Class: Object
Overview
Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on Object are available to all classes unless explicitly overridden.
Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.
When referencing constants in classes inheriting from Object you do not need to use the full namespace. For example, referencing File
inside YourClass
will find the top-level File class.
In the descriptions of Object’s methods, the parameter symbol refers to a symbol, which is either a quoted string or a Symbol (such as :name
).
Instance Method Summary collapse
-
#!~(other) ⇒ Boolean
Returns true if two objects do not match (using the =~ method), otherwise false.
-
#<=>(other) ⇒ 0?
Returns 0 if
obj
andother
are the same object orobj == other
, otherwise nil. -
#===(other) ⇒ Boolean
Case Equality – For class Object, effectively the same as calling
#==
, but typically overridden by descendants to provide meaningful semantics incase
statements. -
#=~(other) ⇒ nil
Pattern Match—Overridden by descendants (notably
Regexp
andString
) to provide meaningful pattern-match semantics. -
#assert_Qundef(obj, msg) ⇒ Object
:nodoc:.
-
#class ⇒ Class
Returns the class of obj.
-
#clone ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.
-
#define_singleton_method(*args) ⇒ Object
Defines a singleton method in the receiver.
-
#display(port = $>) ⇒ nil
Prints obj on the given port (default
$>
). -
#dup ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.
-
#enum_for(*args) ⇒ Object
Creates a new Enumerator which will enumerate by calling
method
onobj
, passingargs
if any. -
#eql?(obj2) ⇒ Boolean
Equality — At the
Object
level,==
returnstrue
only ifobj
andother
are the same object. -
#extend ⇒ Object
Adds to obj the instance methods from each module given as a parameter.
-
#freeze ⇒ Object
Prevents further modifications to obj.
-
#frozen? ⇒ Boolean
Returns the freeze status of obj.
-
#hash ⇒ Fixnum
Generates a Fixnum hash value for this object.
-
#initialize_clone(orig) ⇒ Object
:nodoc:.
-
#initialize_copy(orig) ⇒ Object
:nodoc:.
-
#initialize_dup(orig) ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Returns a string containing a human-readable representation of obj.
-
#instance_of? ⇒ Boolean
Returns
true
if obj is an instance of the given class. -
#instance_variable_defined?(iv) ⇒ Boolean
Returns
true
if the given instance variable is defined in obj. -
#instance_variable_get(iv) ⇒ Object
Returns the value of the given instance variable, or nil if the instance variable is not set.
-
#instance_variable_set(iv, val) ⇒ Object
Sets the instance variable named by symbol to the given object, thereby frustrating the efforts of the class’s author to attempt to provide proper encapsulation.
-
#instance_variables ⇒ Array
Returns an array of instance variable names for the receiver.
-
#is_a?(c) ⇒ Boolean
Returns
true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj. -
#itself ⇒ Object
Returns obj.
-
#kind_of?(c) ⇒ Boolean
Returns
true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj. -
#method(sym) ⇒ Object
Looks up the named method as a receiver in obj, returning a
Method
object (or raisingNameError
). -
#methods(regular = true) ⇒ Array
Returns a list of the names of public and protected methods of obj.
-
#nil? ⇒ Boolean
Only the object nil responds
true
tonil?
. -
#object_id ⇒ Object
call-seq: obj.__id__ -> integer obj.object_id -> integer.
-
#private_methods(all = true) ⇒ Array
Returns the list of private methods accessible to obj.
-
#protected_methods(all = true) ⇒ Array
Returns the list of protected methods accessible to obj.
-
#public_method(sym) ⇒ Object
Similar to method, searches public method only.
-
#public_methods(all = true) ⇒ Array
Returns the list of public methods accessible to obj.
-
#public_send(*args) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified.
-
#rawVALUE(obj) ⇒ Object
:nodoc:.
-
#remove_instance_variable(symbol) ⇒ Object
Removes the named instance variable from obj, returning that variable’s value.
-
#respond_to?(*args) ⇒ Boolean
Returns
true
if obj responds to the given method. -
#respond_to_missing?(mid, priv) ⇒ Boolean
DO NOT USE THIS DIRECTLY.
-
#send(*args) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified.
-
#singleton_class ⇒ Class
Returns the singleton class of obj.
-
#singleton_method(sym) ⇒ Object
Similar to method, searches singleton method only.
-
#singleton_methods(all = true) ⇒ Array
Returns an array of the names of singleton methods for obj.
-
#taint ⇒ Object
Mark the object as tainted.
-
#tainted? ⇒ Boolean
Returns true if the object is tainted.
-
#tap {|x| ... } ⇒ Object
Yields self to the block, and then returns self.
-
#to_enum(*args) ⇒ Object
Creates a new Enumerator which will enumerate by calling
method
onobj
, passingargs
if any. -
#to_s ⇒ String
Returns a string representing obj.
