Module: Kernel

Included in:
Object
Defined in:
object.c,
object.c

Overview

The Kernel module is included by class Object, so its methods are available in every Ruby object.

The Kernel instance methods are documented in class Object while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:

sprintf "%.1f", 1.234 #=> "1.2"

Instance Method Summary collapse

Instance Method Details

#__callee__Object

Returns the called name of the current method as a Symbol. If called outside of a method, it returns nil.



1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
# File 'eval.c', line 1576

static VALUE
rb_f_callee_name(void)
{
    ID fname = prev_frame_callee(); /* need *callee* ID */

    if (fname) {
	return ID2SYM(fname);
    }
    else {
	return Qnil;
    }
}

#__dir__String

Returns the canonicalized absolute path of the directory of the file from which this method is called. It means symlinks in the path is resolved. If __FILE__ is nil, it returns nil. The return value equals to File.dirname(File.realpath(__FILE__)).

Returns:



1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
# File 'eval.c', line 1599

static VALUE
f_current_dirname(void)
{
    VALUE base = rb_current_realfilepath();
    if (NIL_P(base)) {
	return Qnil;
    }
    base = rb_file_dirname(base);
    return base;
}

#__method__Object

Returns the name at the definition of the current method as a Symbol. If called outside of a method, it returns nil.



1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
# File 'eval.c', line 1554

static VALUE
rb_f_method_name(void)
{
    ID fname = prev_frame_func(); /* need *method* ID */

    if (fname) {
	return ID2SYM(fname);
    }
    else {
	return Qnil;
    }
}

#`String

Returns the standard output of running cmd in a subshell. The built-in syntax %x{...} uses this method. Sets $? to the process status.

`date`                   #=> "Wed Apr  9 08:56:30 CDT 2003\n"
`ls testdir`.split[1]    #=> "main.rb"
`echo oops && exit 99`   #=> "oops\n"
$?.exitstatus            #=> 99

Returns:



8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
# File 'io.c', line 8142

static VALUE
rb_f_backquote(VALUE obj, VALUE str)
{
    volatile VALUE port;
    VALUE result;
    rb_io_t *fptr;

    SafeStringValue(str);
    rb_last_status_clear();
    port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL);
    if (NIL_P(port)) return rb_str_new(0,0);

    GetOpenFile(port, fptr);
    result = read_all(fptr, remain_size(fptr), Qnil);
    rb_io_close(port);

    return result;
}

#abortObject #Kernel::abort([msg]) ⇒ Object #Process::abort([msg]) ⇒ Object

Terminate execution immediately, effectively by calling Kernel.exit(false). If msg is given, it is written to STDERR prior to terminating.



3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
# File 'process.c', line 3670

VALUE
rb_f_abort(int argc, VALUE *argv)
{
    if (argc == 0) {
	if (!NIL_P(GET_THREAD()->errinfo)) {
	    ruby_error_print();
	}
	rb_exit(EXIT_FAILURE);
    }
    else {
	VALUE args[2];

	rb_scan_args(argc, argv, "1", &args[1]);
	StringValue(argv[0]);
	rb_io_puts(argc, argv, rb_stderr);
	args[0] = INT2NUM(EXIT_FAILURE);
	rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
    }

    UNREACHABLE;
}

#Array(arg) ⇒ Array

Returns arg as an Array.

First tries to call Array#to_ary on arg, then Array#to_a.

Array(1..5)   #=> [1, 2, 3, 4, 5]

Returns:



3020
3021
3022
3023
3024
# File 'object.c', line 3020

static VALUE
rb_f_array(VALUE obj, VALUE arg)
{
    return rb_Array(arg);
}

#at_exit { ... } ⇒ Proc

Converts block to a Proc object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.

def do_at_exit(str1)
  at_exit { print str1 }
end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit

produces:

goodbye cruel world

Yields:

Returns:



37
38
39
40
41
42
43
44
45
46
47
48
# File 'eval_jump.c', line 37

static VALUE
rb_f_at_exit(void)
{
    VALUE proc;

    if (!rb_block_given_p()) {
	rb_raise(rb_eArgError, "called without a block");
    }
    proc = rb_block_proc();
    rb_set_end_proc(rb_call_end_proc, proc);
    return proc;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Returns:

  • (nil)


1125
1126
1127
1128
1129
1130
1131
1132
1133
# File 'load.c', line 1125

static VALUE
rb_f_autoload(VALUE obj, VALUE sym, VALUE file)
{
    VALUE klass = rb_class_real(rb_vm_cbase());
    if (NIL_P(klass)) {
	rb_raise(rb_eTypeError, "Can not set autoload on singleton class");
    }
    return rb_mod_autoload(klass, sym, file);
}

#autoload?(name) ⇒ String?

Returns filename to be loaded if name is registered as autoload.

autoload(:B, "b")
autoload?(:B)            #=> "b"

Returns:

Returns:

  • (Boolean)


1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
# File 'load.c', line 1146

static VALUE
rb_f_autoload_p(VALUE obj, VALUE sym)
{
    /* use rb_vm_cbase() as same as rb_f_autoload. */
    VALUE klass = rb_vm_cbase();
    if (NIL_P(klass)) {
	return Qnil;
    }
    return rb_mod_autoload_p(klass, sym);
}

#bindingBinding

Returns a Binding object, describing the variable and method bindings at the point of call. This object can be used when calling eval to execute the evaluated command in this environment. See also the description of class Binding.

def get_binding(param)
  return binding
end
b = get_binding("hello")
eval("param", b)   #=> "hello"

Returns:



369
370
371
372
373
# File 'proc.c', line 369

static VALUE
rb_f_binding(VALUE self)
{
    return rb_binding_new();
}

#block_given?Boolean #iterator?Boolean

Returns true if yield would execute a block in the current context. The iterator? form is mildly deprecated.

def try
  if block_given?
    yield
  else
    "no block"
  end
end
try                  #=> "no block"
try { "hello" }      #=> "hello"
try do "hello" end   #=> "hello"

Overloads:

  • #block_given?Boolean

    Returns:

    • (Boolean)
  • #iterator?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
# File 'vm_eval.c', line 1950

VALUE
rb_f_block_given_p(void)
{
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp = th->cfp;
    cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));

    if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
	return Qtrue;
    }
    else {
	return Qfalse;
    }
}

#caller(start = 1, length = nil) ⇒ Array? #caller(range) ⇒ Array?

Returns the current execution stack—an array containing strings in the form file:line or file:line: in `method'.

The optional start parameter determines the number of initial stack entries to omit from the top of the stack.

A second optional length parameter can be used to limit how many entries are returned from the stack.

Returns nil if start is greater than the size of current execution stack.

Optionally you can pass a range, which will return an array containing the entries within the specified range.

def a(skip)
  caller(skip)
end
def b(skip)
  a(skip)
end
def c(skip)
  b(skip)
end
c(0)   #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10:in `<main>'"]
c(1)   #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11:in `<main>'"]
c(2)   #=> ["prog:8:in `c'", "prog:12:in `<main>'"]
c(3)   #=> ["prog:13:in `<main>'"]
c(4)   #=> []
c(5)   #=> nil

Overloads:

  • #caller(start = 1, length = nil) ⇒ Array?

    Returns:

  • #caller(range) ⇒ Array?

    Returns:



955
956
957
958
959
# File 'vm_backtrace.c', line 955

static VALUE
rb_f_caller(int argc, VALUE *argv)
{
    return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 1);
}

#caller_locations(start = 1, length = nil) ⇒ Object #caller_locations(range) ⇒ Object

Returns the current execution stack—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

The optional start parameter determines the number of initial stack entries to omit from the top of the stack.

A second optional length parameter can be used to limit how many entries are returned from the stack.

Returns nil if start is greater than the size of current execution stack.

Optionally you can pass a range, which will return an array containing the entries within the specified range.



983
984
985
986
987
# File 'vm_backtrace.c', line 983

static VALUE
rb_f_caller_locations(int argc, VALUE *argv)
{
    return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 0);
}

#catch([arg]) {|tag| ... } ⇒ Object

catch executes its block. If a throw is executed, Ruby searches up its stack for a catch block with a tag corresponding to the throw‘s tag. If found, that block is terminated, and catch returns the value given to throw. If throw is not called, the block terminates normally, and the value of catch is the value of the last expression evaluated. catch expressions may be nested, and the throw call need not be in lexical scope.

def routine(n)
  puts n
  throw :done if n <= 0
  routine(n-1)
end

catch(:done) { routine(3) }

produces:

3
2
1
0

when arg is given, catch yields it as is, or when no arg is given, catch assigns a new unique object to throw. this is useful for nested catch. arg can be an arbitrary object, not only Symbol.

Yields:

  • (tag)

Returns:



1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
# File 'vm_eval.c', line 1812

static VALUE
rb_f_catch(int argc, VALUE *argv)
{
    VALUE tag;

    if (argc == 0) {
	tag = rb_obj_alloc(rb_cObject);
    }
    else {
	rb_scan_args(argc, argv, "01", &tag);
    }
    return rb_catch_obj(tag, catch_i, 0);
}

#Complex(x[, y]) ⇒ Numeric

Returns x+i*y;

Complex(1, 2)    #=> (1+2i)
Complex('1+2i')  #=> (1+2i)

Syntax of string form:

string form = extra spaces , complex , extra spaces ;
complex = real part | [ sign ] , imaginary part
        | real part , sign , imaginary part
        | rational , "@" , rational ;
real part = rational ;
imaginary part = imaginary unit | unsigned rational , imaginary unit ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
imaginary unit = "i" | "I" | "j" | "J" ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit };
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;

See String#to_c.

