Module: Kernel

Included in:
Object
Defined in:
object.c,
object.c

Overview

The Kernel module is included by class Object, so its methods are available in every Ruby object.

The Kernel instance methods are documented in class Object while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:

sprintf "%.1f", 1.234 #=> "1.2"

Instance Method Summary collapse

Instance Method Details

#__callee__Object

Returns the called name of the current method as a Symbol. If called outside of a method, it returns nil.



1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
# File 'eval.c', line 1635

static VALUE
rb_f_callee_name(void)
{
    ID fname = prev_frame_callee(); /* need *callee* ID */

    if (fname) {
	return ID2SYM(fname);
    }
    else {
	return Qnil;
    }
}

#__dir__String

Returns the canonicalized absolute path of the directory of the file from which this method is called. It means symlinks in the path is resolved. If __FILE__ is nil, it returns nil. The return value equals to File.dirname(File.realpath(__FILE__)).

Returns:



1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
# File 'eval.c', line 1658

static VALUE
f_current_dirname(void)
{
    VALUE base = rb_current_realfilepath();
    if (NIL_P(base)) {
	return Qnil;
    }
    base = rb_file_dirname(base);
    return base;
}

#__method__Object

Returns the name at the definition of the current method as a Symbol. If called outside of a method, it returns nil.



1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
# File 'eval.c', line 1613

static VALUE
rb_f_method_name(void)
{
    ID fname = prev_frame_func(); /* need *method* ID */

    if (fname) {
	return ID2SYM(fname);
    }
    else {
	return Qnil;
    }
}

#`String

Returns the standard output of running cmd in a subshell. The built-in syntax %x{...} uses this method. Sets $? to the process status.

`date`                   #=> "Wed Apr  9 08:56:30 CDT 2003\n"
`ls testdir`.split[1]    #=> "main.rb"
`echo oops && exit 99`   #=> "oops\n"
$?.exitstatus            #=> 99

Returns:



8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
# File 'io.c', line 8323

static VALUE
rb_f_backquote(VALUE obj, VALUE str)
{
    VALUE port;
    VALUE result;
    rb_io_t *fptr;

    SafeStringValue(str);
    rb_last_status_clear();
    port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL);
    if (NIL_P(port)) return rb_str_new(0,0);

    GetOpenFile(port, fptr);
    result = read_all(fptr, remain_size(fptr), Qnil);
    rb_io_close(port);
    rb_io_fptr_finalize(fptr);
    rb_gc_force_recycle(port); /* also guards from premature GC */

    return result;
}

#abortObject #Kernel::abort([msg]) ⇒ Object #Process::abort([msg]) ⇒ Object

Terminate execution immediately, effectively by calling Kernel.exit(false). If msg is given, it is written to STDERR prior to terminating.



3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
# File 'process.c', line 3839

VALUE
rb_f_abort(int argc, const VALUE *argv)
{
    rb_check_arity(argc, 0, 1);
    if (argc == 0) {
	if (!NIL_P(GET_THREAD()->errinfo)) {
	    ruby_error_print();
	}
	rb_exit(EXIT_FAILURE);
    }
    else {
	VALUE args[2];

	args[1] = args[0] = argv[0];
	StringValue(args[0]);
	rb_io_puts(1, args, rb_stderr);
	args[0] = INT2NUM(EXIT_FAILURE);
	rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
    }

    UNREACHABLE;
}

#Array(arg) ⇒ Array

Returns arg as an Array.

First tries to call to_ary on arg, then to_a.

Array(1..5)   #=> [1, 2, 3, 4, 5]

Returns:



3063
3064
3065
3066
3067
# File 'object.c', line 3063

static VALUE
rb_f_array(VALUE obj, VALUE arg)
{
    return rb_Array(arg);
}

#at_exit { ... } ⇒ Proc

Converts block to a Proc object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.

def do_at_exit(str1)
  at_exit { print str1 }
end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit

produces:

goodbye cruel world

Yields:

Returns:



37
38
39
40
41
42
43
44
45
46
47
48
# File 'eval_jump.c', line 37

static VALUE
rb_f_at_exit(void)
{
    VALUE proc;

    if (!rb_block_given_p()) {
	rb_raise(rb_eArgError, "called without a block");
    }
    proc = rb_block_proc();
    rb_set_end_proc(rb_call_end_proc, proc);
    return proc;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Returns:

  • (nil)


1158
1159
1160
1161
1162
1163
1164
1165
1166
# File 'load.c', line 1158

static VALUE
rb_f_autoload(VALUE obj, VALUE sym, VALUE file)
{
    VALUE klass = rb_class_real(rb_vm_cbase());
    if (NIL_P(klass)) {
	rb_raise(rb_eTypeError, "Can not set autoload on singleton class");
    }
    return rb_mod_autoload(klass, sym, file);
}

#autoload?(name) ⇒ String?

Returns filename to be loaded if name is registered as autoload.

autoload(:B, "b")
autoload?(:B)            #=> "b"

Returns:

Returns:

  • (Boolean)


1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
# File 'load.c', line 1179

static VALUE
rb_f_autoload_p(VALUE obj, VALUE sym)
{
    /* use rb_vm_cbase() as same as rb_f_autoload. */
    VALUE klass = rb_vm_cbase();
    if (NIL_P(klass)) {
	return Qnil;
    }
    return rb_mod_autoload_p(klass, sym);
}

#bindingBinding

Returns a Binding object, describing the variable and method bindings at the point of call. This object can be used when calling eval to execute the evaluated command in this environment. See also the description of class Binding.

def get_binding(param)
  return binding
end
b = get_binding("hello")
eval("param", b)   #=> "hello"

Returns:



327
328
329
330
331
# File 'proc.c', line 327

static VALUE
rb_f_binding(VALUE self)
{
    return rb_binding_new();
}

#block_given?Boolean #iterator?Boolean

Returns true if yield would execute a block in the current context. The iterator? form is mildly deprecated.

def try
  if block_given?
    yield
  else
    "no block"
  end
end
try                  #=> "no block"
try { "hello" }      #=> "hello"
try do "hello" end   #=> "hello"

Overloads:

  • #block_given?Boolean

    Returns:

    • (Boolean)
  • #iterator?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
# File 'vm_eval.c', line 2113

VALUE
rb_f_block_given_p(void)
{
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp = th->cfp;
    cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));

    if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
	return Qtrue;
    }
    else {
	return Qfalse;
    }
}

#callcc {|cont| ... } ⇒ Object

Generates a Continuation object, which it passes to the associated block. You need to require 'continuation' before using this method. Performing a cont.call will cause the #callcc to return (as will falling through the end of the block). The value returned by the #callcc is the value of the block, or the value passed to cont.call. See class Continuation for more details. Also see Kernel#throw for an alternative mechanism for unwinding a call stack.

Yields:

  • (cont)

Returns:



932
933
934
935
936
937
938
939
940
941
942
943
944
# File 'cont.c', line 932

static VALUE
rb_callcc(VALUE self)
{
    volatile int called;
    volatile VALUE val = cont_capture(&called);

    if (called) {
	return val;
    }
    else {
	return rb_yield(val);
    }
}

#caller(start = 1, length = nil) ⇒ Array? #caller(range) ⇒ Array?

Returns the current execution stack—an array containing strings in the form file:line or file:line: in `method'.

The optional start parameter determines the number of initial stack entries to omit from the top of the stack.

A second optional length parameter can be used to limit how many entries are returned from the stack.

Returns nil if start is greater than the size of current execution stack.

Optionally you can pass a range, which will return an array containing the entries within the specified range.

def a(skip)
  caller(skip)
end
def b(skip)
  a(skip)
end
def c(skip)
  b(skip)
end
c(0)   #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10:in `<main>'"]
c(1)   #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11:in `<main>'"]
c(2)   #=> ["prog:8:in `c'", "prog:12:in `<main>'"]
c(3)   #=> ["prog:13:in `<main>'"]
c(4)   #=> []
c(5)   #=> nil

Overloads:

  • #caller(start = 1, length = nil) ⇒ Array?

    Returns:

  • #caller(range) ⇒ Array?

    Returns:



949
950
951
952
953
# File 'vm_backtrace.c', line 949

static VALUE
rb_f_caller(int argc, VALUE *argv)
{
    return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 1);
}

#caller_locations(start = 1, length = nil) ⇒ Object #caller_locations(range) ⇒ Object

Returns the current execution stack—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

The optional start parameter determines the number of initial stack entries to omit from the top of the stack.

A second optional length parameter can be used to limit how many entries are returned from the stack.

Returns nil if start is greater than the size of current execution stack.

Optionally you can pass a range, which will return an array containing the entries within the specified range.



977
978
979
980
981
# File 'vm_backtrace.c', line 977

static VALUE
rb_f_caller_locations(int argc, VALUE *argv)
{
    return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 0);
}

#catch([tag]) {|tag| ... } ⇒ Object

catch executes its block. If throw is not called, the block executes normally, and catch returns the value of the last expression evaluated.

catch(1) { 123 }            # => 123

If throw(tag2, val) is called, Ruby searches up its stack for a catch block whose tag has the same object_id as tag2. When found, the block stops executing and returns val (or nil if no second argument was given to throw).

catch(1) { throw(1, 456) }  # => 456
catch(1) { throw(1) }       # => nil

When tag is passed as the first argument, catch yields it as the parameter of the block.

catch(1) {|x| x + 2 }       # => 3

When no tag is given, catch yields a new unique object (as from Object.new) as the block parameter. This object can then be used as the argument to throw, and will match the correct catch block.

catch do |obj_A|
  catch do |obj_B|
    throw(obj_B, 123)
    puts "This puts is not reached"
  end

  puts "This puts is displayed"
  456
end

# => 456

catch do |obj_A|
  catch do |obj_B|
    throw(obj_A, 123)
    puts "This puts is still not reached"
  end

  puts "Now this puts is also not reached"
  456
end

# => 123

Yields:

  • (tag)

Returns:



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
# File 'vm_eval.c', line 1944

static VALUE
rb_f_catch(int argc, VALUE *argv)
{
    VALUE tag;

    if (argc == 0) {
	tag = rb_obj_alloc(rb_cObject);
    }
    else {
	rb_scan_args(argc, argv, "01", &tag);
    }
    return rb_catch_obj(tag, catch_i, 0);
}

#Complex(x[, y]) ⇒ Numeric

Returns x+i*y;

Complex(1, 2)    #=> (1+2i)
Complex('1+2i')  #=> (1+2i)
Complex(nil)     #=> TypeError
Complex(1, nil)  #=> TypeError

Syntax of string form:

string form = extra spaces , complex , extra spaces ;
complex = real part | [ sign ] , imaginary part
        | real part , sign , imaginary part
        | rational , "@" , rational ;
real part = rational ;
imaginary part = imaginary unit | unsigned rational , imaginary unit ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
imaginary unit = "i" | "I" | "j" | "J" ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit };
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;

See String#to_c.