-
#trust ⇒ Object
Deprecated method that is equivalent to #untaint.
-
#untaint ⇒ Object
Removes the tainted mark from the object.
-
#untrust ⇒ Object
Deprecated method that is equivalent to #taint.
-
#untrusted? ⇒ Boolean
Deprecated method that is equivalent to #tainted?.
-
#validate_object(x) ⇒ Object
:nodoc:.
Methods included from Kernel
#Array, #Complex, #Float, #Hash, #Integer, #Rational, #String, #__callee__, #__dir__, #__method__, #`, #abort, #at_exit, #autoload, #autoload?, #binding, #block_given?, #callcc, #caller, #caller_locations, #catch, #eval, #exec, #exit, #exit!, #fail, #fork, #format, #gets, #global_variables, #iterator?, #lambda, #load, #local_variables, #loop, #open, #p, #print, #printf, #proc, #putc, #puts, #raise, #rand, #readline, #readlines, #require, #require_relative, #select, #set_trace_func, #sleep, #spawn, #sprintf, #srand, #syscall, #system, #test, #throw, #trace_var, #trap, #untrace_var, #warn
Instance Method Details
#!~(other) ⇒ Boolean
Returns true if two objects do not match (using the =~ method), otherwise false.
1398 1399 1400 1401 1402 1403 |
# File 'object.c', line 1398
static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_match, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
|
#<=>(other) ⇒ 0?
Returns 0 if obj
and other
are the same object or obj == other
, otherwise nil.
The <=>
is used by various methods to compare objects, for example Enumerable#sort, Enumerable#max etc.
Your implementation of <=>
should return one of the following values: -1, 0, 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. 1 means self is bigger than other. Nil means the two values could not be compared.
When you define <=>
, you can include Comparable to gain the methods <=
, <
, ==
, >=
, >
and between?
.
1424 1425 1426 1427 1428 1429 1430 |
# File 'object.c', line 1424
static VALUE
rb_obj_cmp(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2 || rb_equal(obj1, obj2))
return INT2FIX(0);
return Qnil;
}
|
#===(other) ⇒ Boolean
Case Equality – For class Object, effectively the same as calling #==
, but typically overridden by descendants to provide meaningful semantics in case
statements.
86 87 88 89 90 91 92 93 94 95 |
# File 'object.c', line 86
VALUE
rb_equal(VALUE obj1, VALUE obj2)
{
VALUE result;
if (obj1 == obj2) return Qtrue;
result = rb_funcall(obj1, id_eq, 1, obj2);
if (RTEST(result)) return Qtrue;
return Qfalse;
}
|
#=~(other) ⇒ nil
Pattern Match—Overridden by descendants (notably Regexp
and String
) to provide meaningful pattern-match semantics.
1384 1385 1386 1387 1388 |
# File 'object.c', line 1384
static VALUE
rb_obj_match(VALUE obj1, VALUE obj2)
{
return Qnil;
}
|
#assert_Qundef(obj, msg) ⇒ Object
:nodoc:
17811 17812 17813 17814 17815 17816 17817 17818 17819 |
# File 'parse.c', line 17811
static VALUE
ripper_assert_Qundef(VALUE self, VALUE obj, VALUE msg)
{
StringValue(msg);
if (obj == Qundef) {
rb_raise(rb_eArgError, "%"PRIsVALUE, msg);
}
return Qnil;
}
|
#class ⇒ Class
Returns the class of obj. This method must always be called with an explicit receiver, as class
is also a reserved word in Ruby.
1.class #=> Fixnum
self.class #=> Object
225 226 227 228 229 |
# File 'object.c', line 225
VALUE
rb_obj_class(VALUE obj)
{
return rb_class_real(CLASS_OF(obj));
}
|
#clone ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. clone
copies the frozen and tainted state of obj. See also the discussion under Object#dup
.
class Klass
attr_accessor :str
end
s1 = Klass.new #=> #<Klass:0x401b3a38>
s1.str = "Hello" #=> "Hello"
s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
s2.str[1,4] = "i" #=> "i"
s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# File 'object.c', line 321
VALUE
rb_obj_clone(VALUE obj)
{
VALUE clone;
VALUE singleton;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
}
clone = rb_obj_alloc(rb_obj_class(obj));
RBASIC(clone)->flags &= (FL_TAINT);
RBASIC(clone)->flags |= RBASIC(obj)->flags & ~(FL_PROMOTED0|FL_PROMOTED1|FL_FREEZE|FL_FINALIZE);
singleton = rb_singleton_class_clone_and_attach(obj, clone);
RBASIC_SET_CLASS(clone, singleton);
if (FL_TEST(singleton, FL_SINGLETON)) {
rb_singleton_class_attached(singleton, clone);
}
init_copy(clone, obj);
rb_funcall(clone, id_init_clone, 1, obj);
RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
return clone;
}
|
#define_singleton_method(symbol, method) ⇒ Object #define_singleton_method(symbol) { ... } ⇒ Proc
Defines a singleton method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body.
class A
class << self
def class_name
to_s
end
end
end
A.define_singleton_method(:who_am_i) do
"I am: #{class_name}"
end
A.who_am_i # ==> "I am: A"
guy = "Bob"
guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
guy.hello #=> "Bob: Hello there!"