Returns:



504
505
506
507
508
# File 'complex.c', line 504

static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
    return rb_funcall2(rb_cComplex, id_convert, argc, argv);
}

#eval(string[, binding [, filename [,lineno]]]) ⇒ Object

Evaluates the Ruby expression(s) in string. If binding is given, which must be a Binding object, the evaluation is performed in its context. If the optional filename and lineno parameters are present, they will be used when reporting syntax errors.

def get_binding(str)
  return binding
end
str = "hello"
eval "str + ' Fred'"                      #=> "hello Fred"
eval "str + ' Fred'", get_binding("bye")  #=> "bye Fred"

Returns:



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
# File 'vm_eval.c', line 1350

VALUE
rb_f_eval(int argc, VALUE *argv, VALUE self)
{
    VALUE src, scope, vfile, vline;
    VALUE file = Qundef;
    int line = 1;

    rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
    SafeStringValue(src);
    if (argc >= 3) {
	StringValue(vfile);
    }
    if (argc >= 4) {
	line = NUM2INT(vline);
    }

    if (!NIL_P(vfile))
	file = vfile;
    return eval_string(self, src, scope, file, line);
}

#exec([env,][,options]) ⇒ Object

Replaces the current process by running the given external command, which can take one of the following forms:

exec(commandline)

command line string which is passed to the standard shell

exec(cmdname, arg1, ...)

command name and one or more arguments (no shell)

exec([cmdname, argv0], arg1, ...)

command name, argv and zero or more arguments (no shell)

In the first form, the string is taken as a command line that is subject to shell expansion before being executed.

The standard shell always means "/bin/sh" on Unix-like systems, same as ENV["RUBYSHELL"] (or ENV["COMSPEC"] on Windows NT series), and similar.

If the string from the first form (exec("command")) follows these simple rules:

  • no meta characters

  • no shell reserved word and no special built-in

  • Ruby invokes the command directly without shell

You can force shell invocation by adding “;” to the string (because “;” is a meta character).

Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.

In the second form (exec("command1", "arg1", ...)), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.

In the third form (exec(["command", "argv0"], "arg1", ...)), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0] value, which may show up in process listings.

In order to execute the command, one of the exec(2) system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).

This behavior is modified by the given env and options parameters. See ::spawn for details.

If the command fails to execute (typically Errno::ENOENT when it was not found) a SystemCallError exception is raised.

This method modifies process attributes according to given options before exec(2) system call. See ::spawn for more details about the given options.

The modified attributes may be retained when exec(2) system call fails.

For example, hard resource limits are not restorable.

Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.

exec "echo *"       # echoes list of files in current directory
# never get here

exec "echo", "*"    # echoes an asterisk
# never get here


2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
# File 'process.c', line 2444

VALUE
rb_f_exec(int argc, VALUE *argv)
{
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };

    execarg_obj = rb_execarg_new(argc, argv, TRUE);
    eargp = rb_execarg_get(execarg_obj);
    rb_execarg_fixup(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

#if defined(__APPLE__) || defined(__HAIKU__)
    rb_exec_without_timer_thread(eargp, errmsg, sizeof(errmsg));
#else
    rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
#endif
    RB_GC_GUARD(execarg_obj);
    if (errmsg[0])
        rb_sys_fail(errmsg);
    rb_sys_fail_str(fail_str);
    return Qnil;		/* dummy */
}

#exit(status = true) ⇒ Object #Kernel::exit(status = true) ⇒ Object #Process::exit(status = true) ⇒ Object

Initiates the termination of the Ruby script by raising the SystemExit exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true and FALSE of status means success and failure respectively. The interpretation of other integer values are system dependent.

begin
  exit
  puts "never get here"
rescue SystemExit
  puts "rescued a SystemExit exception"
end
puts "after begin block"

produces:

rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string",  proc { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer


3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
# File 'process.c', line 3641

VALUE
rb_f_exit(int argc, VALUE *argv)
{
    VALUE status;
    int istatus;

    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
	istatus = exit_status_code(status);
    }
    else {
	istatus = EXIT_SUCCESS;
    }
    rb_exit(istatus);

    UNREACHABLE;
}

#exit!(status = false) ⇒ Object

Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.

Process.exit!(true)


3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
# File 'process.c', line 3568

static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    VALUE status;
    int istatus;

    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
	istatus = exit_status_code(status);
    }
    else {
	istatus = EXIT_FAILURE;
    }
    _exit(istatus);

    UNREACHABLE;
}

#raiseObject #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #failObject #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single String argument, raises a RuntimeError with the string as a message. Otherwise, the first parameter should be the name of an Exception class (or an object that returns an Exception object when sent an exception message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# File 'eval.c', line 611

static VALUE
rb_f_raise(int argc, VALUE *argv)
{
    VALUE err;
    if (argc == 0) {
	err = get_errinfo();
	if (!NIL_P(err)) {
	    argc = 1;
	    argv = &err;
	}
    }
    rb_raise_jump(rb_make_exception(argc, argv));

    UNREACHABLE;
}

#Float(arg) ⇒ Float

Returns arg converted to a float. Numeric types are converted directly, the rest are converted using arg.to_f. As of Ruby 1.8, converting nil generates a TypeError.

Float(1)           #=> 1.0
Float("123.456")   #=> 123.456

Returns:



2915
2916
2917
2918
2919
# File 'object.c', line 2915

static VALUE
rb_f_float(VALUE obj, VALUE arg)
{
    return rb_Float(arg);
}

#fork { ... } ⇒ Fixnum? #fork { ... } ⇒ Fixnum?

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit! to avoid running any at_exit functions. The parent process should use Process.wait to collect the termination statuses of its children or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.

If fork is not usable, Process.respond_to?(:fork) returns false.

Note that fork(2) is not avaiable on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().

Overloads:



3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
# File 'process.c', line 3504

static VALUE
rb_f_fork(VALUE obj)
{
    rb_pid_t pid;

    rb_secure(2);

    switch (pid = rb_fork_ruby(NULL)) {
      case 0:
	rb_thread_atfork();
	if (rb_block_given_p()) {
	    int status;

	    rb_protect(rb_yield, Qundef, &status);
	    ruby_stop(status);
	}
	return Qnil;

      case -1:
	rb_sys_fail("fork(2)");
	return Qnil;

      default:
	return PIDT2NUM(pid);
    }
}

#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String

Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.

The syntax of a format sequence is follows.

%[flags][width][.precision]type

A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf argument is to be interpreted, while the flags modify that interpretation.

The field type characters are:

Field |  Integer Format
------+--------------------------------------------------------------
  b   | Convert argument as a binary number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..1'.
  B   | Equivalent to `b', but uses an uppercase 0B for prefix
      | in the alternative format by #.
  d   | Convert argument as a decimal number.
  i   | Identical to `d'.
  o   | Convert argument as an octal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..7'.
  u   | Identical to `d'.
  x   | Convert argument as a hexadecimal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..f' (representing an infinite string of
      | leading 'ff's).
  X   | Equivalent to `x', but uses uppercase letters.

Field |  Float Format
------+--------------------------------------------------------------
  e   | Convert floating point argument into exponential notation
      | with one digit before the decimal point as [-]d.dddddde[+-]dd.
      | The precision specifies the number of digits after the decimal
      | point (defaulting to six).
  E   | Equivalent to `e', but uses an uppercase E to indicate
      | the exponent.
  f   | Convert floating point argument as [-]ddd.dddddd,
      | where the precision specifies the number of digits after
      | the decimal point.
  g   | Convert a floating point number using exponential form
      | if the exponent is less than -4 or greater than or
      | equal to the precision, or in dd.dddd form otherwise.
      | The precision specifies the number of significant digits.
  G   | Equivalent to `g', but use an uppercase `E' in exponent form.
  a   | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
      | which is consisted from optional sign, "0x", fraction part
      | as hexadecimal, "p", and exponential part as decimal.
  A   | Equivalent to `a', but use uppercase `X' and `P'.

Field |  Other Format
------+--------------------------------------------------------------
  c   | Argument is the numeric code for a single character or
      | a single character string itself.
  p   | The valuing of argument.inspect.
  s   | Argument is a string to be substituted.  If the format
      | sequence contains a precision, at most that many characters
      | will be copied.
  %   | A percent sign itself will be displayed.  No argument taken.

The flags modifies the behavior of the formats. The flag characters are:

Flag     | Applies to    | Meaning
---------+---------------+-----------------------------------------
space    | bBdiouxX      | Leave a space at the start of
         | aAeEfgG       | non-negative numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all           | Specifies the absolute argument number
         |               | for this field.  Absolute and relative
         |               | argument numbers cannot be mixed in a
         |               | sprintf string.
---------+---------------+-----------------------------------------
 #       | bBoxX         | Use an alternative format.
         | aAeEfgG       | For the conversions `o', increase the precision
         |               | until the first digit will be `0' if
         |               | it is not formatted as complements.
         |               | For the conversions `x', `X', `b' and `B'
         |               | on non-zero, prefix the result with ``0x'',
         |               | ``0X'', ``0b'' and ``0B'', respectively.
         |               | For `a', `A', `e', `E', `f', `g', and 'G',
         |               | force a decimal point to be added,
         |               | even if no digits follow.
         |               | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+        | bBdiouxX      | Add a leading plus sign to non-negative
         | aAeEfgG       | numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
-        | all           | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX      | Pad with zeros, not spaces.
         | aAeEfgG       | For `o', `x', `X', `b' and `B', radix-1
         | (numeric fmt) | is used for negative numbers formatted as
         |               | complements.
---------+---------------+-----------------------------------------
*        | all           | Use the next argument as the field width.
         |               | If negative, left-justify the result. If the
         |               | asterisk is followed by a number and a dollar
         |               | sign, use the indicated argument as the width.