Returns:



458
459
460
461
462
# File 'complex.c', line 458

static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
    return rb_funcall2(rb_cComplex, id_convert, argc, argv);
}

#eval(string[, binding [, filename [,lineno]]]) ⇒ Object

Evaluates the Ruby expression(s) in string. If binding is given, which must be a Binding object, the evaluation is performed in its context. If the optional filename and lineno parameters are present, they will be used when reporting syntax errors.

def get_binding(str)
  return binding
end
str = "hello"
eval "str + ' Fred'"                      #=> "hello Fred"
eval "str + ' Fred'", get_binding("bye")  #=> "bye Fred"

Returns:



1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
# File 'vm_eval.c', line 1389

VALUE
rb_f_eval(int argc, const VALUE *argv, VALUE self)
{
    VALUE src, scope, vfile, vline;
    VALUE file = Qundef;
    int line = 1;

    rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
    SafeStringValue(src);
    if (argc >= 3) {
	StringValue(vfile);
    }
    if (argc >= 4) {
	line = NUM2INT(vline);
    }

    if (!NIL_P(vfile))
	file = vfile;
    return eval_string(self, src, scope, file, line);
}

#exec([env,][,options]) ⇒ Object

Replaces the current process by running the given external command, which can take one of the following forms:

exec(commandline)

command line string which is passed to the standard shell

exec(cmdname, arg1, ...)

command name and one or more arguments (no shell)

exec([cmdname, argv0], arg1, ...)

command name, argv and zero or more arguments (no shell)

In the first form, the string is taken as a command line that is subject to shell expansion before being executed.

The standard shell always means "/bin/sh" on Unix-like systems, same as ENV["RUBYSHELL"] (or ENV["COMSPEC"] on Windows NT series), and similar.

If the string from the first form (exec("command")) follows these simple rules:

  • no meta characters

  • no shell reserved word and no special built-in

  • Ruby invokes the command directly without shell

You can force shell invocation by adding “;” to the string (because “;” is a meta character).

Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.

In the second form (exec("command1", "arg1", ...)), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.

In the third form (exec(["command", "argv0"], "arg1", ...)), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0] value, which may show up in process listings.

In order to execute the command, one of the exec(2) system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).

This behavior is modified by the given env and options parameters. See ::spawn for details.

If the command fails to execute (typically Errno::ENOENT when it was not found) a SystemCallError exception is raised.

This method modifies process attributes according to given options before exec(2) system call. See ::spawn for more details about the given options.

The modified attributes may be retained when exec(2) system call fails.

For example, hard resource limits are not restorable.

Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.

exec "echo *"       # echoes list of files in current directory
# never get here

exec "echo", "*"    # echoes an asterisk
# never get here


2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
# File 'process.c', line 2453

VALUE
rb_f_exec(int argc, const VALUE *argv)
{
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };

    execarg_obj = rb_execarg_new(argc, argv, TRUE);
    eargp = rb_execarg_get(execarg_obj);
    rb_execarg_fixup(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

#if defined(__APPLE__) || defined(__HAIKU__)
    rb_exec_without_timer_thread(eargp, errmsg, sizeof(errmsg));
#else
    before_exec_async_signal_safe(); /* async-signal-safe */
    rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
    preserving_errno(after_exec_async_signal_safe()); /* async-signal-safe */
#endif
    RB_GC_GUARD(execarg_obj);
    if (errmsg[0])
        rb_sys_fail(errmsg);
    rb_sys_fail_str(fail_str);
    return Qnil;		/* dummy */
}

#exit(status = true) ⇒ Object #Kernel::exit(status = true) ⇒ Object #Process::exit(status = true) ⇒ Object

Initiates the termination of the Ruby script by raising the SystemExit exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true and FALSE of status means success and failure respectively. The interpretation of other integer values are system dependent.

begin
  exit
  puts "never get here"
rescue SystemExit
  puts "rescued a SystemExit exception"
end
puts "after begin block"

produces:

rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string",  proc { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer


3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
# File 'process.c', line 3810

VALUE
rb_f_exit(int argc, const VALUE *argv)
{
    VALUE status;
    int istatus;

    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
	istatus = exit_status_code(status);
    }
    else {
	istatus = EXIT_SUCCESS;
    }
    rb_exit(istatus);

    UNREACHABLE;
}

#exit!(status = false) ⇒ Object

Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.

Process.exit!(true)


3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
# File 'process.c', line 3738

static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    VALUE status;
    int istatus;

    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
	istatus = exit_status_code(status);
    }
    else {
	istatus = EXIT_FAILURE;
    }
    _exit(istatus);

    UNREACHABLE;
}

#raiseObject #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #failObject #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single String argument, raises a RuntimeError with the string as a message. Otherwise, the first parameter should be the name of an Exception class (or an object that returns an Exception object when sent an exception message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller


664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# File 'eval.c', line 664

static VALUE
rb_f_raise(int argc, VALUE *argv)
{
    VALUE err;
    VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];

    argc = extract_raise_opts(argc, argv, opts);
    if (argc == 0) {
	if (*cause != Qundef) {
	    rb_raise(rb_eArgError, "only cause is given with no arguments");
	}
	err = get_errinfo();
	if (!NIL_P(err)) {
	    argc = 1;
	    argv = &err;
	}
    }
    rb_raise_jump(rb_make_exception(argc, argv), *cause);

    UNREACHABLE;
}

#Float(arg) ⇒ Float

Returns arg converted to a float. Numeric types are converted directly, the rest are converted using arg.to_f. Converting nil generates a TypeError.

Float(1)           #=> 1.0
Float("123.456")   #=> 123.456

Returns:



2957
2958
2959
2960
2961
# File 'object.c', line 2957

static VALUE
rb_f_float(VALUE obj, VALUE arg)
{
    return rb_Float(arg);
}

#fork { ... } ⇒ Fixnum? #fork { ... } ⇒ Fixnum?

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit! to avoid running any at_exit functions. The parent process should use Process.wait to collect the termination statuses of its children or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.

If fork is not usable, Process.respond_to?(:fork) returns false.

Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().