1732 1733 1734 1735 1736 1737 1738 |
# File 'proc.c', line 1732
static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
VALUE klass = rb_singleton_class(obj);
return rb_mod_define_method(argc, argv, klass);
}
|
#display(port = $>) ⇒ nil
Prints obj on the given port (default $>
). Equivalent to:
def display(port=$>)
port.write self
end
For example:
1.display
"cat".display
[ 4, 5, 6 ].display
puts
produces:
1cat456
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 |
# File 'io.c', line 7221
static VALUE
rb_obj_display(int argc, VALUE *argv, VALUE self)
{
VALUE out;
if (argc == 0) {
out = rb_stdout;
}
else {
rb_scan_args(argc, argv, "01", &out);
}
rb_io_write(out, self);
return Qnil;
}
|
#dup ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. dup
copies the tainted state of obj.
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
on dup vs clone
In general, clone
and dup
may have different semantics in descendant classes. While clone
is used to duplicate an object, including its internal state, dup
typically uses the class of the descendant object to create the new instance.
When using #dup, any modules that the object has been extended with will not be copied.
class Klass
attr_accessor :str
end
module Foo
def foo; 'foo'; end
end
s1 = Klass.new #=> #<Klass:0x401b3a38> s1.extend(Foo) #=> #<Klass:0x401b3a38> s1.foo #=> “foo”
s2 = s1.clone #=> #<Klass:0x401b3a38> s2.foo #=> “foo”
s3 = s1.dup #=> #<Klass:0x401b3a38> s3.foo #=> NoMethodError: undefined method ‘foo’ for #<Klass:0x401b3a38>
390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# File 'object.c', line 390
VALUE
rb_obj_dup(VALUE obj)
{
VALUE dup;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
}
dup = rb_obj_alloc(rb_obj_class(obj));
init_copy(dup, obj);
rb_funcall(dup, id_init_dup, 1, obj);
return dup;
}
|
#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator
Creates a new Enumerator which will enumerate by calling method
on obj
, passing args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
Examples
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)
It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable
# a generic method to repeat the values of any enumerable
def repeat(n)
raise ArgumentError, "#{n} is negative!" if n < 0
unless block_given?
return to_enum(__method__, n) do # __method__ is :repeat here
sz = size # Call size and multiply by n...
sz * n if sz # but return nil if size itself is nil
end
end
each do |*val|
n.times { yield *val }
end
end
end
%i[hello world].repeat(2) { |w| puts w }
# => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
# => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# File 'enumerator.c', line 240
static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
VALUE enumerator, meth = sym_each;
if (argc > 0) {
--argc;
meth = *argv++;
}
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
if (rb_block_given_p()) {
enumerator_ptr(enumerator)->size = rb_block_proc();
}
return enumerator;
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object
level, ==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition by aliasing eql?
to their overridden ==
method, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
139 140 141 142 143 144 |
# File 'object.c', line 139
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#extend ⇒ Object
Adds to obj the instance methods from each module given as a parameter.
module Mod
def hello
"Hello from Mod.\n"
end
end
class Klass
def hello
"Hello from Klass.\n"
end
end
k = Klass.new
k.hello #=> "Hello from Klass.\n"
k.extend(Mod) #=> #<Klass:0x401b3bc8>
k.hello #=> "Hello from Mod.\n"
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 |
# File 'eval.c', line 1432
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
ID id_extend_object, id_extended;
CONST_ID(id_extend_object, "extend_object");
CONST_ID(id_extended, "extended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_extend_object, 1, obj);
rb_funcall(argv[argc], id_extended, 1, obj);
}
return obj;
}
|
#freeze ⇒ Object
Prevents further modifications to obj. A RuntimeError
will be raised if modification is attempted. There is no way to unfreeze a frozen object. See also Object#frozen?
.
