Class: Proc

Inherits:
Object show all
Defined in:
proc.c

Overview

Proc objects are blocks of code that have been bound to a set of local variables. Once bound, the code may be called in different contexts and still access those variables.

def gen_times(factor)
  return Proc.new {|n| n*factor }
end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12)               #=> 36
times5.call(5)                #=> 25
times3.call(times5.call(4))   #=> 60

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.new {|...| ... } ⇒ Proc .newProc

Creates a new Proc object, bound to the current context. Proc::new may be called without a block only within a method with an attached block, in which case that block is converted to the Proc object.

def proc_from
  Proc.new
end
proc = proc_from { "hello" }
proc.call   #=> "hello"

Overloads:

  • .new {|...| ... } ⇒ Proc

    Yields:

    • (...)

    Returns:

  • .newProc

    Returns:



462
463
464
465
466
467
468
469
# File 'proc.c', line 462

static VALUE
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE block = proc_new(klass, FALSE);

    rb_obj_call_init(block, argc, argv);
    return block;
}

Instance Method Details

#call(params, ...) ⇒ Object #[](params, ...) ⇒ Object

Invokes the block, setting the block's parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It's a syntax sugar to hide "call".

For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.

Returns the value of the last expression evaluated in the block. See also Proc#yield.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3)   #=> [9, 18, 27]
a_proc[9, 1, 2, 3]        #=> [9, 18, 27]
a_proc = lambda {|a,b| a}
a_proc.call(1,2,3)

produces:

prog.rb:4:in `block in <main>': wrong number of arguments (3 for 2) (ArgumentError)
	from prog.rb:5:in `call'
	from prog.rb:5:in `<main>'

Overloads:



558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# File 'proc.c', line 558

static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
    VALUE vret;
    rb_proc_t *proc;
    rb_block_t *blockptr = 0;
    rb_iseq_t *iseq;
    VALUE passed_procval;
    GetProcPtr(procval, proc);

    iseq = proc->block.iseq;
    if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
	if (rb_block_given_p()) {
	    rb_proc_t *passed_proc;
	    RB_GC_GUARD(passed_procval) = rb_block_proc();
	    GetProcPtr(passed_procval, passed_proc);
	    blockptr = &passed_proc->block;
	}
    }

    vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
    RB_GC_GUARD(procval);
    return vret;
}

#call(params, ...) ⇒ Object #[](params, ...) ⇒ Object

Invokes the block, setting the block's parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It's a syntax sugar to hide "call".

For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.

Returns the value of the last expression evaluated in the block. See also Proc#yield.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3)   #=> [9, 18, 27]
a_proc[9, 1, 2, 3]        #=> [9, 18, 27]
a_proc = lambda {|a,b| a}
a_proc.call(1,2,3)

produces:

prog.rb:4:in `block in <main>': wrong number of arguments (3 for 2) (ArgumentError)
	from prog.rb:5:in `call'
	from prog.rb:5:in `<main>'

Overloads:



558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# File 'proc.c', line 558

static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
    VALUE vret;
    rb_proc_t *proc;
    rb_block_t *blockptr = 0;
    rb_iseq_t *iseq;
    VALUE passed_procval;
    GetProcPtr(procval, proc);

    iseq = proc->block.iseq;
    if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
	if (rb_block_given_p()) {
	    rb_proc_t *passed_proc;
	    RB_GC_GUARD(passed_procval) = rb_block_proc();
	    GetProcPtr(passed_procval, passed_proc);
	    blockptr = &passed_proc->block;
	}
    }

    vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
    RB_GC_GUARD(procval);
    return vret;
}

#arityFixnum

Returns the number of arguments that would not be ignored. If the block is declared to take no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If the block has optional arguments, return -n-1, where n is the number of mandatory arguments. A proc with no argument declarations is the same a block declaring || as its arguments.

proc {}.arity          #=>  0
proc {||}.arity        #=>  0
proc {|a|}.arity       #=>  1
proc {|a,b|}.arity     #=>  2
proc {|a,b,c|}.arity   #=>  3
proc {|*a|}.arity      #=> -1
proc {|a,*b|}.arity    #=> -2
proc {|a,*b, c|}.arity #=> -3

proc   { |x = 0| }.arity       #=> 0
lambda { |a = 0| }.arity       #=> -1
proc   { |x=0, y| }.arity      #=> 0
lambda { |x=0, y| }.arity      #=> -2
proc   { |x=0, y=0| }.arity    #=> 0
lambda { |x=0, y=0| }.arity    #=> -1
proc   { |x, y=0| }.arity      #=> 1
lambda { |x, y=0| }.arity      #=> -2
proc   { |(x, y), z=0| }.arity #=> 1
lambda { |(x, y), z=0| }.arity #=> -2