Overloads:



3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
# File 'process.c', line 3674

static VALUE
rb_f_fork(VALUE obj)
{
    rb_pid_t pid;

    rb_secure(2);

    switch (pid = rb_fork_ruby(NULL)) {
      case 0:
	rb_thread_atfork();
	if (rb_block_given_p()) {
	    int status;

	    rb_protect(rb_yield, Qundef, &status);
	    ruby_stop(status);
	}
	return Qnil;

      case -1:
	rb_sys_fail("fork(2)");
	return Qnil;

      default:
	return PIDT2NUM(pid);
    }
}

#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String

Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.

The syntax of a format sequence is follows.

%[flags][width][.precision]type

A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf argument is to be interpreted, while the flags modify that interpretation.

The field type characters are:

Field |  Integer Format
------+--------------------------------------------------------------
  b   | Convert argument as a binary number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..1'.
  B   | Equivalent to `b', but uses an uppercase 0B for prefix
      | in the alternative format by #.
  d   | Convert argument as a decimal number.
  i   | Identical to `d'.
  o   | Convert argument as an octal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..7'.
  u   | Identical to `d'.
  x   | Convert argument as a hexadecimal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..f' (representing an infinite string of
      | leading 'ff's).
  X   | Equivalent to `x', but uses uppercase letters.

Field |  Float Format
------+--------------------------------------------------------------
  e   | Convert floating point argument into exponential notation
      | with one digit before the decimal point as [-]d.dddddde[+-]dd.
      | The precision specifies the number of digits after the decimal
      | point (defaulting to six).
  E   | Equivalent to `e', but uses an uppercase E to indicate
      | the exponent.
  f   | Convert floating point argument as [-]ddd.dddddd,
      | where the precision specifies the number of digits after
      | the decimal point.
  g   | Convert a floating point number using exponential form
      | if the exponent is less than -4 or greater than or
      | equal to the precision, or in dd.dddd form otherwise.
      | The precision specifies the number of significant digits.
  G   | Equivalent to `g', but use an uppercase `E' in exponent form.
  a   | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
      | which is consisted from optional sign, "0x", fraction part
      | as hexadecimal, "p", and exponential part as decimal.
  A   | Equivalent to `a', but use uppercase `X' and `P'.

Field |  Other Format
------+--------------------------------------------------------------
  c   | Argument is the numeric code for a single character or
      | a single character string itself.
  p   | The valuing of argument.inspect.
  s   | Argument is a string to be substituted.  If the format
      | sequence contains a precision, at most that many characters
      | will be copied.
  %   | A percent sign itself will be displayed.  No argument taken.

The flags modifies the behavior of the formats. The flag characters are:

Flag     | Applies to    | Meaning
---------+---------------+-----------------------------------------
space    | bBdiouxX      | Leave a space at the start of
         | aAeEfgG       | non-negative numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all           | Specifies the absolute argument number
         |               | for this field.  Absolute and relative
         |               | argument numbers cannot be mixed in a
         |               | sprintf string.
---------+---------------+-----------------------------------------
 #       | bBoxX         | Use an alternative format.
         | aAeEfgG       | For the conversions `o', increase the precision
         |               | until the first digit will be `0' if
         |               | it is not formatted as complements.
         |               | For the conversions `x', `X', `b' and `B'
         |               | on non-zero, prefix the result with ``0x'',
         |               | ``0X'', ``0b'' and ``0B'', respectively.
         |               | For `a', `A', `e', `E', `f', `g', and 'G',
         |               | force a decimal point to be added,
         |               | even if no digits follow.
         |               | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+        | bBdiouxX      | Add a leading plus sign to non-negative
         | aAeEfgG       | numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
-        | all           | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX      | Pad with zeros, not spaces.
         | aAeEfgG       | For `o', `x', `X', `b' and `B', radix-1
         | (numeric fmt) | is used for negative numbers formatted as
         |               | complements.
---------+---------------+-----------------------------------------
*        | all           | Use the next argument as the field width.
         |               | If negative, left-justify the result. If the
         |               | asterisk is followed by a number and a dollar
         |               | sign, use the indicated argument as the width.

Examples of flags:

# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123)  #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"

# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123)   #=> "173"
sprintf("%#o", 123)  #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123)  #=> "..7605"
sprintf("%#o", -123) #=> "..7605"

# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123)   #=> "7b"
sprintf("%#x", 123)  #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123)  #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0)    #=> "0"

# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123)  #=> "7B"
sprintf("%#X", 123) #=> "0X7B"

# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123)   #=> "1111011"
sprintf("%#b", 123)  #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123)  #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0)    #=> "0"

# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123)  #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"

# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1)  #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"

# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234)  #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."

# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4)   #=> "123.4"
sprintf("%#g", 123.4)  #=> "123.400"
sprintf("%g", 123456)  #=> "123456"
sprintf("%#g", 123456) #=> "123456."

The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.

Examples of width:

# padding is done by spaces,       width=20
# 0 or radix-1.             <------------------>
sprintf("%20d", 123)   #=> "                 123"
sprintf("%+20d", 123)  #=> "                +123"
sprintf("%020d", 123)  #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123)  #=> "123                 "
sprintf("%-+20d", 123) #=> "+123                "
sprintf("%- 20d", 123) #=> " 123                "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"

For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters to the result.)