This method returns self.
a = [ "a", "b", "c" ]
a.freeze
a << "z"
produces:
prog.rb:3:in `<<': can't modify frozen Array (RuntimeError)
from prog.rb:3
Objects of the following classes are always frozen: Fixnum, Bignum, Float, Symbol.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
# File 'object.c', line 1066
VALUE
rb_obj_freeze(VALUE obj)
{
if (!OBJ_FROZEN(obj)) {
OBJ_FREEZE(obj);
if (SPECIAL_CONST_P(obj)) {
rb_bug("special consts should be frozen.");
}
}
return obj;
}
|
#frozen? ⇒ Boolean
Returns the freeze status of obj.
a = [ "a", "b", "c" ]
a.freeze #=> ["a", "b", "c"]
a.frozen? #=> true
1089 1090 1091 1092 1093 |
# File 'object.c', line 1089
VALUE
rb_obj_frozen_p(VALUE obj)
{
return OBJ_FROZEN(obj) ? Qtrue : Qfalse;
}
|
#hash ⇒ Fixnum
Generates a Fixnum hash value for this object. This function must have the property that a.eql?(b)
implies a.hash == b.hash
.
The hash value is used along with #eql? by the Hash class to determine if two objects reference the same hash key. Any hash value that exceeds the capacity of a Fixnum will be truncated before being used.
The hash value for an object may not be identical across invocations or implementations of Ruby. If you need a stable identifier across Ruby invocations and implementations you will need to generate one with a custom method.
162 163 164 165 166 167 168 169 170 171 172 173 174 |
# File 'object.c', line 162
VALUE
rb_obj_hash(VALUE obj)
{
VALUE oid = rb_obj_id(obj);
#if SIZEOF_LONG == SIZEOF_VOIDP
st_index_t index = NUM2LONG(oid);
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
st_index_t index = NUM2LL(oid);
#else
# error not supported
#endif
return LONG2FIX(rb_objid_hash(index));
}
|
#initialize_clone(orig) ⇒ Object
:nodoc:
436 437 438 439 440 441 |
# File 'object.c', line 436
VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
rb_funcall(obj, id_init_copy, 1, orig);
return obj;
}
|
#initialize_copy(orig) ⇒ Object
:nodoc:
423 424 425 426 427 428 429 430 431 432 433 |
# File 'object.c', line 423
VALUE
rb_obj_init_copy(VALUE obj, VALUE orig)
{
if (obj == orig) return obj;
rb_check_frozen(obj);
rb_check_trusted(obj);
if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
rb_raise(rb_eTypeError, "initialize_copy should take same class object");
}
return obj;
}
|
#initialize_dup(orig) ⇒ Object
:nodoc:
436 437 438 439 440 441 |
# File 'object.c', line 436
VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
rb_funcall(obj, id_init_copy, 1, orig);
return obj;
}
|
#inspect ⇒ String
Returns a string containing a human-readable representation of obj. The default inspect
shows the object’s class name, an encoding of the object id, and a list of the instance variables and their values (by calling #inspect on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.
[ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
class Foo
end
Foo.new.inspect #=> "#<Foo:0x0300c868>"
class Bar
def initialize
@bar = 1
end
end
Bar.new.inspect #=> "#<Bar:0x0300c868 @bar=1>"
553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# File 'object.c', line 553
static VALUE
rb_obj_inspect(VALUE obj)
{
if (rb_ivar_count(obj) > 0) {
VALUE str;
VALUE c = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj);
return rb_exec_recursive(inspect_obj, obj, str);
}
else {
return rb_any_to_s(obj);
}
}
|
#instance_of? ⇒ Boolean
Returns true
if obj is an instance of the given class. See also Object#kind_of?
.
class A; end
class B < A; end
class C < B; end
b = B.new
b.instance_of? A #=> false
b.instance_of? B #=> true
b.instance_of? C #=> false
604 605 606 607 608 609 610 |
# File 'object.c', line 604
VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
c = class_or_module_required(c);
if (rb_obj_class(obj) == c) return Qtrue;
return Qfalse;
}
|
#instance_variable_defined?(symbol) ⇒ Boolean #instance_variable_defined?(string) ⇒ Boolean
Returns true
if the given instance variable is defined in obj. String arguments are converted to symbols.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_defined?(:@a) #=> true
fred.instance_variable_defined?("@b") #=> true
fred.instance_variable_defined?("@c") #=> false
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 |
# File 'object.c', line 2434
static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_instance_name(iv)) {
return Qfalse;
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE(iv));
}
}
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE_ID(id));
}
return rb_ivar_defined(obj, id);
}
|
#instance_variable_get(symbol) ⇒ Object #instance_variable_get(string) ⇒ Object
Returns the value of the given instance variable, or nil if the instance variable is not set. The @
part of the variable name should be included for regular instance variables. Throws a NameError
exception if the supplied symbol is not valid as an instance variable name. String arguments are converted to symbols.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a) #=> "cat"
fred.instance_variable_get("@b") #=> 99
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 |
# File 'object.c', line 2363
static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_instance_name(iv)) {
return Qnil;
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE(iv));
}
}
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE_ID(id));
}
return rb_ivar_get(obj, id);
}
|
#instance_variable_set(symbol, obj) ⇒ Object #instance_variable_set(string, obj) ⇒ Object
Sets the instance variable named by symbol to the given object, thereby frustrating the efforts of the class’s author to attempt to provide proper encapsulation. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog') #=> "dog"
fred.instance_variable_set(:@c, 'cat') #=> "cat"
fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
2407 2408 2409 2410 2411 2412 |
# File 'object.c', line 2407
static VALUE
rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_setter(iv, instance, "`%"PRIsVALUE"' is not allowed as an instance variable name");
return rb_ivar_set(obj, id, val);
}
|
#instance_variables ⇒ Array
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred
attr_accessor :a1
def initialize
@iv = 3
end
end
Fred.new.instance_variables #=> [:@iv]
1386 1387 1388 1389 1390 1391 1392 1393 1394 |
# File 'variable.c', line 1386
VALUE
rb_obj_instance_variables(VALUE obj)
{
VALUE ary;
ary = rb_ary_new();
rb_ivar_foreach(obj, ivar_i, ary);
return ary;
}
|
#is_a? ⇒ Boolean #kind_of? ⇒ Boolean
Returns true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.