Examples of flags:

# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123)  #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"

# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123)   #=> "173"
sprintf("%#o", 123)  #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123)  #=> "..7605"
sprintf("%#o", -123) #=> "..7605"

# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123)   #=> "7b"
sprintf("%#x", 123)  #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123)  #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0)    #=> "0"

# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123)  #=> "7B"
sprintf("%#X", 123) #=> "0X7B"

# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123)   #=> "1111011"
sprintf("%#b", 123)  #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123)  #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0)    #=> "0"

# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123)  #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"

# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1)  #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"

# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234)  #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."

# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4)   #=> "123.4"
sprintf("%#g", 123.4)  #=> "123.400"
sprintf("%g", 123456)  #=> "123456"
sprintf("%#g", 123456) #=> "123456."

The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.

Examples of width:

# padding is done by spaces,       width=20
# 0 or radix-1.             <------------------>
sprintf("%20d", 123)   #=> "                 123"
sprintf("%+20d", 123)  #=> "                +123"
sprintf("%020d", 123)  #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123)  #=> "123                 "
sprintf("%-+20d", 123) #=> "+123                "
sprintf("%- 20d", 123) #=> " 123                "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"

For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters to the result.)

Examples of precisions:

# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits               <------>
sprintf("%20.8d", 123)  #=> "            00000123"
sprintf("%20.8o", 123)  #=> "            00000173"
sprintf("%20.8x", 123)  #=> "            0000007b"
sprintf("%20.8b", 123)  #=> "            01111011"
sprintf("%20.8d", -123) #=> "           -00000123"
sprintf("%20.8o", -123) #=> "            ..777605"
sprintf("%20.8x", -123) #=> "            ..ffff85"
sprintf("%20.8b", -11)  #=> "            ..110101"

# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted.  <------>
sprintf("%#20.8d", 123)  #=> "            00000123"
sprintf("%#20.8o", 123)  #=> "            00000173"
sprintf("%#20.8x", 123)  #=> "          0x0000007b"
sprintf("%#20.8b", 123)  #=> "          0b01111011"
sprintf("%#20.8d", -123) #=> "           -00000123"
sprintf("%#20.8o", -123) #=> "            ..777605"
sprintf("%#20.8x", -123) #=> "          0x..ffff85"
sprintf("%#20.8b", -11)  #=> "          0b..110101"

# precision for `e' is number of
# digits after the decimal point           <------>
sprintf("%20.8e", 1234.56789) #=> "      1.23456789e+03"

# precision for `f' is number of
# digits after the decimal point               <------>
sprintf("%20.8f", 1234.56789) #=> "       1234.56789000"

# precision for `g' is number of
# significant digits                          <------->
sprintf("%20.8g", 1234.56789) #=> "           1234.5679"

#                                         <------->
sprintf("%20.8g", 123456789)  #=> "       1.2345679e+08"

# precision for `s' is
# maximum number of characters                    <------>
sprintf("%20.8s", "string test") #=> "            string t"

Examples:

sprintf("%d %04x", 123, 123)               #=> "123 007b"
sprintf("%08b '%4s'", 123, 123)            #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8)   #=> "   hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8)       #=> "hello    -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23)   #=> "+1.23: 1.23:1.23"
sprintf("%u", -123)                        #=> "-123"

For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.

Examples:

sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
  #=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
  # => "1f"

Overloads:

  • #format(format_string[, arguments...]) ⇒ String

    Returns:

  • #sprintf(format_string[, arguments...]) ⇒ String

    Returns:



411
412
413
414
415
# File 'sprintf.c', line 411

VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
    return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}

#gets(sep = $/) ⇒ String? #gets(limit) ⇒ String? #gets(sep, limit) ⇒ String?

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*), or from standard input if no files are present on the command line. Returns nil at end of file. The optional argument specifies the record separator. The separator is included with the contents of each record. A separator of nil reads the entire contents, and a zero-length separator reads the input one paragraph at a time, where paragraphs are divided by two consecutive newlines. If the first argument is an integer, or optional second argument is given, the returning string would not be longer than the given value in bytes. If multiple filenames are present in ARGV, gets(nil) will read the contents one file at a time.

ARGV << "testfile"
print while gets

produces:

This is line one
This is line two
This is line three
And so on...

The style of programming using $_ as an implicit parameter is gradually losing favor in the Ruby community.

Overloads:



7953
7954
7955
7956
7957
7958
7959
7960
# File 'io.c', line 7953

static VALUE
rb_f_gets(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_gets(argc, argv, argf);
    }
    return rb_funcall2(argf, idGets, argc, argv);
}

#global_variablesArray

Returns an array of the names of global variables.

global_variables.grep /std/   #=> [:$stdin, :$stdout, :$stderr]

Returns:



852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# File 'variable.c', line 852

VALUE
rb_f_global_variables(void)
{
    VALUE ary = rb_ary_new();
    char buf[2];
    int i;

    st_foreach_safe(rb_global_tbl, gvar_i, ary);
    buf[0] = '$';
    for (i = 1; i <= 9; ++i) {
	buf[1] = (char)(i + '0');
	rb_ary_push(ary, ID2SYM(rb_intern2(buf, 2)));
    }
    return ary;
}

#Hash(arg) ⇒ Hash

Converts arg to a Hash by calling arg.to_hash. Returns an empty Hash when arg is nil or [].

Hash([])          #=> {}
Hash(nil)         #=> {}
Hash(key: :value) #=> {:key => :value}
Hash([1, 2, 3])   #=> TypeError

Returns:



3055
3056
3057
3058
3059
# File 'object.c', line 3055

static VALUE
rb_f_hash(VALUE obj, VALUE arg)
{
    return rb_Hash(arg);
}

#Integer(arg, base = 0) ⇒ Integer

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (with floating point numbers being truncated). base (0, or between 2 and 36) is a base for integer string representation. If arg is a String, when base is omitted or equals to zero, radix indicators (0, 0b, and 0x) are honored. In any case, strings should be strictly conformed to numeric representation. This behavior is different from that of String#to_i. Non string values will be converted using to_int, and to_i.

Integer(123.999)    #=> 123
Integer("0x1a")     #=> 26
Integer(Time.new)   #=> 1204973019
Integer("0930", 10) #=> 930
Integer("111", 2)   #=> 7

Returns:



2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
# File 'object.c', line 2745

static VALUE
rb_f_integer(int argc, VALUE *argv, VALUE obj)
{
    VALUE arg = Qnil;
    int base = 0;

    switch (argc) {
      case 2:
	base = NUM2INT(argv[1]);
      case 1:
	arg = argv[0];
	break;
      default:
	/* should cause ArgumentError */
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    return rb_convert_to_integer(arg, base);
}

#block_given?Boolean #iterator?Boolean

Returns true if yield would execute a block in the current context. The iterator? form is mildly deprecated.

def try
  if block_given?
    yield
  else
    "no block"
  end
end
try                  #=> "no block"
try { "hello" }      #=> "hello"
try do "hello" end   #=> "hello"

Overloads:

  • #block_given?Boolean

    Returns:

    • (Boolean)
  • #iterator?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
# File 'vm_eval.c', line 1950

VALUE
rb_f_block_given_p(void)
{
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp = th->cfp;
    cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));

    if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
	return Qtrue;
    }
    else {
	return Qfalse;
    }
}

#lambda {|...| ... } ⇒ Proc

Equivalent to Proc.new, except the resulting Proc objects check the number of parameters passed when called.

Yields:

  • (...)

Returns:



654
655
656
657
658
# File 'proc.c', line 654

VALUE
rb_block_lambda(void)
{
    return proc_new(rb_cProc, TRUE);
}

#load(filename, wrap = false) ⇒ true

Loads and executes the Ruby program in the file filename. If the filename does not resolve to an absolute path, the file is searched for in the library directories listed in $:. If the optional wrap parameter is true, the loaded script will be executed under an anonymous module, protecting the calling program’s global namespace. In no circumstance will any local variables in the loaded file be propagated to the loading environment.

Returns:

  • (true)


683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# File 'load.c', line 683

static VALUE
rb_f_load(int argc, VALUE *argv)
{
    VALUE fname, wrap, path;

    rb_scan_args(argc, argv, "11", &fname, &wrap);

    if (RUBY_DTRACE_LOAD_ENTRY_ENABLED()) {
	RUBY_DTRACE_LOAD_ENTRY(StringValuePtr(fname),
			       rb_sourcefile(),
			       rb_sourceline());
    }

    path = rb_find_file(FilePathValue(fname));
    if (!path) {
	if (!rb_file_load_ok(RSTRING_PTR(fname)))
	    load_failed(fname);
	path = fname;
    }
    rb_load_internal(path, RTEST(wrap));

    if (RUBY_DTRACE_LOAD_RETURN_ENABLED()) {
	RUBY_DTRACE_LOAD_RETURN(StringValuePtr(fname),
			       rb_sourcefile(),
			       rb_sourceline());
    }

    return Qtrue;
}

#local_variablesArray

Returns the names of the current local variables.

fred = 1
for i in 1..10
   # ...
end
local_variables   #=> [:fred, :i]

Returns:



1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
# File 'vm_eval.c', line 1886

static VALUE
rb_f_local_variables(void)
{
    VALUE ary = rb_ary_new();
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp =
	vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp));
    int i;

    while (cfp) {
	if (cfp->iseq) {
	    for (i = 0; i < cfp->iseq->local_table_size; i++) {
		ID lid = cfp->iseq->local_table[i];
		if (lid) {
		    const char *vname = rb_id2name(lid);
		    /* should skip temporary variable */
		    if (vname) {
			rb_ary_push(ary, ID2SYM(lid));
		    }
		}
	    }
	}
	if (!VM_EP_LEP_P(cfp->ep)) {
	    /* block */
	    VALUE *ep = VM_CF_PREV_EP(cfp);

	    if (vm_collect_local_variables_in_heap(th, ep, ary)) {
		break;
	    }
	    else {
		while (cfp->ep != ep) {
		    cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
		}
	    }
	}
	else {
	    break;
	}
    }
    return ary;
}

#loop { ... } ⇒ Object #loopObject

Repeatedly executes the block.