Examples of precisions:

# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits               <------>
sprintf("%20.8d", 123)  #=> "            00000123"
sprintf("%20.8o", 123)  #=> "            00000173"
sprintf("%20.8x", 123)  #=> "            0000007b"
sprintf("%20.8b", 123)  #=> "            01111011"
sprintf("%20.8d", -123) #=> "           -00000123"
sprintf("%20.8o", -123) #=> "            ..777605"
sprintf("%20.8x", -123) #=> "            ..ffff85"
sprintf("%20.8b", -11)  #=> "            ..110101"

# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted.  <------>
sprintf("%#20.8d", 123)  #=> "            00000123"
sprintf("%#20.8o", 123)  #=> "            00000173"
sprintf("%#20.8x", 123)  #=> "          0x0000007b"
sprintf("%#20.8b", 123)  #=> "          0b01111011"
sprintf("%#20.8d", -123) #=> "           -00000123"
sprintf("%#20.8o", -123) #=> "            ..777605"
sprintf("%#20.8x", -123) #=> "          0x..ffff85"
sprintf("%#20.8b", -11)  #=> "          0b..110101"

# precision for `e' is number of
# digits after the decimal point           <------>
sprintf("%20.8e", 1234.56789) #=> "      1.23456789e+03"

# precision for `f' is number of
# digits after the decimal point               <------>
sprintf("%20.8f", 1234.56789) #=> "       1234.56789000"

# precision for `g' is number of
# significant digits                          <------->
sprintf("%20.8g", 1234.56789) #=> "           1234.5679"

#                                         <------->
sprintf("%20.8g", 123456789)  #=> "       1.2345679e+08"

# precision for `s' is
# maximum number of characters                    <------>
sprintf("%20.8s", "string test") #=> "            string t"

Examples:

sprintf("%d %04x", 123, 123)               #=> "123 007b"
sprintf("%08b '%4s'", 123, 123)            #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8)   #=> "   hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8)       #=> "hello    -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23)   #=> "+1.23: 1.23:1.23"
sprintf("%u", -123)                        #=> "-123"

For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.

Examples:

sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
  #=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
  # => "1f"

Overloads:

  • #format(format_string[, arguments...]) ⇒ String

    Returns:

  • #sprintf(format_string[, arguments...]) ⇒ String

    Returns:



446
447
448
449
450
# File 'sprintf.c', line 446

VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
    return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}

#gets(sep = $/) ⇒ String? #gets(limit) ⇒ String? #gets(sep, limit) ⇒ String?

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*), or from standard input if no files are present on the command line. Returns nil at end of file. The optional argument specifies the record separator. The separator is included with the contents of each record. A separator of nil reads the entire contents, and a zero-length separator reads the input one paragraph at a time, where paragraphs are divided by two consecutive newlines. If the first argument is an integer, or optional second argument is given, the returning string would not be longer than the given value in bytes. If multiple filenames are present in ARGV, gets(nil) will read the contents one file at a time.

ARGV << "testfile"
print while gets

produces:

This is line one
This is line two
This is line three
And so on...

The style of programming using $_ as an implicit parameter is gradually losing favor in the Ruby community.

Overloads:



8134
8135
8136
8137
8138
8139
8140
8141
# File 'io.c', line 8134

static VALUE
rb_f_gets(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_gets(argc, argv, argf);
    }
    return rb_funcall2(argf, idGets, argc, argv);
}

#global_variablesArray

Returns an array of the names of global variables.

global_variables.grep /std/   #=> [:$stdin, :$stdout, :$stderr]

Returns:



850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# File 'variable.c', line 850

VALUE
rb_f_global_variables(void)
{
    VALUE ary = rb_ary_new();
    char buf[2];
    int i;

    st_foreach_safe(rb_global_tbl, gvar_i, ary);
    buf[0] = '$';
    for (i = 1; i <= 9; ++i) {
	buf[1] = (char)(i + '0');
	rb_ary_push(ary, ID2SYM(rb_intern2(buf, 2)));
    }
    return ary;
}

#Hash(arg) ⇒ Hash

Converts arg to a Hash by calling arg.to_hash. Returns an empty Hash when arg is nil or [].

Hash([])          #=> {}
Hash(nil)         #=> {}
Hash(key: :value) #=> {:key => :value}
Hash([1, 2, 3])   #=> TypeError

Returns:



3098
3099
3100
3101
3102
# File 'object.c', line 3098

static VALUE
rb_f_hash(VALUE obj, VALUE arg)
{
    return rb_Hash(arg);
}

#Integer(arg, base = 0) ⇒ Integer

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (with floating point numbers being truncated). base (0, or between 2 and 36) is a base for integer string representation. If arg is a String, when base is omitted or equals zero, radix indicators (0, 0b, and 0x) are honored. In any case, strings should be strictly conformed to numeric representation. This behavior is different from that of String#to_i. Non string values will be converted by first trying to_int, then to_i. Passing nil raises a TypeError.

Integer(123.999)    #=> 123
Integer("0x1a")     #=> 26
Integer(Time.new)   #=> 1204973019
Integer("0930", 10) #=> 930
Integer("111", 2)   #=> 7
Integer(nil)        #=> TypeError

Returns:



2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
# File 'object.c', line 2787

static VALUE
rb_f_integer(int argc, VALUE *argv, VALUE obj)
{
    VALUE arg = Qnil;
    int base = 0;

    switch (argc) {
      case 2:
	base = NUM2INT(argv[1]);
      case 1:
	arg = argv[0];
	break;
      default:
	/* should cause ArgumentError */
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    return rb_convert_to_integer(arg, base);
}

#block_given?Boolean #iterator?Boolean

Returns true if yield would execute a block in the current context. The iterator? form is mildly deprecated.

def try
  if block_given?
    yield
  else
    "no block"
  end
end
try                  #=> "no block"
try { "hello" }      #=> "hello"
try do "hello" end   #=> "hello"

Overloads:

  • #block_given?Boolean

    Returns:

    • (Boolean)
  • #iterator?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
# File 'vm_eval.c', line 2113

VALUE
rb_f_block_given_p(void)
{
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp = th->cfp;
    cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));

    if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
	return Qtrue;
    }
    else {
	return Qfalse;
    }
}

#lambda {|...| ... } ⇒ Proc

Equivalent to Proc.new, except the resulting Proc objects check the number of parameters passed when called.

Yields:

  • (...)

