for the sort will be done using the <=>
operator or using an optional code block. The block implements a comparison between a and b, returning -1, 0, or +1. See also Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ]
a.sort! #=> ["a", "b", "c", "d", "e"]
a.sort! {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
|
# File 'array.c'
VALUE
rb_ary_sort_bang(VALUE ary)
{
rb_ary_modify(ary);
assert(!ARY_SHARED_P(ary));
if (RARRAY_LEN(ary) > 1) {
VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
struct ary_sort_data data;
RBASIC(tmp)->klass = 0;
data.ary = tmp;
data.opt_methods = 0;
data.opt_inited = 0;
ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
rb_block_given_p()?sort_1:sort_2, &data);
if (ARY_EMBED_P(tmp)) {
assert(ARY_EMBED_P(tmp));
if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
rb_ary_unshare(ary);
}
|
#sort_by! {|obj| ... } ⇒ Object #sort_by! ⇒ Object
Sorts self
in place using a set of keys generated by mapping the values in self
through the given block.
If no block is given, an enumerator is returned instead.
|
# File 'array.c'
static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
VALUE sorted;
RETURN_ENUMERATOR(ary, 0, 0);
rb_ary_modify(ary);
sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
rb_ary_replace(ary, sorted);
return ary;
}
|
#take(n) ⇒ Object
Returns first n elements from ary.
a = [1, 2, 3, 4, 5, 0]
a.take(3) #=> [1, 2, 3]
|
# File 'array.c'
static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
|
#take_while {|arr| ... } ⇒ Object #take_while ⇒ Object
Passes elements to the block until the block returns nil
or false
, then stops iterating and returns an array of all prior elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.take_while {|i| i < 3 } #=> [1, 2]
|
# File 'array.c'
static VALUE
rb_ary_take_while(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
for (i = 0; i < RARRAY_LEN(ary); i++) {
if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
}
|
#to_a ⇒ Object
Returns self
. If called on a subclass of Array, converts the receiver to an Array object.
|
# File 'array.c'
static VALUE
rb_ary_to_a(VALUE ary)
{
if (rb_obj_class(ary) != rb_cArray) {
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
rb_ary_replace(dup, ary);
return dup;
}
|
#to_ary ⇒ Object
Returns self
.
|
# File 'array.c'
static VALUE
rb_ary_to_ary_m(VALUE ary)
{
return ary;
}
|
#transpose ⇒ Object
Assumes that self
is an array of arrays and transposes the rows and columns.
a = [[1,2], [3,4], [5,6]]
a.transpose #=> [[1, 3, 5], [2, 4, 6]]
|
# File 'array.c'
static VALUE
rb_ary_transpose(VALUE ary)
{
long elen = -1, alen, i, j;
VALUE tmp, result = 0;
alen = RARRAY_LEN(ary);
if (alen == 0) return rb_ary_dup(ary);
for (i=0; i<alen; i++) {
tmp = to_ary(rb_ary_elt(ary, i));
if (elen < 0) { /* first element */
elen = RARRAY_LEN(tmp);
result = rb_ary_new2(elen);
for (j=0; j<elen; j++) {
rb_ary_store(result, j, rb_ary_new2(alen));
}
|
#uniq ⇒ Object
Returns a new array by removing duplicate values in self
.
a = [ "a", "a", "b", "b", "c" ]
a.uniq #=> ["a", "b", "c"]
c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
c.uniq {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ]
|
# File 'array.c'
static VALUE
rb_ary_uniq(VALUE ary)
{
VALUE hash, uniq, v;
long i;
if (RARRAY_LEN(ary) <= 1)
return rb_ary_dup(ary);
if (rb_block_given_p()) {
hash = ary_make_hash_by(ary);
uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
st_foreach(RHASH_TBL(hash), push_value, uniq);
}
|
#uniq! ⇒ nil
Removes duplicate elements from self
. Returns nil
if no changes are made (that is, no duplicates are found).
a = [ "a", "a", "b", "b", "c" ]
a.uniq! #=> ["a", "b", "c"]
b = [ "a", "b", "c" ]
b.uniq! #=> nil
c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
c.uniq! {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ]
|
# File 'array.c'
static VALUE
rb_ary_uniq_bang(VALUE ary)
{
VALUE hash, v;
long i, j;
rb_ary_modify_check(ary);
if (RARRAY_LEN(ary) <= 1)
return Qnil;
if (rb_block_given_p()) {
hash = ary_make_hash_by(ary);
if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
return Qnil;
}
|
#unshift(obj, ...) ⇒ Object
Prepends objects to the front of self
, moving other elements upwards.
a = [ "b", "c", "d" ]
a.unshift("a") #=> ["a", "b", "c", "d"]
a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
|
# File 'array.c'
static VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
long len;
rb_ary_modify(ary);
if (argc == 0) return ary;
if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) {
ary_double_capa(ary, len + argc);
}
|
#values_at(selector, ...) ⇒ Object
Returns an array containing the elements in self
corresponding to the given selector(s). The selectors may be either integer indices or ranges. See also Array#select
.
a = %w{ a b c d e f }
a.values_at(1, 3, 5)
a.values_at(1, 3, 5, 7)
a.values_at(-1, -3, -5, -7)
a.values_at(1..3, 2...5)
|
# File 'array.c'
static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
}
|
#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil
Converts any arguments to arrays, then merges elements of self
with corresponding elements from each argument. This generates a sequence of self.size
n-element arrays, where n is one more that the count of arguments. If the size of any argument is less than enumObj.size
, nil
values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.
a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
[1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
|
# File 'array.c'
static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
int i, j;
long len;
VALUE result = Qnil;
len = RARRAY_LEN(ary);
for (i=0; i<argc; i++) {
argv[i] = take_items(argv[i], len);
}
|
#|(other_ary) ⇒ Object
Set Union---Returns a new array by joining this array with other_ary, removing duplicates.
[ "a", "b", "c" ] | [ "c", "d", "a" ]
#=> [ "a", "b", "c", "d" ]
|
# File 'array.c'
static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
VALUE hash, ary3, v;
st_data_t vv;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
hash = ary_add_hash(ary_make_hash(ary1), ary2);
for (i=0; i<RARRAY_LEN(ary1); i++) {
vv = (st_data_t)(v = rb_ary_elt(ary1, i));
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
rb_ary_push(ary3, v);
}
|