Class: Integer

Inherits:
Numeric show all
Defined in:
numeric.c

Overview

Integer is the basis for the two concrete classes that hold whole numbers, Bignum and Fixnum.

Direct Known Subclasses

Bignum, Fixnum

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #-@, #<=>, #abs, #abs2, #angle, #arg, #coerce, #conj, #conjugate, #div, #divmod, #eql?, #fdiv, #i, #imag, #imaginary, #initialize_copy, #magnitude, #modulo, #nonzero?, #phase, #polar, #quo, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #zero?

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?

Instance Method Details

#to_iInteger #to_intInteger #floorInteger #ceilInteger #truncateInteger

As int is already an Integer, all these methods simply return the receiver.

Overloads:



# File 'numeric.c'

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#chr([encoding]) ⇒ String

Returns a string containing the character represented by the receiver's value according to encoding.

65.chr    #=> "A"
230.chr   #=> "\346"
255.chr(Encoding::UTF_8)   #=> "\303\277"

Returns:



# File 'numeric.c'

static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;

if (rb_num_to_uint(num, &i) == 0) {
}

#denominator1

Returns 1.

Returns:

  • (1)


# File 'rational.c'

static VALUE
integer_denominator(VALUE self)
{
    return INT2FIX(1);
}

#downto(limit) {|i| ... } ⇒ Integer #downto(limit) ⇒ Object

Iterates block, passing decreasing values from int down to and including limit.

If no block is given, an enumerator is returned instead.

5.downto(1) { |n| print n, ".. " }
print "  Liftoff!\n"

produces:

5.. 4.. 3.. 2.. 1..   Liftoff!

Overloads:



# File 'numeric.c'

static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_ENUMERATOR(from, 1, &to);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;

end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
    rb_yield(LONG2FIX(i));
}

#even?Boolean

Returns true if int is an even number.

Returns:

  • (Boolean)


# File 'numeric.c'

static VALUE
int_even_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}

#to_iInteger #to_intInteger #floorInteger #ceilInteger #truncateInteger

As int is already an Integer, all these methods simply return the receiver.

Overloads:



# File 'numeric.c'

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#gcd(int2) ⇒ Integer

Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).

For example:

2.gcd(2)                    #=> 2
3.gcd(-7)                   #=> 1
((1<<31)-1).gcd((1<<61)-1)  #=> 1

Returns:



# File 'rational.c'

VALUE
rb_gcd(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_gcd(self, other);
}

#gcdlcm(int2) ⇒ Array

Returns an array; [int.gcd(int2), int.lcm(int2)].

For example:

2.gcdlcm(2)                    #=> [2, 2]
3.gcdlcm(-7)                   #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1)  #=> [1, 4951760154835678088235319297]

Returns:



# File 'rational.c'

VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}

#integer?true

Always returns true.

Returns:

  • (true)


# File 'numeric.c'

static VALUE
int_int_p(VALUE num)
{
    return Qtrue;
}

#lcm(int2) ⇒ Integer

Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.

For example:

2.lcm(2)                    #=> 2
3.lcm(-7)                   #=> 21
((1<<31)-1).lcm((1<<61)-1)  #=> 4951760154835678088235319297

Returns:



# File 'rational.c'

VALUE
rb_lcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_lcm(self, other);
}

#nextInteger #succInteger

Returns the Integer equal to int + 1.

1.next      #=> 2
(-1).next   #=> 0

Overloads:



# File 'numeric.c'

static VALUE
int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}

#numeratorInteger

Returns self.

Returns:



# File 'rational.c'

static VALUE
integer_numerator(VALUE self)
{
    return self;
}

#odd?Boolean

Returns true if int is an odd number.

Returns:

  • (Boolean)


# File 'numeric.c'

static VALUE
int_odd_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}

#ordInteger

Returns the int itself.

?a.ord    #=> 97

This method is intended for compatibility to character constant in Ruby 1.9. For example, ?a.ord returns 97 both in 1.8 and 1.9.

Returns:



# File 'numeric.c'

static VALUE
int_ord(VALUE num)
{
    return num;
}

#predInteger

Returns the Integer equal to int - 1.

1.pred      #=> 0
(-1).pred   #=> -2

Returns:



# File 'numeric.c'

static VALUE
int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}

#rationalize([eps]) ⇒ Object

Returns the value as a rational. An optional argument eps is always ignored.



# File 'rational.c'

static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
    rb_scan_args(argc, argv, "01", NULL);
    return integer_to_r(self);
}

#round([ndigits]) ⇒ Integer, Float

Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is positive, self for zero, and round down for negative.

1.round        #=> 1
1.round(2)     #=> 1.0
15.round(-1)   #=> 20

Returns:



# File 'numeric.c'

static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
VALUE n;
int ndigits;

if (argc == 0) return num;
rb_scan_args(argc, argv, "1", &n);
ndigits = NUM2INT(n);
if (ndigits > 0) {
return rb_Float(num);
}

#nextInteger #succInteger

Returns the Integer equal to int + 1.

1.next      #=> 2
(-1).next   #=> 0

Overloads:



# File 'numeric.c'

static VALUE
int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}

#times {|i| ... } ⇒ Integer #timesObject

Iterates block int times, passing in values from zero to int - 1.

If no block is given, an enumerator is returned instead.

5.times do |i|
  print i, " "
end

produces:

0 1 2 3 4

Overloads:



# File 'numeric.c'

static VALUE
int_dotimes(VALUE num)
{
RETURN_ENUMERATOR(num, 0, 0);

if (FIXNUM_P(num)) {
long i, end;

end = FIX2LONG(num);
for (i=0; i<end; i++) {
    rb_yield(LONG2FIX(i));
}

#to_iInteger #to_intInteger #floorInteger #ceilInteger #truncateInteger

As int is already an Integer, all these methods simply return the receiver.

Overloads:



# File 'numeric.c'

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#to_iInteger #to_intInteger #floorInteger #ceilInteger #truncateInteger

As int is already an Integer, all these methods simply return the receiver.

Overloads:



# File 'numeric.c'

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#to_rObject

Returns the value as a rational.

For example:

1.to_r        #=> (1/1)
(1<<64).to_r  #=> (18446744073709551616/1)


# File 'rational.c'

static VALUE
integer_to_r(VALUE self)
{
    return rb_rational_new1(self);
}

#to_iInteger #to_intInteger #floorInteger #ceilInteger #truncateInteger

As int is already an Integer, all these methods simply return the receiver.

Overloads:



# File 'numeric.c'

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#upto(limit) {|i| ... } ⇒ Integer #upto(limit) ⇒ Object

Iterates block, passing in integer values from int up to and including limit.

If no block is given, an enumerator is returned instead.

5.upto(10) { |i| print i, " " }

produces:

5 6 7 8 9 10

Overloads:



# File 'numeric.c'

static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_ENUMERATOR(from, 1, &to);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;

end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
    rb_yield(LONG2FIX(i));
}