Returns:



647
648
649
650
651
# File 'proc.c', line 647

VALUE
rb_block_lambda(void)
{
    return proc_new(rb_cProc, TRUE);
}

#load(filename, wrap = false) ⇒ true

Loads and executes the Ruby program in the file filename. If the filename does not resolve to an absolute path, the file is searched for in the library directories listed in $:. If the optional wrap parameter is true, the loaded script will be executed under an anonymous module, protecting the calling program’s global namespace. In no circumstance will any local variables in the loaded file be propagated to the loading environment.

Returns:

  • (true)


682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# File 'load.c', line 682

static VALUE
rb_f_load(int argc, VALUE *argv)
{
    VALUE fname, wrap, path, orig_fname;

    rb_scan_args(argc, argv, "11", &fname, &wrap);

    if (RUBY_DTRACE_LOAD_ENTRY_ENABLED()) {
	RUBY_DTRACE_LOAD_ENTRY(StringValuePtr(fname),
			       rb_sourcefile(),
			       rb_sourceline());
    }

    orig_fname = FilePathValue(fname);
    fname = rb_str_encode_ospath(orig_fname);
    path = rb_find_file(fname);
    if (!path) {
	if (!rb_file_load_ok(RSTRING_PTR(fname)))
	    load_failed(orig_fname);
	path = fname;
    }
    rb_load_internal(path, RTEST(wrap));

    if (RUBY_DTRACE_LOAD_RETURN_ENABLED()) {
	RUBY_DTRACE_LOAD_RETURN(StringValuePtr(fname),
			       rb_sourcefile(),
			       rb_sourceline());
    }

    return Qtrue;
}

#local_variablesArray

Returns the names of the current local variables.

fred = 1
for i in 1..10
   # ...
end
local_variables   #=> [:fred, :i]

Returns:



2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
# File 'vm_eval.c', line 2055

static VALUE
rb_f_local_variables(void)
{
    struct local_var_list vars;
    rb_thread_t *th = GET_THREAD();
    rb_control_frame_t *cfp =
	vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp));
    int i;

    local_var_list_init(&vars);
    while (cfp) {
	if (cfp->iseq) {
	    for (i = 0; i < cfp->iseq->local_table_size; i++) {
		local_var_list_add(&vars, cfp->iseq->local_table[i]);
	    }
	}
	if (!VM_EP_LEP_P(cfp->ep)) {
	    /* block */
	    VALUE *ep = VM_CF_PREV_EP(cfp);

	    if (vm_collect_local_variables_in_heap(th, ep, &vars)) {
		break;
	    }
	    else {
		while (cfp->ep != ep) {
		    cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
		}
	    }
	}
	else {
	    break;
	}
    }
    return local_var_list_finish(&vars);
}

#loop { ... } ⇒ Object #loopObject

Repeatedly executes the block.

If no block is given, an enumerator is returned instead.

loop do
  print "Input: "
  line = gets
  break if !line or line =~ /^qQ/
  # ...
end

StopIteration raised in the block breaks the loop.

Overloads:

  • #loop { ... } ⇒ Object

    Yields:



1088
1089
1090
1091
1092
1093
1094
# File 'vm_eval.c', line 1088

static VALUE
rb_f_loop(VALUE self)
{
    RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
    rb_rescue2(loop_i, (VALUE)0, 0, 0, rb_eStopIteration, (VALUE)0);
    return Qnil;		/* dummy */
}

#open(path[, mode [, perm]][, opt]) ⇒ IO? #open(path[, mode [, perm]][, opt]) {|io| ... } ⇒ Object

Creates an IO object connected to the given stream, file, or subprocess.

If path does not start with a pipe character (|), treat it as the name of a file to open using the specified mode (defaulting to “r”).

The mode is either a string or an integer. If it is an integer, it must be bitwise-or of open(2) flags, such as File::RDWR or File::EXCL. If it is a string, it is either “fmode”, “fmode:ext_enc”, or “fmode:ext_enc:int_enc”.

See the documentation of IO.new for full documentation of the mode string directives.

If a file is being created, its initial permissions may be set using the perm parameter. See File.new and the open(2) and chmod(2) man pages for a description of permissions.

If a block is specified, it will be invoked with the IO object as a parameter, and the IO will be automatically closed when the block terminates. The call returns the value of the block.

If path starts with a pipe character ("|"), a subprocess is created, connected to the caller by a pair of pipes. The returned IO object may be used to write to the standard input and read from the standard output of this subprocess.

If the command following the pipe is a single minus sign ("|-"), Ruby forks, and this subprocess is connected to the parent. If the command is not "-", the subprocess runs the command.

When the subprocess is ruby (opened via "|-"), the open call returns nil. If a block is associated with the open call, that block will run twice — once in the parent and once in the child.

The block parameter will be an IO object in the parent and nil in the child. The parent’s IO object will be connected to the child’s $stdin and $stdout. The subprocess will be terminated at the end of the block.

Examples

Reading from “testfile”:

open("testfile") do |f|
  print f.gets
end

Produces:

This is line one

Open a subprocess and read its output:

cmd = open("|date")
print cmd.gets
cmd.close

Produces:

Wed Apr  9 08:56:31 CDT 2003

Open a subprocess running the same Ruby program:

f = open("|-", "w+")
if f == nil
  puts "in Child"
  exit
else
  puts "Got: #{f.gets}"
end

Produces:

Got: in Child

Open a subprocess using a block to receive the IO object:

open "|-" do |f|
  if f then
    # parent process
    puts "Got: #{f.gets}"
  else
    # child process
    puts "in Child"
  end
end

Produces:

Got: in Child

Overloads:

  • #open(path[, mode [, perm]][, opt]) ⇒ IO?