If no block is given, an enumerator is returned instead.

loop do
  print "Input: "
  line = gets
  break if !line or line =~ /^qQ/
  # ...
end

StopIteration raised in the block breaks the loop.

Overloads:

  • #loop { ... } ⇒ Object

    Yields:



1038
1039
1040
1041
1042
1043
1044
# File 'vm_eval.c', line 1038

static VALUE
rb_f_loop(VALUE self)
{
    RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
    rb_rescue2(loop_i, (VALUE)0, 0, 0, rb_eStopIteration, (VALUE)0);
    return Qnil;		/* dummy */
}

#open(path[, mode [, perm]][, opt]) ⇒ IO? #open(path[, mode [, perm]][, opt]) {|io| ... } ⇒ Object

Creates an IO object connected to the given stream, file, or subprocess.

If path does not start with a pipe character (|), treat it as the name of a file to open using the specified mode (defaulting to “r”).

The mode is either a string or an integer. If it is an integer, it must be bitwise-or of open(2) flags, such as File::RDWR or File::EXCL. If it is a string, it is either “fmode”, “fmode:ext_enc”, or “fmode:ext_enc:int_enc”.

See the documentation of IO.new for full documentation of the mode string directives.

If a file is being created, its initial permissions may be set using the perm parameter. See File.new and the open(2) and chmod(2) man pages for a description of permissions.

If a block is specified, it will be invoked with the IO object as a parameter, and the IO will be automatically closed when the block terminates. The call returns the value of the block.

If path starts with a pipe character ("|"), a subprocess is created, connected to the caller by a pair of pipes. The returned IO object may be used to write to the standard input and read from the standard output of this subprocess.

If the command following the pipe is a single minus sign ("|-"), Ruby forks, and this subprocess is connected to the parent. If the command is not "-", the subprocess runs the command.

When the subprocess is ruby (opened via "|-"), the open call returns nil. If a block is associated with the open call, that block will run twice — once in the parent and once in the child.

The block parameter will be an IO object in the parent and nil in the child. The parent’s IO object will be connected to the child’s $stdin and $stdout. The subprocess will be terminated at the end of the block.

Examples

Reading from “testfile”:

open("testfile") do |f|
  print f.gets
end

Produces:

This is line one

Open a subprocess and read its output:

cmd = open("|date")
print cmd.gets
cmd.close

Produces:

Wed Apr  9 08:56:31 CDT 2003

Open a subprocess running the same Ruby program:

f = open("|-", "w+")
if f == nil
  puts "in Child"
  exit
else
  puts "Got: #{f.gets}"
end

Produces:

Got: in Child

Open a subprocess using a block to receive the IO object:

open "|-" do |f|
  if f then
    # parent process
    puts "Got: #{f.gets}"
  else
    # child process
    puts "in Child"
  end
end

Produces:

Got: in Child

Overloads:

  • #open(path[, mode [, perm]][, opt]) ⇒ IO?

    Returns:

    • (IO, nil)
  • #open(path[, mode [, perm]][, opt]) {|io| ... } ⇒ Object

    Yields:

    • (io)

    Returns:



6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
# File 'io.c', line 6420

static VALUE
rb_f_open(int argc, VALUE *argv)
{
    ID to_open = 0;
    int redirect = FALSE;

    if (argc >= 1) {
	CONST_ID(to_open, "to_open");
	if (rb_respond_to(argv[0], to_open)) {
	    redirect = TRUE;
	}
	else {
	    VALUE tmp = argv[0];
	    FilePathValue(tmp);
	    if (NIL_P(tmp)) {
		redirect = TRUE;
	    }
	    else {
                VALUE cmd = check_pipe_command(tmp);
                if (!NIL_P(cmd)) {
		    argv[0] = cmd;
		    return rb_io_s_popen(argc, argv, rb_cIO);
		}
	    }
	}
    }
    if (redirect) {
	VALUE io = rb_funcall2(argv[0], to_open, argc-1, argv+1);

	if (rb_block_given_p()) {
	    return rb_ensure(rb_yield, io, io_close, io);
	}
	return io;
    }
    return rb_io_s_open(argc, argv, rb_cFile);
}

#p(obj) ⇒ Object #p(obj1, obj2, ...) ⇒ Array #pnil

For each object, directly writes obj.inspect followed by a newline to the program’s standard output.

S = Struct.new(:name, :state)
s = S['dave', 'TX']
p s

produces:

#<S name="dave", state="TX">

Overloads:

  • #p(obj) ⇒ Object

    Returns:

  • #p(obj1, obj2, ...) ⇒ Array

    Returns:

  • #pnil

    Returns:

    • (nil)


7068
7069
7070
7071
7072
7073
7074
7075
7076
# File 'io.c', line 7068

static VALUE
rb_f_p(int argc, VALUE *argv, VALUE self)
{
    struct rb_f_p_arg arg;
    arg.argc = argc;
    arg.argv = argv;

    return rb_uninterruptible(rb_f_p_internal, (VALUE)&arg);
}

Prints each object in turn to $stdout. If the output field separator ($,) is not nil, its contents will appear between each field. If the output record separator ($\) is not nil, it will be appended to the output. If no arguments are given, prints $_. Objects that aren’t strings will be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99

produces:

cat12399
cat, 1, 2, 3, 99

Returns:

  • (nil)


6840
6841
6842
6843
6844
6845
# File 'io.c', line 6840

static VALUE
rb_f_print(int argc, VALUE *argv)
{
    rb_io_print(argc, argv, rb_stdout);
    return Qnil;
}

#printf(io, string[, obj ... ]) ⇒ nil #printf(string[, obj ... ]) ⇒ nil

Equivalent to:

io.write(sprintf(string, obj, ...))

or

$stdout.write(sprintf(string, obj, ...))

Overloads:

  • #printf(io, string[, obj ... ]) ⇒ nil

    Returns:

    • (nil)
  • #printf(string[, obj ... ]) ⇒ nil

    Returns:

    • (nil)


6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
# File 'io.c', line 6751

static VALUE
rb_f_printf(int argc, VALUE *argv)
{
    VALUE out;

    if (argc == 0) return Qnil;
    if (RB_TYPE_P(argv[0], T_STRING)) {
	out = rb_stdout;
    }
    else {
	out = argv[0];
	argv++;
	argc--;
    }
    rb_io_write(out, rb_f_sprintf(argc, argv));

    return Qnil;
}

#proc {|...| ... } ⇒ Proc

Equivalent to Proc.new.

Yields:

  • (...)

Returns:



640
641
642
643
644
# File 'proc.c', line 640

VALUE
rb_block_proc(void)
{
    return proc_new(rb_cProc, FALSE);
}

#putc(int) ⇒ Integer

Equivalent to:

$stdout.putc(int)

Refer to the documentation for IO#putc for important information regarding multi-byte characters.

Returns:



6892
6893
6894
6895
6896
6897
6898
6899
# File 'io.c', line 6892

static VALUE
rb_f_putc(VALUE recv, VALUE ch)
{
    if (recv == rb_stdout) {
	return rb_io_putc(recv, ch);
    }
    return rb_funcall2(rb_stdout, rb_intern("putc"), 1, &ch);
}

#puts(obj, ...) ⇒ nil

Equivalent to

$stdout.puts(obj, ...)

Returns:

  • (nil)


6997
6998
6999
7000
7001
7002
7003
7004
# File 'io.c', line 6997

static VALUE
rb_f_puts(int argc, VALUE *argv, VALUE recv)
{
    if (recv == rb_stdout) {
	return rb_io_puts(argc, argv, recv);
    }
    return rb_funcall2(rb_stdout, rb_intern("puts"), argc, argv);
}

#raiseObject #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #failObject #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single String argument, raises a RuntimeError with the string as a message. Otherwise, the first parameter should be the name of an Exception class (or an object that returns an Exception object when sent an exception message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# File 'eval.c', line 611

static VALUE
rb_f_raise(int argc, VALUE *argv)
{
    VALUE err;
    if (argc == 0) {
	err = get_errinfo();
	if (!NIL_P(err)) {
	    argc = 1;
	    argv = &err;
	}
    }
    rb_raise_jump(rb_make_exception(argc, argv));

    UNREACHABLE;
}

#rand(max = 0) ⇒ Numeric

If called without an argument, or if max.to_i.abs == 0, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.

rand        #=> 0.2725926052826416

When max.abs is greater than or equal to 1, rand returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs.

rand(100)   #=> 12

When max is a Range, rand returns a random number where range.member?(number) == true.

Negative or floating point values for max are allowed, but may give surprising results.

rand(-100) # => 87
rand(-0.5) # => 0.8130921818028143
rand(1.9)  # equivalent to rand(1), which is always 0

Kernel.srand may be used to ensure that sequences of random numbers are reproducible between different runs of a program.

See also Random.rand.

Returns:



1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
# File 'random.c', line 1197

static VALUE
rb_f_rand(int argc, VALUE *argv, VALUE obj)
{
    VALUE v, vmax, r;
    struct MT *mt = default_mt();

    if (argc == 0) goto zero_arg;
    rb_scan_args(argc, argv, "01", &vmax);
    if (NIL_P(vmax)) goto zero_arg;
    if ((v = rand_range(mt, vmax)) != Qfalse) {
	return v;
    }
    vmax = rb_to_int(vmax);
    if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax, 0))) {
      zero_arg:
	return DBL2NUM(genrand_real(mt));
    }
    return r;
}

#Rational(x[, y]) ⇒ Numeric

Returns x/y;

Rational(1, 2)   #=> (1/2)
Rational('1/2')  #=> (1/2)

Syntax of string form:

string form = extra spaces , rational , extra spaces ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;

See String#to_r.