Returns:



662
663
664
665
666
667
# File 'proc.c', line 662

static VALUE
proc_arity(VALUE self)
{
    int arity = rb_proc_arity(self);
    return INT2FIX(arity);
}

#bindingBinding

Returns the binding associated with prc. Note that Kernel#eval accepts either a Proc or a Binding object as its second parameter.

def fred(param)
  proc {}
end

b = fred(99)
eval("param", b.binding)   #=> 99

Returns:



2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
# File 'proc.c', line 2086

static VALUE
proc_binding(VALUE self)
{
    rb_proc_t *proc;
    VALUE bindval;
    rb_binding_t *bind;

    GetProcPtr(self, proc);
    if (RB_TYPE_P((VALUE)proc->block.iseq, T_NODE)) {
	if (!IS_METHOD_PROC_NODE((NODE *)proc->block.iseq)) {
	    rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
	}
    }

    bindval = binding_alloc(rb_cBinding);
    GetBindingPtr(bindval, bind);
    bind->env = proc->envval;
    if (RUBY_VM_NORMAL_ISEQ_P(proc->block.iseq)) {
	bind->path = proc->block.iseq->location.path;
	bind->first_lineno = rb_iseq_first_lineno(proc->block.iseq);
    }
    else {
	bind->path = Qnil;
	bind->first_lineno = 0;
    }
    return bindval;
}

#call(params, ...) ⇒ Object #[](params, ...) ⇒ Object

Invokes the block, setting the block's parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It's a syntax sugar to hide "call".

For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.

Returns the value of the last expression evaluated in the block. See also Proc#yield.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3)   #=> [9, 18, 27]
a_proc[9, 1, 2, 3]        #=> [9, 18, 27]
a_proc = lambda {|a,b| a}
a_proc.call(1,2,3)

produces:

prog.rb:4:in `block in <main>': wrong number of arguments (3 for 2) (ArgumentError)
	from prog.rb:5:in `call'
	from prog.rb:5:in `<main>'

Overloads:



558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# File 'proc.c', line 558

static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
    VALUE vret;
    rb_proc_t *proc;
    rb_block_t *blockptr = 0;
    rb_iseq_t *iseq;
    VALUE passed_procval;
    GetProcPtr(procval, proc);

    iseq = proc->block.iseq;
    if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
	if (rb_block_given_p()) {
	    rb_proc_t *passed_proc;
	    RB_GC_GUARD(passed_procval) = rb_block_proc();
	    GetProcPtr(passed_procval, passed_proc);
	    blockptr = &passed_proc->block;
	}
    }

    vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
    RB_GC_GUARD(procval);
    return vret;
}

#cloneObject

:nodoc:



121
122
123
124
125
126
127
# File 'proc.c', line 121

static VALUE
proc_clone(VALUE self)
{
    VALUE procval = proc_dup(self);
    CLONESETUP(procval, self);
    return procval;
}

#curryProc #curry(arity) ⇒ Proc

Returns a curried proc. If the optional arity argument is given, it determines the number of arguments. A curried proc receives some arguments. If a sufficient number of arguments are supplied, it passes the supplied arguments to the original proc and returns the result. Otherwise, returns another curried proc that takes the rest of arguments.

b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
p b.curry[1][2][3]           #=> 6
p b.curry[1, 2][3, 4]        #=> 6
p b.curry(5)[1][2][3][4][5]  #=> 6
p b.curry(5)[1, 2][3, 4][5]  #=> 6
p b.curry(1)[1]              #=> 1

b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
p b.curry[1][2][3]           #=> 6
p b.curry[1, 2][3, 4]        #=> 10
p b.curry(5)[1][2][3][4][5]  #=> 15
p b.curry(5)[1, 2][3, 4][5]  #=> 15
p b.curry(1)[1]              #=> 1

b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
p b.curry[1][2][3]           #=> 6
p b.curry[1, 2][3, 4]        #=> wrong number of arguments (4 for 3)
p b.curry(5)                 #=> wrong number of arguments (5 for 3)
p b.curry(1)                 #=> wrong number of arguments (1 for 3)

b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
p b.curry[1][2][3]           #=> 6
p b.curry[1, 2][3, 4]        #=> 10
p b.curry(5)[1][2][3][4][5]  #=> 15
p b.curry(5)[1, 2][3, 4][5]  #=> 15
p b.curry(1)                 #=> wrong number of arguments (1 for 3)

b = proc { :foo }
p b.curry[]                  #=> :foo

Overloads:



2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
# File 'proc.c', line 2199

static VALUE
proc_curry(int argc, VALUE *argv, VALUE self)
{
    int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
    VALUE arity;

    rb_scan_args(argc, argv, "01", &arity);
    if (NIL_P(arity)) {
	arity = INT2FIX(min_arity);
    }
    else {
	sarity = FIX2INT(arity);
	if (rb_proc_lambda_p(self)) {
	    rb_check_arity(sarity, min_arity, max_arity);
	}
    }

    return make_curry_proc(self, rb_ary_new(), arity);
}

#dupObject

:nodoc:



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# File 'proc.c', line 102

static VALUE
proc_dup(VALUE self)
{
    VALUE procval = rb_proc_alloc(rb_cProc);
    rb_proc_t *src, *dst;
    GetProcPtr(self, src);
    GetProcPtr(procval, dst);

    dst->block = src->block;
    dst->block.proc = procval;
    dst->blockprocval = src->blockprocval;
    dst->envval = src->envval;
    dst->safe_level = src->safe_level;
    dst->is_lambda = src->is_lambda;

    return procval;
}

#hashInteger

Returns a hash value corresponding to proc body.

Returns:



826
827
828
829
830
831
832
833
834
# File 'proc.c', line 826

static VALUE
proc_hash(VALUE self)
{
    st_index_t hash;
    hash = rb_hash_start(0);
    hash = rb_hash_proc(hash, self);
    hash = rb_hash_end(hash);
    return LONG2FIX(hash);
}

#lambda?Boolean

Returns true for a Proc object for which argument handling is rigid. Such procs are typically generated by lambda.

A Proc object generated by proc ignores extra arguments.

proc {|a,b| [a,b] }.call(1,2,3)    #=> [1,2]

It provides nil for missing arguments.

proc {|a,b| [a,b] }.call(1)        #=> [1,nil]

It expands a single array argument.

proc {|a,b| [a,b] }.call([1,2])    #=> [1,2]

A Proc object generated by lambda doesn't have such tricks.

lambda {|a,b| [a,b] }.call(1,2,3)  #=> ArgumentError
lambda {|a,b| [a,b] }.call(1)      #=> ArgumentError
lambda {|a,b| [a,b] }.call([1,2])  #=> ArgumentError

Proc#lambda? is a predicate for the tricks. It returns true if no tricks apply.

lambda {}.lambda?            #=> true
proc {}.lambda?              #=> false

Proc.new is the same as proc.

Proc.new {}.lambda?          #=> false

lambda, proc and Proc.new preserve the tricks of a Proc object given by & argument.

lambda(&lambda {}).lambda?   #=> true
proc(&lambda {}).lambda?     #=> true
Proc.new(&lambda {}).lambda? #=> true

lambda(&proc {}).lambda?     #=> false
proc(&proc {}).lambda?       #=> false
Proc.new(&proc {}).lambda?   #=> false

A Proc object generated by & argument has the tricks

def n(&b) b.lambda? end
n {}                         #=> false

The & argument preserves the tricks if a Proc object is given by & argument.

n(&lambda {})                #=> true
n(&proc {})                  #=> false
n(&Proc.new {})              #=> false

A Proc object converted from a method has no tricks.

def m() end
method(:m).to_proc.lambda?   #=> true

n(&method(:m))               #=> true
n(&method(:m).to_proc)       #=> true

define_method is treated the same as method definition. The defined method has no tricks.

class C
  define_method(:d) {}
end
C.new.d(1,2)       #=> ArgumentError
C.new.method(:d).to_proc.lambda?   #=> true

define_method always defines a method without the tricks, even if a non-lambda Proc object is given. This is the only exception for which the tricks are not preserved.