    Returns:

    • (IO, nil)
  • #open(path[, mode [, perm]][, opt]) {|io| ... } ⇒ Object

    Yields:

    • (io)

    Returns:



6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
# File 'io.c', line 6541

static VALUE
rb_f_open(int argc, VALUE *argv)
{
    ID to_open = 0;
    int redirect = FALSE;

    if (argc >= 1) {
	CONST_ID(to_open, "to_open");
	if (rb_respond_to(argv[0], to_open)) {
	    redirect = TRUE;
	}
	else {
	    VALUE tmp = argv[0];
	    FilePathValue(tmp);
	    if (NIL_P(tmp)) {
		redirect = TRUE;
	    }
	    else {
                VALUE cmd = check_pipe_command(tmp);
                if (!NIL_P(cmd)) {
		    argv[0] = cmd;
		    return rb_io_s_popen(argc, argv, rb_cIO);
		}
	    }
	}
    }
    if (redirect) {
	VALUE io = rb_funcall2(argv[0], to_open, argc-1, argv+1);

	if (rb_block_given_p()) {
	    return rb_ensure(rb_yield, io, io_close, io);
	}
	return io;
    }
    return rb_io_s_open(argc, argv, rb_cFile);
}

#p(obj) ⇒ Object #p(obj1, obj2, ...) ⇒ Array #pnil

For each object, directly writes obj.inspect followed by a newline to the program’s standard output.

S = Struct.new(:name, :state)
s = S['dave', 'TX']
p s

produces:

#<S name="dave", state="TX">

Overloads:

  • #p(obj) ⇒ Object

    Returns:

  • #p(obj1, obj2, ...) ⇒ Array

    Returns:

  • #pnil

    Returns:

    • (nil)


7188
7189
7190
7191
7192
7193
7194
7195
7196
# File 'io.c', line 7188

static VALUE
rb_f_p(int argc, VALUE *argv, VALUE self)
{
    struct rb_f_p_arg arg;
    arg.argc = argc;
    arg.argv = argv;

    return rb_uninterruptible(rb_f_p_internal, (VALUE)&arg);
}

Prints each object in turn to $stdout. If the output field separator ($,) is not nil, its contents will appear between each field. If the output record separator ($\) is not nil, it will be appended to the output. If no arguments are given, prints $_. Objects that aren’t strings will be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99

produces:

cat12399
cat, 1, 2, 3, 99

Returns:

  • (nil)


6960
6961
6962
6963
6964
6965
# File 'io.c', line 6960

static VALUE
rb_f_print(int argc, const VALUE *argv)
{
    rb_io_print(argc, argv, rb_stdout);
    return Qnil;
}

#printf(io, string[, obj ... ]) ⇒ nil #printf(string[, obj ... ]) ⇒ nil

Equivalent to:

io.write(sprintf(string, obj, ...))

or

$stdout.write(sprintf(string, obj, ...))

Overloads:

  • #printf(io, string[, obj ... ]) ⇒ nil

    Returns:

    • (nil)
  • #printf(string[, obj ... ]) ⇒ nil

    Returns:

    • (nil)


6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
# File 'io.c', line 6871

static VALUE
rb_f_printf(int argc, VALUE *argv)
{
    VALUE out;

    if (argc == 0) return Qnil;
    if (RB_TYPE_P(argv[0], T_STRING)) {
	out = rb_stdout;
    }
    else {
	out = argv[0];
	argv++;
	argc--;
    }
    rb_io_write(out, rb_f_sprintf(argc, argv));

    return Qnil;
}

#proc {|...| ... } ⇒ Proc

Equivalent to Proc.new.

Yields:

  • (...)

Returns:



633
634
635
636
637
# File 'proc.c', line 633

VALUE
rb_block_proc(void)
{
    return proc_new(rb_cProc, FALSE);
}

#putc(int) ⇒ Integer

Equivalent to:

$stdout.putc(int)

Refer to the documentation for IO#putc for important information regarding multi-byte characters.

Returns:



7012
7013
7014
7015
7016
7017
7018
7019
# File 'io.c', line 7012

static VALUE
rb_f_putc(VALUE recv, VALUE ch)
{
    if (recv == rb_stdout) {
	return rb_io_putc(recv, ch);
    }
    return rb_funcall2(rb_stdout, rb_intern("putc"), 1, &ch);
}

#puts(obj, ...) ⇒ nil

Equivalent to

$stdout.puts(obj, ...)

Returns:

  • (nil)


7117
7118
7119
7120
7121
7122
7123
7124
# File 'io.c', line 7117

static VALUE
rb_f_puts(int argc, VALUE *argv, VALUE recv)
{
    if (recv == rb_stdout) {
	return rb_io_puts(argc, argv, recv);
    }
    return rb_funcall2(rb_stdout, rb_intern("puts"), argc, argv);
}

#raiseObject #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #failObject #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single String argument, raises a RuntimeError with the string as a message. Otherwise, the first parameter should be the name of an Exception class (or an object that returns an Exception object when sent an exception message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller


664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# File 'eval.c', line 664

static VALUE
rb_f_raise(int argc, VALUE *argv)
{
    VALUE err;
    VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];

    argc = extract_raise_opts(argc, argv, opts);
    if (argc == 0) {
	if (*cause != Qundef) {
	    rb_raise(rb_eArgError, "only cause is given with no arguments");
	}
	err = get_errinfo();
	if (!NIL_P(err)) {
	    argc = 1;
	    argv = &err;
	}
    }
    rb_raise_jump(rb_make_exception(argc, argv), *cause);

    UNREACHABLE;
}

#rand(max = 0) ⇒ Numeric

If called without an argument, or if max.to_i.abs == 0, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.

rand        #=> 0.2725926052826416

When max.abs is greater than or equal to 1, rand returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs.

rand(100)   #=> 12

When max is a Range, rand returns a random number where range.member?(number) == true.

