Class: Integer
Overview
Integer
is the basis for the two concrete classes that hold whole numbers, Bignum
and Fixnum
.
Instance Method Summary collapse
-
#ceil ⇒ Object
As int is already an
Integer
, all these methods simply return the receiver. -
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the receiver's value according to
encoding
. -
#denominator ⇒ 1
Returns 1.
-
#downto ⇒ Object
Iterates block, passing decreasing values from int down to and including limit.
-
#even? ⇒ Boolean
Returns
true
if int is an even number. -
#floor ⇒ Object
As int is already an
Integer
, all these methods simply return the receiver. -
#gcd(int2) ⇒ Integer
Returns the greatest common divisor (always positive).
-
#gcdlcm(int2) ⇒ Array
Returns an array; [int.gcd(int2), int.lcm(int2)].
-
#integer? ⇒ true
Always returns
true
. -
#lcm(int2) ⇒ Integer
Returns the least common multiple (always positive).
-
#next ⇒ Object
Returns the
Integer
equal to int + 1. -
#numerator ⇒ Integer
Returns self.
-
#odd? ⇒ Boolean
Returns
true
if int is an odd number. -
#ord ⇒ Integer
Returns the int itself.
-
#pred ⇒ Integer
Returns the
Integer
equal to int - 1. -
#rationalize([eps]) ⇒ Object
Returns the value as a rational.
-
#round([ndigits]) ⇒ Integer, Float
Rounds flt to a given precision in decimal digits (default 0 digits).
-
#succ ⇒ Object
Returns the
Integer
equal to int + 1. -
#times ⇒ Object
Iterates block int times, passing in values from zero to int - 1.
-
#to_i ⇒ Object
As int is already an
Integer
, all these methods simply return the receiver. -
#to_int ⇒ Object
As int is already an
Integer
, all these methods simply return the receiver. -
#to_r ⇒ Object
Returns the value as a rational.
-
#truncate ⇒ Object
As int is already an
Integer
, all these methods simply return the receiver. -
#upto ⇒ Object
Iterates block, passing in integer values from int up to and including limit.
Methods inherited from Numeric
#%, #+@, #-@, #<=>, #abs, #abs2, #angle, #arg, #coerce, #conj, #conjugate, #div, #divmod, #eql?, #fdiv, #i, #imag, #imaginary, #initialize_copy, #magnitude, #modulo, #nonzero?, #phase, #polar, #quo, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #zero?
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#to_i ⇒ Integer #to_int ⇒ Integer #floor ⇒ Integer #ceil ⇒ Integer #truncate ⇒ Integer
As int is already an Integer
, all these methods simply return the receiver.
|
# File 'numeric.c'
static VALUE
int_to_i(VALUE num)
{
return num;
}
|
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the receiver's value according to encoding
.
65.chr #=> "A"
230.chr #=> "\346"
255.chr(Encoding::UTF_8) #=> "\303\277"
|
# File 'numeric.c'
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
|
#denominator ⇒ 1
Returns 1.
|
# File 'rational.c'
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
|
#downto(limit) {|i| ... } ⇒ Integer #downto(limit) ⇒ Object
Iterates block, passing decreasing values from int down to and including limit.
If no block is given, an enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
print " Liftoff!\n"
produces:
5.. 4.. 3.. 2.. 1.. Liftoff!
|
# File 'numeric.c'
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_ENUMERATOR(from, 1, &to);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
|
#even? ⇒ Boolean
Returns true
if int is an even number.
|
# File 'numeric.c'
static VALUE
int_even_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #floor ⇒ Integer #ceil ⇒ Integer #truncate ⇒ Integer
As int is already an Integer
, all these methods simply return the receiver.
|
# File 'numeric.c'
static VALUE
int_to_i(VALUE num)
{
return num;
}
|
#gcd(int2) ⇒ Integer
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
For example:
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
|
# File 'rational.c'
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
|
#gcdlcm(int2) ⇒ Array
Returns an array; [int.gcd(int2), int.lcm(int2)].
For example:
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
|
# File 'rational.c'
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
|
#integer? ⇒ true
Always returns true
.
|
# File 'numeric.c'
static VALUE
int_int_p(VALUE num)
{
return Qtrue;
}
|
#lcm(int2) ⇒ Integer
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
For example:
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
|
# File 'rational.c'
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
|
#next ⇒ Integer #succ ⇒ Integer
Returns the Integer
equal to int + 1.
1.next #=> 2
(-1).next #=> 0
|
# File 'numeric.c'
static VALUE
int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
|
#numerator ⇒ Integer
Returns self.
|
# File 'rational.c'
static VALUE
integer_numerator(VALUE self)
{
return self;
}
|
#odd? ⇒ Boolean
Returns true
if int is an odd number.
|
# File 'numeric.c'
static VALUE
int_odd_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}
|
#ord ⇒ Integer
Returns the int itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9. For example, ?a.ord returns 97 both in 1.8 and 1.9.
|
# File 'numeric.c'
static VALUE
int_ord(VALUE num)
{
return num;
}
|
#pred ⇒ Integer
Returns the Integer
equal to int - 1.
1.pred #=> 0
(-1).pred #=> -2
|
# File 'numeric.c'
static VALUE
int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
|
#rationalize([eps]) ⇒ Object
Returns the value as a rational. An optional argument eps is always ignored.
|
# File 'rational.c'
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_scan_args(argc, argv, "01", NULL);
return integer_to_r(self);
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits
is positive, self
for zero, and round down for negative.
1.round #=> 1
1.round(2) #=> 1.0
15.round(-1) #=> 20
|
# File 'numeric.c'
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
VALUE n;
int ndigits;
if (argc == 0) return num;
rb_scan_args(argc, argv, "1", &n);
ndigits = NUM2INT(n);
if (ndigits > 0) {
return rb_Float(num);
}
|
#next ⇒ Integer #succ ⇒ Integer
Returns the Integer
equal to int + 1.
1.next #=> 2
(-1).next #=> 0
|
# File 'numeric.c'
static VALUE
int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
|
#times {|i| ... } ⇒ Integer #times ⇒ Object
Iterates block int times, passing in values from zero to int - 1.
If no block is given, an enumerator is returned instead.
5.times do |i|
print i, " "
end
produces:
0 1 2 3 4
|
# File 'numeric.c'
static VALUE
int_dotimes(VALUE num)
{
RETURN_ENUMERATOR(num, 0, 0);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield(LONG2FIX(i));
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #floor ⇒ Integer #ceil ⇒ Integer #truncate ⇒ Integer
As int is already an Integer
, all these methods simply return the receiver.
|
# File 'numeric.c'
static VALUE
int_to_i(VALUE num)
{
return num;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #floor ⇒ Integer #ceil ⇒ Integer #truncate ⇒ Integer
As int is already an Integer
, all these methods simply return the receiver.
|
# File 'numeric.c'
static VALUE
int_to_i(VALUE num)
{
return num;
}
|
#to_r ⇒ Object
Returns the value as a rational.
For example:
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
|
# File 'rational.c'
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #floor ⇒ Integer #ceil ⇒ Integer #truncate ⇒ Integer
As int is already an Integer
, all these methods simply return the receiver.
|
# File 'numeric.c'
static VALUE
int_to_i(VALUE num)
{
return num;
}
|
#upto(limit) {|i| ... } ⇒ Integer #upto(limit) ⇒ Object
Iterates block, passing in integer values from int up to and including limit.
If no block is given, an enumerator is returned instead.
5.upto(10) { |i| print i, " " }
produces:
5 6 7 8 9 10
|
# File 'numeric.c'
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_ENUMERATOR(from, 1, &to);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
|