Returns:



637
638
639
640
641
# File 'rational.c', line 637

static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
    return rb_funcall2(rb_cRational, id_convert, argc, argv);
}

#readline(sep = $/) ⇒ String #readline(limit) ⇒ String #readline(sep, limit) ⇒ String

Equivalent to Kernel::gets, except readline raises EOFError at end of file.

Overloads:



8026
8027
8028
8029
8030
8031
8032
8033
# File 'io.c', line 8026

static VALUE
rb_f_readline(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_readline(argc, argv, argf);
    }
    return rb_funcall2(argf, rb_intern("readline"), argc, argv);
}

#readlines(sep = $/) ⇒ Array #readlines(limit) ⇒ Array #readlines(sep, limit) ⇒ Array

Returns an array containing the lines returned by calling Kernel.gets(sep) until the end of file.

Overloads:



8079
8080
8081
8082
8083
8084
8085
8086
# File 'io.c', line 8079

static VALUE
rb_f_readlines(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_readlines(argc, argv, argf);
    }
    return rb_funcall2(argf, rb_intern("readlines"), argc, argv);
}

#require(name) ⇒ Boolean

Loads the given name, returning true if successful and false if the feature is already loaded.

If the filename does not resolve to an absolute path, it will be searched for in the directories listed in $LOAD_PATH ($:).

If the filename has the extension “.rb”, it is loaded as a source file; if the extension is “.so”, “.o”, or “.dll”, or the default shared library extension on the current platform, Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries adding “.rb”, “.so”, and so on to the name until found. If the file named cannot be found, a LoadError will be raised.

For Ruby extensions the filename given may use any shared library extension. For example, on Linux the socket extension is “socket.so” and require 'socket.dll' will load the socket extension.

The absolute path of the loaded file is added to $LOADED_FEATURES ($"). A file will not be loaded again if its path already appears in $". For example, require 'a'; require './a' will not load a.rb again.

require "my-library.rb"
require "db-driver"

Any constants or globals within the loaded source file will be available in the calling program’s global namespace. However, local variables will not be propagated to the loading environment.

Returns:

  • (Boolean)


814
815
816
817
818
# File 'load.c', line 814

VALUE
rb_f_require(VALUE obj, VALUE fname)
{
    return rb_require_safe(fname, rb_safe_level());
}

#require_relative(string) ⇒ Boolean

Ruby tries to load the library named string relative to the requiring file’s path. If the file’s path cannot be determined a LoadError is raised. If a file is loaded true is returned and false otherwise.

Returns:

  • (Boolean)


828
829
830
831
832
833
834
835
836
837
# File 'load.c', line 828

VALUE
rb_f_require_relative(VALUE obj, VALUE fname)
{
    VALUE base = rb_current_realfilepath();
    if (NIL_P(base)) {
	rb_loaderror("cannot infer basepath");
    }
    base = rb_file_dirname(base);
    return rb_require_safe(rb_file_absolute_path(fname, base), rb_safe_level());
}

#select(read_array) ⇒ Object

[, error_array

[, timeout]]]) -> array  or  nil

Calls select(2) system call. It monitors given arrays of IO objects, waits one or more of IO objects ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those IO objects. It will return nil if optional timeout value is given and no IO object is ready in timeout seconds.

IO.select peeks the buffer of IO objects for testing readability. If the IO buffer is not empty, IO.select immediately notify readability. This “peek” is only happen for IO objects. It is not happen for IO-like objects such as OpenSSL::SSL::SSLSocket.

The best way to use IO.select is invoking it after nonblocking methods such as read_nonblock, write_nonblock, etc. The methods raises an exception which is extended by IO::WaitReadable or IO::WaitWritable. The modules notify how the caller should wait with IO.select. If IO::WaitReadable is raised, the caller should wait for reading. If IO::WaitWritable is raised, the caller should wait for writing.

So, blocking read (readpartial) can be emulated using read_nonblock and IO.select as follows:

begin
  result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io_like])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io_like])
  retry
end

Especially, the combination of nonblocking methods and IO.select is preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It has to_io method to return underlying IO object. IO.select calls to_io to obtain the file descriptor to wait.

This means that readability notified by IO.select doesn’t mean readability from OpenSSL::SSL::SSLSocket object.

Most possible situation is OpenSSL::SSL::SSLSocket buffers some data. IO.select doesn’t see the buffer. So IO.select can block when OpenSSL::SSL::SSLSocket#readpartial doesn’t block.

However several more complicated situation exists.

SSL is a protocol which is sequence of records. The record consists multiple bytes. So, the remote side of SSL sends a partial record, IO.select notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial will blocks.

Also, the remote side can request SSL renegotiation which forces the local SSL engine writes some data. This means OpenSSL::SSL::SSLSocket#readpartial may invoke write system call and it can block. In such situation, OpenSSL::SSL::SSLSocket#read_nonblock raises IO::WaitWritable instead of blocking. So, the caller should wait for ready for writability as above example.

The combination of nonblocking methods and IO.select is also useful for streams such as tty, pipe socket socket when multiple process read form a stream.

Finally, Linux kernel developers doesn’t guarantee that readability of select(2) means readability of following read(2) even for single process. See select(2) manual on GNU/Linux system.

Invoking IO.select before IO#readpartial works well in usual. However it is not the best way to use IO.select.

The writability notified by select(2) doesn’t show how many bytes writable. IO#write method blocks until given whole string is written. So, IO#write(two or more bytes) can block after writability is notified by IO.select. IO#write_nonblock is required to avoid the blocking.

Blocking write (write) can be emulated using write_nonblock and IO.select as follows: IO::WaitReadable should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket.

while 0 < string.bytesize
  begin
    written = io_like.write_nonblock(string)
  rescue IO::WaitReadable
    IO.select([io_like])
    retry
  rescue IO::WaitWritable
    IO.select(nil, [io_like])
    retry
  end
  string = string.byteslice(written..-1)
end

Parameters

read_array

an array of IO objects that wait until ready for read

write_array

an array of IO objects that wait until ready for write

error_array

an array of IO objects that wait for exceptions

timeout

a numeric value in second

Example

rp, wp = IO.pipe
mesg = "ping "
100.times {
  # IO.select follows IO#read.  Not the best way to use IO.select.
  rs, ws, = IO.select([rp], [wp])
  if r = rs[0]
    ret = r.read(5)
    print ret
    case ret
    when /ping/
      mesg = "pong\n"
    when /pong/
      mesg = "ping "
    end
  end
  if w = ws[0]
    w.write(mesg)
  end
}

produces:

ping pong
ping pong
ping pong
(snipped)
ping


8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
# File 'io.c', line 8630

static VALUE
rb_f_select(int argc, VALUE *argv, VALUE obj)
{
    VALUE timeout;
    struct select_args args;
    struct timeval timerec;
    int i;

    rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout);
    if (NIL_P(timeout)) {
	args.timeout = 0;
    }
    else {
	timerec = rb_time_interval(timeout);
	args.timeout = &timerec;
    }

    for (i = 0; i < numberof(args.fdsets); ++i)
	rb_fd_init(&args.fdsets[i]);

    return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args);
}

#set_trace_func(proc) ⇒ Proc #set_trace_func(nil) ⇒ nil

Establishes proc as the handler for tracing, or disables tracing if the parameter is nil.

Note: this method is obsolete, please use TracePoint instead.

proc takes up to six parameters:

* an event name * a filename * a line number * an object id * a binding * the name of a class

proc is invoked whenever an event occurs.

Events are:

c-call

call a C-language routine

c-return

return from a C-language routine

call

call a Ruby method

class

start a class or module definition),

end

finish a class or module definition),

line

execute code on a new line

raise

raise an exception

return

return from a Ruby method

Tracing is disabled within the context of proc.

class Test

def test

a = 1
b = 2

end

   end

   set_trace_func proc { |event, file, line, id, binding, classname|
 printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
   }
   t = Test.new
   t.test

line prog.rb:11               false
   c-call prog.rb:11        new    Class
   c-call prog.rb:11 initialize   Object
 c-return prog.rb:11 initialize   Object
 c-return prog.rb:11        new    Class
line prog.rb:12               false

call prog.rb:2 test Test

line prog.rb:3        test     Test
line prog.rb:4        test     Test
   return prog.rb:4        test     Test

Overloads:

  • #set_trace_func(proc) ⇒ Proc

    Returns:

  • #set_trace_func(nil) ⇒ nil

    Returns:

    • (nil)


488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# File 'vm_trace.c', line 488

static VALUE
set_trace_func(VALUE obj, VALUE trace)
{

    rb_remove_event_hook(call_trace_func);

    if (NIL_P(trace)) {
	return Qnil;
    }

    if (!rb_obj_is_proc(trace)) {
	rb_raise(rb_eTypeError, "trace_func needs to be Proc");
    }

    rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace);
    return trace;
}

#sleep([duration]) ⇒ Fixnum

Suspends the current thread for duration seconds (which may be any number, including a Float with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run. Called without an argument, sleep() will sleep forever.

Time.new    #=> 2008-03-08 19:56:19 +0900
sleep 1.2   #=> 1
Time.new    #=> 2008-03-08 19:56:20 +0900
sleep 1.9   #=> 2
Time.new    #=> 2008-03-08 19:56:22 +0900

Returns:



4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
# File 'process.c', line 4158

static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
    time_t beg, end;

    beg = time(0);
    if (argc == 0) {
	rb_thread_sleep_forever();
    }
    else {
	rb_check_arity(argc, 0, 1);
	rb_thread_wait_for(rb_time_interval(argv[0]));
    }

    end = time(0) - beg;

    return INT2FIX(end);
}

#spawn([env,][,options]) ⇒ Object #spawn([env,][,options]) ⇒ Object

spawn executes specified command and return its pid.

pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid

pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid

This method is similar to Kernel#system but it doesn’t wait for the command to finish.