module M; end
class A
include M
end
class B < A; end
class C < B; end
b = B.new
b.is_a? A #=> true
b.is_a? B #=> true
b.is_a? C #=> false
b.is_a? M #=> true
b.kind_of? A #=> true
b.kind_of? B #=> true
b.kind_of? C #=> false
b.kind_of? M #=> true
641 642 643 644 645 646 647 648 |
# File 'object.c', line 641
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
c = class_or_module_required(c);
return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse;
}
|
#itself ⇒ Object
Returns obj.
string = ‘my string’ #=> “my string” string.itself.object_id == string.object_id #=> true
416 417 418 419 420 |
# File 'object.c', line 416
static VALUE
rb_obj_itself(VALUE obj)
{
return obj;
}
|
#is_a? ⇒ Boolean #kind_of? ⇒ Boolean
Returns true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.
module M; end
class A
include M
end
class B < A; end
class C < B; end
b = B.new
b.is_a? A #=> true
b.is_a? B #=> true
b.is_a? C #=> false
b.is_a? M #=> true
b.kind_of? A #=> true
b.kind_of? B #=> true
b.kind_of? C #=> false
b.kind_of? M #=> true
641 642 643 644 645 646 647 648 |
# File 'object.c', line 641
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
c = class_or_module_required(c);
return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse;
}
|
#method(sym) ⇒ Object
Looks up the named method as a receiver in obj, returning a Method
object (or raising NameError
). The Method
object acts as a closure in obj’s object instance, so instance variables and the value of self
remain available.
class Demo
def initialize(n)
@iv = n
end
def hello()
"Hello, @iv = #{@iv}"
end
end
k = Demo.new(99)
m = k.method(:hello)
m.call #=> "Hello, @iv = 99"
l = Demo.new('Fred')
m = l.method("hello")
m.call #=> "Hello, @iv = Fred"
1469 1470 1471 1472 1473 1474 1475 1476 1477 |
# File 'proc.c', line 1469
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(CLASS_OF(obj), vid);
}
return mnew(CLASS_OF(obj), obj, id, rb_cMethod, FALSE);
}
|
#methods(regular = true) ⇒ Array
Returns a list of the names of public and protected methods of obj. This will include all the methods accessible in obj’s ancestors. If the optional parameter is false
, it returns an array of obj<i>‘s public and protected singleton methods, the array will not include methods in modules included in <i>obj.
class Klass
def klass_method()
end
end
k = Klass.new
k.methods[0..9] #=> [:klass_method, :nil?, :===,
# :==~, :!, :eql?
# :hash, :<=>, :class, :singleton_class]
k.methods.length #=> 56
k.methods(false) #=> []
def k.singleton_method; end
k.methods(false) #=> [:singleton_method]
module M123; def m123; end end
k.extend M123
k.methods(false) #=> [:singleton_method]
1280 1281 1282 1283 1284 1285 1286 1287 1288 |
# File 'class.c', line 1280
VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
rb_check_arity(argc, 0, 1);
if (argc > 0 && !RTEST(argv[0])) {
return rb_obj_singleton_methods(argc, argv, obj);
}
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}
|
#nil? ⇒ Boolean
1368 1369 1370 1371 1372 |
# File 'object.c', line 1368
static VALUE
rb_false(VALUE obj)
{
return Qfalse;
}
|
#object_id ⇒ Object
call-seq:
obj.__id__ -> integer
obj.object_id -> integer
Returns an integer identifier for obj
.
The same number will be returned on all calls to object_id
for a given object, and no two active objects will share an id.