class C
  define_method(:e, &proc {})
end
C.new.e(1,2)       #=> ArgumentError
C.new.method(:e).to_proc.lambda?   #=> true

This exception insures that methods never have tricks and makes it easy to have wrappers to define methods that behave as usual.

class C
  def self.def2(name, &body)
    define_method(name, &body)
  end

  def2(:f) {}
end
C.new.f(1,2)       #=> ArgumentError

The wrapper def2 defines a method which has no tricks.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


230
231
232
233
234
235
236
237
# File 'proc.c', line 230

VALUE
rb_proc_lambda_p(VALUE procval)
{
    rb_proc_t *proc;
    GetProcPtr(procval, proc);

    return proc->is_lambda ? Qtrue : Qfalse;
}

#parametersArray

Returns the parameter information of this proc.

prc = lambda{|x, y=42, *other|}
prc.parameters  #=> [[:req, :x], [:opt, :y], [:rest, :other]]

Returns:



798
799
800
801
802
803
804
805
806
807
# File 'proc.c', line 798

static VALUE
rb_proc_parameters(VALUE self)
{
    int is_proc;
    rb_iseq_t *iseq = get_proc_iseq(self, &is_proc);
    if (!iseq) {
	return unnamed_parameters(rb_proc_arity(self));
    }
    return rb_iseq_parameters(iseq, is_proc);
}

#source_locationArray, Fixnum

Returns the Ruby source filename and line number containing this proc or nil if this proc was not defined in Ruby (i.e. native)

Returns ].

Returns:



763
764
765
766
767
# File 'proc.c', line 763

VALUE
rb_proc_location(VALUE self)
{
    return iseq_location(get_proc_iseq(self, 0));
}

#to_procProc

Part of the protocol for converting objects to Proc objects. Instances of class Proc simply return themselves.

Returns:



887
888
889
890
891
# File 'proc.c', line 887

static VALUE
proc_to_proc(VALUE self)
{
    return self;
}

#to_sString Also known as: inspect

Returns the unique identifier for this proc, along with an indication of where the proc was defined.

Returns:



844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
# File 'proc.c', line 844

static VALUE
proc_to_s(VALUE self)
{
    VALUE str = 0;
    rb_proc_t *proc;
    const char *cname = rb_obj_classname(self);
    rb_iseq_t *iseq;
    const char *is_lambda;

    GetProcPtr(self, proc);
    iseq = proc->block.iseq;
    is_lambda = proc->is_lambda ? " (lambda)" : "";

    if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
	int first_lineno = 0;

	if (iseq->line_info_table) {
	    first_lineno = rb_iseq_first_lineno(iseq);
	}
	str = rb_sprintf("#<%s:%p@%s:%d%s>", cname, (void *)self,
			 RSTRING_PTR(iseq->location.path),
			 first_lineno, is_lambda);
    }
    else {
	str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq,
			 is_lambda);
    }

    if (OBJ_TAINTED(self)) {
	OBJ_TAINT(str);
    }
    return str;
}

#call(params, ...) ⇒ Object #[](params, ...) ⇒ Object

Invokes the block, setting the block's parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It's a syntax sugar to hide "call".

For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.

Returns the value of the last expression evaluated in the block. See also Proc#yield.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3)   #=> [9, 18, 27]
a_proc[9, 1, 2, 3]        #=> [9, 18, 27]
a_proc = lambda {|a,b| a}
a_proc.call(1,2,3)

produces:

prog.rb:4:in `block in <main>': wrong number of arguments (3 for 2) (ArgumentError)
	from prog.rb:5:in `call'
	from prog.rb:5:in `<main>'

Overloads:



558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# File 'proc.c', line 558

static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
    VALUE vret;
    rb_proc_t *proc;
    rb_block_t *blockptr = 0;
    rb_iseq_t *iseq;
    VALUE passed_procval;
    GetProcPtr(procval, proc);

    iseq = proc->block.iseq;
    if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
	if (rb_block_given_p()) {
	    rb_proc_t *passed_proc;
	    RB_GC_GUARD(passed_procval) = rb_block_proc();
	    GetProcPtr(passed_procval, passed_proc);
	    blockptr = &passed_proc->block;
	}
    }

    vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
    RB_GC_GUARD(procval);
    return vret;
}