The parent process should use Process.wait to collect the termination status of its child or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

spawn has bunch of options to specify process attributes:

env: hash
  name => val : set the environment variable
  name => nil : unset the environment variable
command...:
  commandline                 : command line string which is passed to the standard shell
  cmdname, arg1, ...          : command name and one or more arguments (This form does not use the shell. See below for caveats.)
  [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
  clearing environment variables:
    :unsetenv_others => true   : clear environment variables except specified by env
    :unsetenv_others => false  : don't clear (default)
  process group:
    :pgroup => true or 0 : make a new process group
    :pgroup => pgid      : join to specified process group
    :pgroup => nil       : don't change the process group (default)
  create new process group: Windows only
    :new_pgroup => true  : the new process is the root process of a new process group
    :new_pgroup => false : don't create a new process group (default)
  resource limit: resourcename is core, cpu, data, etc.  See Process.setrlimit.
    :rlimit_resourcename => limit
    :rlimit_resourcename => [cur_limit, max_limit]
  umask:
    :umask => int
  redirection:
    key:
      FD              : single file descriptor in child process
      [FD, FD, ...]   : multiple file descriptor in child process
    value:
      FD                        : redirect to the file descriptor in parent process
      string                    : redirect to file with open(string, "r" or "w")
      [string]                  : redirect to file with open(string, File::RDONLY)
      [string, open_mode]       : redirect to file with open(string, open_mode, 0644)
      [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
      [:child, FD]              : redirect to the redirected file descriptor
      :close                    : close the file descriptor in child process
    FD is one of follows
      :in     : the file descriptor 0 which is the standard input
      :out    : the file descriptor 1 which is the standard output
      :err    : the file descriptor 2 which is the standard error
      integer : the file descriptor of specified the integer
      io      : the file descriptor specified as io.fileno
  file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
    :close_others => true  : don't inherit
  current directory:
    :chdir => str

  The 'cmdname, arg1, ...' form does not use the shell. However,
  on different OSes, different things are provided as built-in
  commands. An example of this is 'echo', which is a built-in
  on Windows, but is a normal program on Linux and Mac OS X.
  This means that `Process.spawn 'echo', '%Path%'` will display
  the contents of the `%Path%` environment variable on Windows,
  but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.

If a hash is given as env, the environment is updated by env before exec(2) in the child process. If a pair in env has nil as the value, the variable is deleted.

# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)

If a hash is given as options, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.

The :unsetenv_others key in options specifies to clear environment variables, other than specified by env.

pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only

The :pgroup key in options specifies a process group. The corresponding value should be true, zero or positive integer. true and zero means the process should be a process leader of a new process group. Other values specifies a process group to be belongs.

pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10

The :new_pgroup key in options specifies to pass CREATE_NEW_PROCESS_GROUP flag to CreateProcessW() that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid) on the subprocess. :new_pgroup is false by default.

pid = spawn(command, :new_pgroup=>true)  # new process group
pid = spawn(command, :new_pgroup=>false) # same process group

The :rlimit_foo key specifies a resource limit. foo should be one of resource types such as core. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.

cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.

The :umask key in options specifies the umask.

pid = spawn(command, :umask=>077)

The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.

For example, stderr can be merged into stdout as follows:

pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)

The hash keys specifies a file descriptor in the child process started by spawn. :err, 2 and STDERR specifies the standard error stream (stderr).

The hash values specifies a file descriptor in the parent process which invokes spawn. :out, 1 and STDOUT specifies the standard output stream (stdout).

In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.

The standard input stream (stdin) can be specified by :in, 0 and STDIN.

A filename can be specified as a hash value.

pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode

For stdout and stderr, it is opened in write mode. Otherwise read mode is used.

For specifying flags and permission of file creation explicitly, an array is used instead.

pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])

The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.

If an array of IOs and integers are specified as a hash key, all the elements are redirected.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])

Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])

[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.

io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"

The :chdir key in options specifies the current directory.

pid = spawn(command, :chdir=>"/var/tmp")

spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.

pid = spawn(command, :close_others=>true)  # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...

:close_others is true by default for spawn and IO.popen.

Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.

So IO.pipe and spawn can be used as IO.popen.

# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w)   # r, w is closed in the child process.
w.close

:close is specified as a hash value to close a fd individually.

f = open(foo)
system(command, f=>:close)        # don't inherit f.

If a file descriptor need to be inherited, io=>io can be used.

# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read

It is also possible to exchange file descriptors.

pid = spawn(command, :out=>:err, :err=>:out)

The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn uses an extra file descriptor to resolve such cyclic file descriptor mapping.

See Kernel.exec for the standard shell.



4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
# File 'process.c', line 4111

static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
    rb_pid_t pid;
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;

    execarg_obj = rb_execarg_new(argc, argv, TRUE);
    eargp = rb_execarg_get(execarg_obj);
    rb_execarg_fixup(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

    pid = rb_spawn_process(eargp, errmsg, sizeof(errmsg));
    RB_GC_GUARD(execarg_obj);

    if (pid == -1) {
	const char *prog = errmsg;
	if (!prog[0]) {
	    rb_sys_fail_str(fail_str);
	}
	rb_sys_fail(prog);
    }
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}

#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String

Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.

The syntax of a format sequence is follows.

%[flags][width][.precision]type

A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf argument is to be interpreted, while the flags modify that interpretation.

The field type characters are:

Field |  Integer Format
------+--------------------------------------------------------------
  b   | Convert argument as a binary number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..1'.
  B   | Equivalent to `b', but uses an uppercase 0B for prefix
      | in the alternative format by #.
  d   | Convert argument as a decimal number.
  i   | Identical to `d'.
  o   | Convert argument as an octal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..7'.
  u   | Identical to `d'.
  x   | Convert argument as a hexadecimal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..f' (representing an infinite string of
      | leading 'ff's).
  X   | Equivalent to `x', but uses uppercase letters.

Field |  Float Format
------+--------------------------------------------------------------
  e   | Convert floating point argument into exponential notation
      | with one digit before the decimal point as [-]d.dddddde[+-]dd.
      | The precision specifies the number of digits after the decimal
      | point (defaulting to six).
  E   | Equivalent to `e', but uses an uppercase E to indicate
      | the exponent.
  f   | Convert floating point argument as [-]ddd.dddddd,
      | where the precision specifies the number of digits after
      | the decimal point.
  g   | Convert a floating point number using exponential form
      | if the exponent is less than -4 or greater than or
      | equal to the precision, or in dd.dddd form otherwise.
      | The precision specifies the number of significant digits.
  G   | Equivalent to `g', but use an uppercase `E' in exponent form.
  a   | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
      | which is consisted from optional sign, "0x", fraction part
      | as hexadecimal, "p", and exponential part as decimal.
  A   | Equivalent to `a', but use uppercase `X' and `P'.

Field |  Other Format
------+--------------------------------------------------------------
  c   | Argument is the numeric code for a single character or
      | a single character string itself.
  p   | The valuing of argument.inspect.
  s   | Argument is a string to be substituted.  If the format
      | sequence contains a precision, at most that many characters
      | will be copied.
  %   | A percent sign itself will be displayed.  No argument taken.

The flags modifies the behavior of the formats. The flag characters are:

Flag     | Applies to    | Meaning
---------+---------------+-----------------------------------------
space    | bBdiouxX      | Leave a space at the start of
         | aAeEfgG       | non-negative numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all           | Specifies the absolute argument number
         |               | for this field.  Absolute and relative
         |               | argument numbers cannot be mixed in a
         |               | sprintf string.
---------+---------------+-----------------------------------------
 #       | bBoxX         | Use an alternative format.
         | aAeEfgG       | For the conversions `o', increase the precision
         |               | until the first digit will be `0' if
         |               | it is not formatted as complements.
         |               | For the conversions `x', `X', `b' and `B'
         |               | on non-zero, prefix the result with ``0x'',
         |               | ``0X'', ``0b'' and ``0B'', respectively.
         |               | For `a', `A', `e', `E', `f', `g', and 'G',
         |               | force a decimal point to be added,
         |               | even if no digits follow.
         |               | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+        | bBdiouxX      | Add a leading plus sign to non-negative
         | aAeEfgG       | numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
-        | all           | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX      | Pad with zeros, not spaces.
         | aAeEfgG       | For `o', `x', `X', `b' and `B', radix-1
         | (numeric fmt) | is used for negative numbers formatted as
         |               | complements.
---------+---------------+-----------------------------------------
*        | all           | Use the next argument as the field width.
         |               | If negative, left-justify the result. If the
         |               | asterisk is followed by a number and a dollar
         |               | sign, use the indicated argument as the width.

Examples of flags:

# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123)  #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"

# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123)   #=> "173"
sprintf("%#o", 123)  #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123)  #=> "..7605"
sprintf("%#o", -123) #=> "..7605"

# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123)   #=> "7b"
sprintf("%#x", 123)  #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123)  #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0)    #=> "0"

# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123)  #=> "7B"
sprintf("%#X", 123) #=> "0X7B"

# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123)   #=> "1111011"
sprintf("%#b", 123)  #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123)  #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0)    #=> "0"

# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123)  #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"

# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1)  #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"

# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234)  #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."

# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4)   #=> "123.4"
sprintf("%#g", 123.4)  #=> "123.400"
sprintf("%g", 123456)  #=> "123456"
sprintf("%#g", 123456) #=> "123456."

The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.