Note: that some objects of builtin classes are reused for optimization. This is the case for immediate values and frozen string literals.
Immediate values are not passed by reference but are passed by value: nil
, true
, false
, Fixnums, Symbols, and some Floats.
Object.new.object_id == Object.new.object_id # => false
(21 * 2).object_id == (21 * 2).object_id # => true
"hello".object_id == "hello".object_id # => false
"hi".freeze.object_id == "hi".freeze.object_id # => true
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 |
# File 'gc.c', line 2792
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (STATIC_SYM_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
|
#private_methods(all = true) ⇒ Array
Returns the list of private methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
1314 1315 1316 1317 1318 |
# File 'class.c', line 1314
VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}
|
#protected_methods(all = true) ⇒ Array
Returns the list of protected methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
1299 1300 1301 1302 1303 |
# File 'class.c', line 1299
VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}
|
#public_method(sym) ⇒ Object
Similar to method, searches public method only.
1486 1487 1488 1489 1490 1491 1492 1493 1494 |
# File 'proc.c', line 1486
VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(CLASS_OF(obj), vid);
}
return mnew(CLASS_OF(obj), obj, id, rb_cMethod, TRUE);
}
|
#public_methods(all = true) ⇒ Array
Returns the list of public methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
1329 1330 1331 1332 1333 |
# File 'class.c', line 1329
VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}
|
#public_send(symbol[, args...]) ⇒ Object #public_send(string[, args...]) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified. Unlike send, public_send calls public methods only. When the method is identified by a string, the string is converted to a symbol.
1.public_send(:puts, "hello") # causes NoMethodError
976 977 978 979 980 |
# File 'vm_eval.c', line 976
VALUE
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal(argc, argv, recv, CALL_PUBLIC);
}
|
#rawVALUE(obj) ⇒ Object
:nodoc:
17822 17823 17824 17825 17826 |
# File 'parse.c', line 17822
static VALUE
ripper_value(VALUE self, VALUE obj)
{
return ULONG2NUM(obj);
}
|
#remove_instance_variable(symbol) ⇒ Object
Removes the named instance variable from obj, returning that variable’s value.
class Dummy
attr_reader :var
def initialize
@var = 99
end
def remove
remove_instance_variable(:@var)
end
end
d = Dummy.new
d.var #=> 99
d.remove #=> 99
d.var #=> nil
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 |
# File 'variable.c', line 1418
VALUE
rb_obj_remove_instance_variable(VALUE obj, VALUE name)
{
VALUE val = Qnil;
const ID id = rb_check_id(&name);
st_data_t n, v;
struct st_table *iv_index_tbl;
st_data_t index;
rb_check_frozen(obj);
if (!id) {
if (rb_is_instance_name(name)) {
rb_name_error_str(name, "instance variable %"PRIsVALUE" not defined",
name);
}
else {
rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE(name));
}
}
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name",
QUOTE_ID(id));
}
if (SPECIAL_CONST_P(obj)) goto generic;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj);
if (!iv_index_tbl) break;
if (!st_lookup(iv_index_tbl, (st_data_t)id, &index)) break;
if (ROBJECT_NUMIV(obj) <= (long)index) break;
val = ROBJECT_IVPTR(obj)[index];
if (val != Qundef) {
ROBJECT_IVPTR(obj)[index] = Qundef;
return val;
}
break;
case T_CLASS:
case T_MODULE:
n = id;
if (RCLASS_IV_TBL(obj) && st_delete(RCLASS_IV_TBL(obj), &n, &v)) {
return (VALUE)v;
}
break;
default:
generic:
if (FL_TEST(obj, FL_EXIVAR) || rb_special_const_p(obj)) {
v = val;
if (generic_ivar_remove(obj, (st_data_t)id, &v)) {
return (VALUE)v;
}
}
break;
}
rb_name_error(id, "instance variable %"PRIsVALUE" not defined", QUOTE_ID(id));
UNREACHABLE;
}
|
#respond_to?(symbol, include_all = false) ⇒ Boolean #respond_to?(string, include_all = false) ⇒ Boolean
Returns true
if obj responds to the given method. Private and protected methods are included in the search only if the optional second parameter evaluates to true
.
If the method is not implemented, as Process.fork on Windows, File.lchmod on GNU/Linux, etc., false is returned.
If the method is not defined, respond_to_missing?
method is called and the result is returned.
When the method name parameter is given as a string, the string is converted to a symbol.