Examples of width:

# padding is done by spaces,       width=20
# 0 or radix-1.             <------------------>
sprintf("%20d", 123)   #=> "                 123"
sprintf("%+20d", 123)  #=> "                +123"
sprintf("%020d", 123)  #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123)  #=> "123                 "
sprintf("%-+20d", 123) #=> "+123                "
sprintf("%- 20d", 123) #=> " 123                "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"

For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters to the result.)

Examples of precisions:

# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits               <------>
sprintf("%20.8d", 123)  #=> "            00000123"
sprintf("%20.8o", 123)  #=> "            00000173"
sprintf("%20.8x", 123)  #=> "            0000007b"
sprintf("%20.8b", 123)  #=> "            01111011"
sprintf("%20.8d", -123) #=> "           -00000123"
sprintf("%20.8o", -123) #=> "            ..777605"
sprintf("%20.8x", -123) #=> "            ..ffff85"
sprintf("%20.8b", -11)  #=> "            ..110101"

# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted.  <------>
sprintf("%#20.8d", 123)  #=> "            00000123"
sprintf("%#20.8o", 123)  #=> "            00000173"
sprintf("%#20.8x", 123)  #=> "          0x0000007b"
sprintf("%#20.8b", 123)  #=> "          0b01111011"
sprintf("%#20.8d", -123) #=> "           -00000123"
sprintf("%#20.8o", -123) #=> "            ..777605"
sprintf("%#20.8x", -123) #=> "          0x..ffff85"
sprintf("%#20.8b", -11)  #=> "          0b..110101"

# precision for `e' is number of
# digits after the decimal point           <------>
sprintf("%20.8e", 1234.56789) #=> "      1.23456789e+03"

# precision for `f' is number of
# digits after the decimal point               <------>
sprintf("%20.8f", 1234.56789) #=> "       1234.56789000"

# precision for `g' is number of
# significant digits                          <------->
sprintf("%20.8g", 1234.56789) #=> "           1234.5679"

#                                         <------->
sprintf("%20.8g", 123456789)  #=> "       1.2345679e+08"

# precision for `s' is
# maximum number of characters                    <------>
sprintf("%20.8s", "string test") #=> "            string t"

Examples:

sprintf("%d %04x", 123, 123)               #=> "123 007b"
sprintf("%08b '%4s'", 123, 123)            #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8)   #=> "   hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8)       #=> "hello    -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23)   #=> "+1.23: 1.23:1.23"
sprintf("%u", -123)                        #=> "-123"

For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.

Examples:

sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
  #=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
  # => "1f"

Overloads:

  • #format(format_string[, arguments...]) ⇒ String

    Returns:

  • #sprintf(format_string[, arguments...]) ⇒ String

    Returns:



411
412
413
414
415
# File 'sprintf.c', line 411

VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
    return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}

#srand(number = Random.new_seed) ⇒ Object

Seeds the system pseudo-random number generator, Random::DEFAULT, with number. The previous seed value is returned.

If number is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.

srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.

srand 1234               # => 268519324636777531569100071560086917274
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234               # => 1234
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]


679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# File 'random.c', line 679

static VALUE
rb_f_srand(int argc, VALUE *argv, VALUE obj)
{
    VALUE seed, old;
    rb_random_t *r = &default_rand;

    if (argc == 0) {
	seed = random_seed();
    }
    else {
	rb_scan_args(argc, argv, "01", &seed);
    }
    old = r->seed;
    r->seed = rand_init(&r->mt, seed);

    return old;
}

#String(arg) ⇒ String

Converts arg to a String by calling its to_s method.

String(self)        #=> "main"
String(self.class)  #=> "Object"
String(123456)      #=> "123456"

Returns:



2989
2990
2991
2992
2993
# File 'object.c', line 2989

static VALUE
rb_f_string(VALUE obj, VALUE arg)
{
    return rb_String(arg);
}

#syscall(num[, args...]) ⇒ Integer

Calls the operating system function identified by num and returns the result of the function or raises SystemCallError if it failed.

Arguments for the function can follow num. They must be either String objects or Integer objects. A String object is passed as a pointer to the byte sequence. An Integer object is passed as an integer whose bit size is same as a pointer. Up to nine parameters may be passed (14 on the Atari-ST).

The function identified by num is system dependent. On some Unix systems, the numbers may be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6   # '4' is write(2) on our box

produces:

hello

Calling syscall on a platform which does not have any way to an arbitrary system function just fails with NotImplementedError.

Note

syscall is essentially unsafe and unportable. Feel free to shoot your foot. DL (Fiddle) library is preferred for safer and a bit more portable programming.

Returns:



9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
# File 'io.c', line 9089

static VALUE
rb_f_syscall(int argc, VALUE *argv)
{
#ifdef atarist
    VALUE arg[13]; /* yes, we really need that many ! */
#else
    VALUE arg[8];
#endif
#if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */
# define SYSCALL __syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
# if SIZEOF_LONG == 8
    long num, retval = -1;
# elif SIZEOF_LONG_LONG == 8
    long long num, retval = -1;
# else
#  error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<----
# endif
#elif defined(__linux__)
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
    /*
     * Linux man page says, syscall(2) function prototype is below.
     *
     *     int syscall(int number, ...);
     *
     * But, it's incorrect. Actual one takes and returned long. (see unistd.h)
     */
    long num, retval = -1;
#else
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2INT(x)
# define RETVAL2NUM(x) INT2NUM(x)
    int num, retval = -1;
#endif
    int i;

    if (RTEST(ruby_verbose)) {
	rb_warning("We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative.");
    }

    rb_secure(2);
    if (argc == 0)
	rb_raise(rb_eArgError, "too few arguments for syscall");
    if (argc > numberof(arg))
	rb_raise(rb_eArgError, "too many arguments for syscall");
    num = NUM2SYSCALLID(argv[0]); ++argv;
    for (i = argc - 1; i--; ) {
	VALUE v = rb_check_string_type(argv[i]);

	if (!NIL_P(v)) {
	    SafeStringValue(v);
	    rb_str_modify(v);
	    arg[i] = (VALUE)StringValueCStr(v);
	}
	else {
	    arg[i] = (VALUE)NUM2LONG(argv[i]);
	}
    }

    switch (argc) {
      case 1:
	retval = SYSCALL(num);
	break;
      case 2:
	retval = SYSCALL(num, arg[0]);
	break;
      case 3:
	retval = SYSCALL(num, arg[0],arg[1]);
	break;
      case 4:
	retval = SYSCALL(num, arg[0],arg[1],arg[2]);
	break;
      case 5:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]);
	break;
      case 6:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]);
	break;
      case 7:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]);
	break;
      case 8:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]);
	break;
#ifdef atarist
      case 9:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7]);
	break;
      case 10:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8]);
	break;
      case 11:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9]);
	break;
      case 12:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10]);
	break;
      case 13:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10], arg[11]);
	break;
      case 14:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10], arg[11], arg[12]);
        break;
#endif
    }

    if (retval == -1)
	rb_sys_fail(0);
    return RETVAL2NUM(retval);
#undef SYSCALL
#undef NUM2SYSCALLID
#undef RETVAL2NUM
}

#system([env,][,options]) ⇒ true, ...

Executes command… in a subshell. command… is one of following forms.

commandline                 : command line string which is passed to the standard shell
cmdname, arg1, ...          : command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)

system returns true if the command gives zero exit status, false for non zero exit status. Returns nil if command execution fails. An error status is available in $?. The arguments are processed in the same way as for Kernel.spawn.

The hash arguments, env and options, are same as exec and spawn. See Kernel.spawn for details.

system("echo *")
system("echo", "*")

produces:

config.h main.rb
*

See Kernel.exec for the standard shell.

Returns:

  • (true, false, nil)


3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
# File 'process.c', line 3810

static VALUE
rb_f_system(int argc, VALUE *argv)
{
    rb_pid_t pid;
    int status;

#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif

#ifdef SIGCHLD
    RETSIGTYPE (*chfunc)(int);

    rb_last_status_clear();
    chfunc = signal(SIGCHLD, SIG_DFL);
#endif
    pid = rb_spawn_internal(argc, argv, NULL, 0);
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
    if (pid > 0) {
        int ret, status;
        ret = rb_waitpid(pid, &status, 0);
        if (ret == (rb_pid_t)-1)
            rb_sys_fail("Another thread waited the process started by system().");
    }
#endif
#ifdef SIGCHLD
    signal(SIGCHLD, chfunc);
#endif
    if (pid < 0) {
	return Qnil;
    }
    status = PST2INT(rb_last_status_get());
    if (status == EXIT_SUCCESS) return Qtrue;
    return Qfalse;
}

#test(cmd, file1[, file2]) ⇒ Object

Uses the integer cmd to perform various tests on file1 (first table below) or on file1 and file2 (second table).