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
# File 'vm_method.c', line 1691
static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
VALUE mid, priv;
ID id;
rb_scan_args(argc, argv, "11", &mid, &priv);
if (!(id = rb_check_id(&mid))) {
if (!rb_method_basic_definition_p(CLASS_OF(obj), idRespond_to_missing)) {
VALUE args[2];
args[0] = rb_to_symbol(mid);
args[1] = priv;
return rb_funcall2(obj, idRespond_to_missing, 2, args);
}
return Qfalse;
}
if (basic_obj_respond_to(obj, id, !RTEST(priv)))
return Qtrue;
return Qfalse;
}
|
#respond_to_missing?(symbol, include_all) ⇒ Boolean #respond_to_missing?(string, include_all) ⇒ Boolean
DO NOT USE THIS DIRECTLY.
Hook method to return whether the obj can respond to id method or not.
When the method name parameter is given as a string, the string is converted to a symbol.
See #respond_to?, and the example of BasicObject.
1727 1728 1729 1730 1731 |
# File 'vm_method.c', line 1727
static VALUE
obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv)
{
return Qfalse;
}
|
#send(symbol[, args...]) ⇒ Object #__send__(symbol[, args...]) ⇒ Object #send(string[, args...]) ⇒ Object #__send__(string[, args...]) ⇒ Object
Invokes the method identified by symbol, passing it any
arguments specified. You can use <code>__send__</code> if the name
+send+ clashes with an existing method in _obj_.
When the method is identified by a string, the string is converted
to a symbol.
class Klass
def hello(*args)
"Hello " + args.join(' ')
end
end
k = Klass.new
k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
956 957 958 959 960 |
# File 'vm_eval.c', line 956
VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal(argc, argv, recv, CALL_FCALL);
}
|
#singleton_class ⇒ Class
Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.
If obj is nil
, true
, or false
, it returns NilClass, TrueClass, or FalseClass, respectively. If obj is a Fixnum or a Symbol, it raises a TypeError.
Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>>
String.singleton_class #=> #<Class:String>
nil.singleton_class #=> NilClass
248 249 250 251 252 |
# File 'object.c', line 248
static VALUE
rb_obj_singleton_class(VALUE obj)
{
return rb_singleton_class(obj);
}
|
#singleton_method(sym) ⇒ Object
Similar to method, searches singleton method only.
class Demo
def initialize(n)
@iv = n
end
def hello()
"Hello, @iv = #{@iv}"
end
end
k = Demo.new(99)
def k.hi
"Hi, @iv = #{@iv}"
end
m = k.singleton_method(:hi)
m.call #=> "Hi, @iv = 99"
m = k.singleton_method(:hello) #=> NameError
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 |
# File 'proc.c', line 1520
VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
rb_method_entry_t *me;
VALUE klass;
ID id = rb_check_id(&vid);
if (!id) {
rb_name_error_str(vid, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
QUOTE(vid), obj);
}
if (NIL_P(klass = rb_singleton_class_get(obj)) ||
UNDEFINED_METHOD_ENTRY_P(me = rb_method_entry_at(klass, id)) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_name_error(id, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
QUOTE_ID(id), obj);
}
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
}
|
#singleton_methods(all = true) ⇒ Array
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.
module Other
def three() end
end
class Single
def Single.four() end
end
a = Single.new
def a.one()
end
class << a
include Other
def two()
end
end
Single.singleton_methods #=> [:four]
a.singleton_methods(false) #=> [:two, :one]
a.singleton_methods #=> [:two, :one, :three]
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 |
# File 'class.c', line 1368
VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
VALUE recur, ary, klass, origin;
struct method_entry_arg me_arg;
st_table *mtbl;
if (argc == 0) {
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &recur);
}
klass = CLASS_OF(obj);
origin = RCLASS_ORIGIN(klass);
me_arg.list = st_init_numtable();
me_arg.recur = RTEST(recur);
if (klass && FL_TEST(klass, FL_SINGLETON)) {
if ((mtbl = RCLASS_M_TBL(origin)) != 0)
st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg);
klass = RCLASS_SUPER(klass);
}
if (RTEST(recur)) {
while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0)
st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new();
st_foreach(me_arg.list, ins_methods_i, ary);
st_free_table(me_arg.list);
return ary;
}
|
#taint ⇒ Object
Mark the object as tainted.
Objects that are marked as tainted will be restricted from various built-in methods. This is to prevent insecure data, such as command-line arguments or strings read from Kernel#gets, from inadvertently compromising the user’s system.
To check whether an object is tainted, use #tainted?.
You should only untaint a tainted object if your code has inspected it and determined that it is safe. To do so use #untaint.
In $SAFE level 3, all newly created objects are tainted and you can’t untaint objects.
962 963 964 965 966 967 968 969 970 |
# File 'object.c', line 962
VALUE
rb_obj_taint(VALUE obj)
{
if (!OBJ_TAINTED(obj) && OBJ_TAINTABLE(obj)) {
rb_check_frozen(obj);
OBJ_TAINT(obj);
}
return obj;
}
|
#tainted? ⇒ Boolean
Returns true if the object is tainted.
See #taint for more information.
934 935 936 937 938 939 940 |
# File 'object.c', line 934
VALUE
rb_obj_tainted(VALUE obj)
{
if (OBJ_TAINTED(obj))
return Qtrue;
return Qfalse;
}
|
#tap {|x| ... } ⇒ Object
Yields self to the block, and then returns self. The primary purpose of this method is to “tap into” a method chain, in order to perform operations on intermediate results within the chain.
(1..10) .tap {|x| puts “original: #{x.inspect}”}
.to_a .tap {|x| puts "array: #{x.inspect}"}
.select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
.map {|x| x*x} .tap {|x| puts "squares: #{x.inspect}"}
684 685 686 687 688 689 |
# File 'object.c', line 684
VALUE
rb_obj_tap(VALUE obj)
{
rb_yield(obj);
return obj;
}
|
#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator
Creates a new Enumerator which will enumerate by calling method
on obj
, passing args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
Examples
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)
It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable
# a generic method to repeat the values of any enumerable
def repeat(n)
raise ArgumentError, "#{n} is negative!" if n < 0
unless block_given?
return to_enum(__method__, n) do # __method__ is :repeat here
sz = size # Call size and multiply by n...
sz * n if sz # but return nil if size itself is nil
end
end
each do |*val|
n.times { yield *val }
end
end
end
%i[hello world].repeat(2) { |w| puts w }
# => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
# => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# File 'enumerator.c', line 240
static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
VALUE enumerator, meth = sym_each;
if (argc > 0) {
--argc;
meth = *argv++;
}
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
if (rb_block_given_p()) {
enumerator_ptr(enumerator)->size = rb_block_proc();
}
return enumerator;
}
|
#to_s ⇒ String
Returns a string representing obj. The default to_s
prints the object’s class and an encoding of the object id. As a special case, the top-level object that is the initial execution context of Ruby programs returns “main”.
453 454 455 456 457 458 459 460 461 462 463 |
# File 'object.c', line 453
VALUE
rb_any_to_s(VALUE obj)
{
VALUE str;
VALUE cname = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj);
OBJ_INFECT(str, obj);
return str;
}
|
#trust ⇒ Object
Deprecated method that is equivalent to #untaint.
1029 1030 1031 1032 1033 1034 |
# File 'object.c', line 1029
VALUE
rb_obj_trust(VALUE obj)
{
rb_warning("trust is deprecated and its behavior is same as untaint");
return rb_obj_untaint(obj);
}
|
#untaint ⇒ Object
Removes the tainted mark from the object.
See #taint for more information.
982 983 984 985 986 987 988 989 990 991 |
# File 'object.c', line 982
VALUE
rb_obj_untaint(VALUE obj)
{
rb_secure(3);
if (OBJ_TAINTED(obj)) {
rb_check_frozen(obj);
FL_UNSET(obj, FL_TAINT);
}
return obj;
}
|
#untrust ⇒ Object
Deprecated method that is equivalent to #taint.
1014 1015 1016 1017 1018 1019 |
# File 'object.c', line 1014
VALUE
rb_obj_untrust(VALUE obj)
{
rb_warning("untrust is deprecated and its behavior is same as taint");
return rb_obj_taint(obj);
}
|
#untrusted? ⇒ Boolean
Deprecated method that is equivalent to #tainted?.
1000 1001 1002 1003 1004 1005 |
# File 'object.c', line 1000
VALUE
rb_obj_untrusted(VALUE obj)
{
rb_warning("untrusted? is deprecated and its behavior is same as tainted?");
return rb_obj_tainted(obj);
}
|
#validate_object(x) ⇒ Object
:nodoc:
17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 |
# File 'parse.c', line 17352
static VALUE
ripper_validate_object(VALUE self, VALUE x)
{
if (x == Qfalse) return x;
if (x == Qtrue) return x;
if (x == Qnil) return x;
if (x == Qundef)
rb_raise(rb_eArgError, "Qundef given");
if (FIXNUM_P(x)) return x;
if (SYMBOL_P(x)) return x;
if (!rb_is_pointer_to_heap(x))
rb_raise(rb_eArgError, "invalid pointer: %p", x);
switch (BUILTIN_TYPE(x)) {
case T_STRING:
case T_OBJECT:
case T_ARRAY:
case T_BIGNUM:
case T_FLOAT:
case T_COMPLEX:
case T_RATIONAL:
return x;
case T_NODE:
if (nd_type(x) != NODE_RIPPER) {
rb_raise(rb_eArgError, "NODE given: %p", x);
}
return ((NODE *)x)->nd_rval;
default:
rb_raise(rb_eArgError, "wrong type of ruby object: %p (%s)",
x, rb_obj_classname(x));
}
return x;
}
|