File tests on a single file:

Cmd    Returns   Meaning
"A"  | Time    | Last access time for file1
"b"  | boolean | True if file1 is a block device
"c"  | boolean | True if file1 is a character device
"C"  | Time    | Last change time for file1
"d"  | boolean | True if file1 exists and is a directory
"e"  | boolean | True if file1 exists
"f"  | boolean | True if file1 exists and is a regular file
"g"  | boolean | True if file1 has the \CF{setgid} bit
     |         | set (false under NT)
"G"  | boolean | True if file1 exists and has a group
     |         | ownership equal to the caller's group
"k"  | boolean | True if file1 exists and has the sticky bit set
"l"  | boolean | True if file1 exists and is a symbolic link
"M"  | Time    | Last modification time for file1
"o"  | boolean | True if file1 exists and is owned by
     |         | the caller's effective uid
"O"  | boolean | True if file1 exists and is owned by
     |         | the caller's real uid
"p"  | boolean | True if file1 exists and is a fifo
"r"  | boolean | True if file1 is readable by the effective
     |         | uid/gid of the caller
"R"  | boolean | True if file is readable by the real
     |         | uid/gid of the caller
"s"  | int/nil | If file1 has nonzero size, return the size,
     |         | otherwise return nil
"S"  | boolean | True if file1 exists and is a socket
"u"  | boolean | True if file1 has the setuid bit set
"w"  | boolean | True if file1 exists and is writable by
     |         | the effective uid/gid
"W"  | boolean | True if file1 exists and is writable by
     |         | the real uid/gid
"x"  | boolean | True if file1 exists and is executable by
     |         | the effective uid/gid
"X"  | boolean | True if file1 exists and is executable by
     |         | the real uid/gid
"z"  | boolean | True if file1 exists and has a zero length

Tests that take two files:

"-"  | boolean | True if file1 and file2 are identical
"="  | boolean | True if the modification times of file1
     |         | and file2 are equal
"<"  | boolean | True if the modification time of file1
     |         | is prior to that of file2
">"  | boolean | True if the modification time of file1
     |         | is after that of file2

Returns:



4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
# File 'file.c', line 4488

static VALUE
rb_f_test(int argc, VALUE *argv)
{
    int cmd;

    if (argc == 0) rb_check_arity(argc, 2, 3);
    cmd = NUM2CHR(argv[0]);
    if (cmd == 0) {
      unknown:
	/* unknown command */
	if (ISPRINT(cmd)) {
	    rb_raise(rb_eArgError, "unknown command '%s%c'", cmd == '\'' || cmd == '\\' ? "\\" : "", cmd);
	}
	else {
	    rb_raise(rb_eArgError, "unknown command \"\\x%02X\"", cmd);
	}
    }
    if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) {
	CHECK(1);
	switch (cmd) {
	  case 'b':
	    return rb_file_blockdev_p(0, argv[1]);

	  case 'c':
	    return rb_file_chardev_p(0, argv[1]);

	  case 'd':
	    return rb_file_directory_p(0, argv[1]);

	  case 'a':
	  case 'e':
	    return rb_file_exist_p(0, argv[1]);

	  case 'f':
	    return rb_file_file_p(0, argv[1]);

	  case 'g':
	    return rb_file_sgid_p(0, argv[1]);

	  case 'G':
	    return rb_file_grpowned_p(0, argv[1]);

	  case 'k':
	    return rb_file_sticky_p(0, argv[1]);

	  case 'l':
	    return rb_file_symlink_p(0, argv[1]);

	  case 'o':
	    return rb_file_owned_p(0, argv[1]);

	  case 'O':
	    return rb_file_rowned_p(0, argv[1]);

	  case 'p':
	    return rb_file_pipe_p(0, argv[1]);

	  case 'r':
	    return rb_file_readable_p(0, argv[1]);

	  case 'R':
	    return rb_file_readable_real_p(0, argv[1]);

	  case 's':
	    return rb_file_size_p(0, argv[1]);

	  case 'S':
	    return rb_file_socket_p(0, argv[1]);

	  case 'u':
	    return rb_file_suid_p(0, argv[1]);

	  case 'w':
	    return rb_file_writable_p(0, argv[1]);

	  case 'W':
	    return rb_file_writable_real_p(0, argv[1]);

	  case 'x':
	    return rb_file_executable_p(0, argv[1]);

	  case 'X':
	    return rb_file_executable_real_p(0, argv[1]);

	  case 'z':
	    return rb_file_zero_p(0, argv[1]);
	}
    }

    if (strchr("MAC", cmd)) {
	struct stat st;
	VALUE fname = argv[1];

	CHECK(1);
	if (rb_stat(fname, &st) == -1) {
	    FilePathValue(fname);
	    rb_sys_fail_path(fname);
	}

	switch (cmd) {
	  case 'A':
	    return stat_atime(&st);
	  case 'M':
	    return stat_mtime(&st);
	  case 'C':
	    return stat_ctime(&st);
	}
    }

    if (cmd == '-') {
	CHECK(2);
	return rb_file_identical_p(0, argv[1], argv[2]);
    }

    if (strchr("=<>", cmd)) {
	struct stat st1, st2;

	CHECK(2);
	if (rb_stat(argv[1], &st1) < 0) return Qfalse;
	if (rb_stat(argv[2], &st2) < 0) return Qfalse;

	switch (cmd) {
	  case '=':
	    if (st1.st_mtime == st2.st_mtime) return Qtrue;
	    return Qfalse;

	  case '>':
	    if (st1.st_mtime > st2.st_mtime) return Qtrue;
	    return Qfalse;

	  case '<':
	    if (st1.st_mtime < st2.st_mtime) return Qtrue;
	    return Qfalse;
	}
    }
    goto unknown;
}

#throw(tag[, obj]) ⇒ Object

Transfers control to the end of the active catch block waiting for tag. Raises ArgumentError if there is no catch block for the tag. The optional second parameter supplies a return value for the catch block, which otherwise defaults to nil. For examples, see Kernel::catch.



1731
1732
1733
1734
1735
1736
1737
1738
1739
# File 'vm_eval.c', line 1731

static VALUE
rb_f_throw(int argc, VALUE *argv)
{
    VALUE tag, value;

    rb_scan_args(argc, argv, "11", &tag, &value);
    rb_throw_obj(tag, value);
    UNREACHABLE;
}

#trace_var(symbol, cmd) ⇒ nil #trace_var(symbol) {|val| ... } ⇒ nil

Controls tracing of assignments to global variables. The parameter +symbol_ identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc object) or block is executed whenever the variable is assigned. The block or Proc object receives the variable’s new value as a parameter. Also see Kernel::untrace_var.

trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
$_ = ' there'

produces:

$_ is now 'hello'
$_ is now ' there'

Overloads:

  • #trace_var(symbol, cmd) ⇒ nil

    Returns:

    • (nil)
  • #trace_var(symbol) {|val| ... } ⇒ nil

    Yields:

    • (val)

    Returns:

    • (nil)


655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# File 'variable.c', line 655

VALUE
rb_f_trace_var(int argc, VALUE *argv)
{
    VALUE var, cmd;
    struct global_entry *entry;
    struct trace_var *trace;

    if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) {
	cmd = rb_block_proc();
    }
    if (NIL_P(cmd)) {
	return rb_f_untrace_var(argc, argv);
    }
    entry = rb_global_entry(rb_to_id(var));
    if (OBJ_TAINTED(cmd)) {
	rb_raise(rb_eSecurityError, "Insecure: tainted variable trace");
    }
    trace = ALLOC(struct trace_var);
    trace->next = entry->var->trace;
    trace->func = rb_trace_eval;
    trace->data = cmd;
    trace->removed = 0;
    entry->var->trace = trace;

    return Qnil;
}

#trap(signal, command) ⇒ Object #trap(signal) {|| ... } ⇒ Object

Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.

Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD")  { puts "Child died" }
fork && Process.wait

produces:

Terminating: 27461
Child died
Terminating: 27460

Overloads:



1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
# File 'signal.c', line 1023

static VALUE
sig_trap(int argc, VALUE *argv)
{
    int sig;
    sighandler_t func;
    VALUE cmd;

    rb_secure(2);
    rb_check_arity(argc, 1, 2);

    sig = trap_signm(argv[0]);
    if (reserved_signal_p(sig)) {
        const char *name = signo2signm(sig);
        if (name)
            rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name);
        else
            rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig);
    }

    if (argc == 1) {
	cmd = rb_block_proc();
	func = sighandler;
    }
    else {
	cmd = argv[1];
	func = trap_handler(&cmd, sig);
    }

    if (OBJ_TAINTED(cmd)) {
	rb_raise(rb_eSecurityError, "Insecure: tainted signal trap");
    }

    return trap(sig, func, cmd);
}

#untrace_var(symbol[, cmd]) ⇒ Array?

Removes tracing for the specified command on the given global variable and returns nil. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.

Returns:



714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# File 'variable.c', line 714

VALUE
rb_f_untrace_var(int argc, VALUE *argv)
{
    VALUE var, cmd;
    ID id;
    struct global_entry *entry;
    struct trace_var *trace;
    st_data_t data;

    rb_scan_args(argc, argv, "11", &var, &cmd);
    id = rb_check_id(&var);
    if (!id) {
	rb_name_error_str(var, "undefined global variable %"PRIsVALUE"", QUOTE(var));
    }
    if (!st_lookup(rb_global_tbl, (st_data_t)id, &data)) {
	rb_name_error(id, "undefined global variable %"PRIsVALUE"", QUOTE_ID(id));
    }

    trace = (entry = (struct global_entry *)data)->var->trace;
    if (NIL_P(cmd)) {
	VALUE ary = rb_ary_new();

	while (trace) {
	    struct trace_var *next = trace->next;
	    rb_ary_push(ary, (VALUE)trace->data);
	    trace->removed = 1;
	    trace = next;
	}

	if (!entry->var->block_trace) remove_trace(entry->var);
	return ary;
    }
    else {
	while (trace) {
	    if (trace->data == cmd) {
		trace->removed = 1;
		if (!entry->var->block_trace) remove_trace(entry->var);
		return rb_ary_new3(1, cmd);
	    }
	    trace = trace->next;
	}
    }
    return Qnil;
}

#warn(msg, ...) ⇒ nil

Displays each of the given messages followed by a record separator on STDERR unless warnings have been disabled (for example with the -W0 flag).

  warn("warning 1", "warning 2")

<em>produces:</em>

  warning 1
  warning 2

Returns:

  • (nil)


258
259
260
261
262
263
264
265
# File 'error.c', line 258

static VALUE
rb_warn_m(int argc, VALUE *argv, VALUE exc)
{
    if (!NIL_P(ruby_verbose) && argc > 0) {
	rb_io_puts(argc, argv, rb_stderr);
    }
    return Qnil;
}