Negative or floating point values for max are allowed, but may give surprising results.

rand(-100) # => 87
rand(-0.5) # => 0.8130921818028143
rand(1.9)  # equivalent to rand(1), which is always 0

Kernel.srand may be used to ensure that sequences of random numbers are reproducible between different runs of a program.

See also Random.rand.

Returns:



1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
# File 'random.c', line 1196

static VALUE
rb_f_rand(int argc, VALUE *argv, VALUE obj)
{
    VALUE v, vmax, r;
    struct MT *mt = default_mt();

    if (argc == 0) goto zero_arg;
    rb_scan_args(argc, argv, "01", &vmax);
    if (NIL_P(vmax)) goto zero_arg;
    if ((v = rand_range(mt, vmax)) != Qfalse) {
	return v;
    }
    vmax = rb_to_int(vmax);
    if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax, 0))) {
      zero_arg:
	return DBL2NUM(genrand_real(mt));
    }
    return r;
}

#Rational(x[, y]) ⇒ Numeric

Returns x/y;

Rational(1, 2)   #=> (1/2)
Rational('1/2')  #=> (1/2)
Rational(nil)    #=> TypeError
Rational(1, nil) #=> TypeError

Syntax of string form:

string form = extra spaces , rational , extra spaces ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;

See String#to_r.

Returns:



608
609
610
611
612
# File 'rational.c', line 608

static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
    return rb_funcall2(rb_cRational, id_convert, argc, argv);
}

#readline(sep = $/) ⇒ String #readline(limit) ⇒ String #readline(sep, limit) ⇒ String

Equivalent to Kernel::gets, except readline raises EOFError at end of file.

Overloads:



8207
8208
8209
8210
8211
8212
8213
8214
# File 'io.c', line 8207

static VALUE
rb_f_readline(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_readline(argc, argv, argf);
    }
    return rb_funcall2(argf, rb_intern("readline"), argc, argv);
}

#readlines(sep = $/) ⇒ Array #readlines(limit) ⇒ Array #readlines(sep, limit) ⇒ Array

Returns an array containing the lines returned by calling Kernel.gets(sep) until the end of file.

Overloads:



8260
8261
8262
8263
8264
8265
8266
8267
# File 'io.c', line 8260

static VALUE
rb_f_readlines(int argc, VALUE *argv, VALUE recv)
{
    if (recv == argf) {
	return argf_readlines(argc, argv, argf);
    }
    return rb_funcall2(argf, rb_intern("readlines"), argc, argv);
}

#require(name) ⇒ Boolean

Loads the given name, returning true if successful and false if the feature is already loaded.

If the filename does not resolve to an absolute path, it will be searched for in the directories listed in $LOAD_PATH ($:).

If the filename has the extension “.rb”, it is loaded as a source file; if the extension is “.so”, “.o”, or “.dll”, or the default shared library extension on the current platform, Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries adding “.rb”, “.so”, and so on to the name until found. If the file named cannot be found, a LoadError will be raised.

For Ruby extensions the filename given may use any shared library extension. For example, on Linux the socket extension is “socket.so” and require 'socket.dll' will load the socket extension.

The absolute path of the loaded file is added to $LOADED_FEATURES ($"). A file will not be loaded again if its path already appears in $". For example, require 'a'; require './a' will not load a.rb again.

require "my-library.rb"
require "db-driver"

Any constants or globals within the loaded source file will be available in the calling program’s global namespace. However, local variables will not be propagated to the loading environment.

Returns:

  • (Boolean)


815
816
817
818
819
# File 'load.c', line 815

VALUE
rb_f_require(VALUE obj, VALUE fname)
{
    return rb_require_safe(fname, rb_safe_level());
}

#require_relative(string) ⇒ Boolean

Ruby tries to load the library named string relative to the requiring file’s path. If the file’s path cannot be determined a LoadError is raised. If a file is loaded true is returned and false otherwise.

Returns:

  • (Boolean)


829
830
831
832
833
834
835
836
837
838
# File 'load.c', line 829

VALUE
rb_f_require_relative(VALUE obj, VALUE fname)
{
    VALUE base = rb_current_realfilepath();
    if (NIL_P(base)) {
	rb_loaderror("cannot infer basepath");
    }
    base = rb_file_dirname(base);
    return rb_require_safe(rb_file_absolute_path(fname, base), rb_safe_level());
}

#select(read_array) ⇒ Object

[, error_array

[, timeout]]]) -> array  or  nil

Calls select(2) system call. It monitors given arrays of IO objects, waits one or more of IO objects ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those IO objects. It will return nil if optional timeout value is given and no IO object is ready in timeout seconds.

IO.select peeks the buffer of IO objects for testing readability. If the IO buffer is not empty, IO.select immediately notify readability. This “peek” is only happen for IO objects. It is not happen for IO-like objects such as OpenSSL::SSL::SSLSocket.

The best way to use IO.select is invoking it after nonblocking methods such as read_nonblock, write_nonblock, etc. The methods raises an exception which is extended by IO::WaitReadable or IO::WaitWritable. The modules notify how the caller should wait with IO.select. If IO::WaitReadable is raised, the caller should wait for reading. If IO::WaitWritable is raised, the caller should wait for writing.

So, blocking read (readpartial) can be emulated using read_nonblock and IO.select as follows:

begin
  result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io_like])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io_like])
  retry
end

Especially, the combination of nonblocking methods and IO.select is preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It has to_io method to return underlying IO object. IO.select calls to_io to obtain the file descriptor to wait.

This means that readability notified by IO.select doesn’t mean readability from OpenSSL::SSL::SSLSocket object.

Most possible situation is OpenSSL::SSL::SSLSocket buffers some data. IO.select doesn’t see the buffer. So IO.select can block when OpenSSL::SSL::SSLSocket#readpartial doesn’t block.

However several more complicated situation exists.

SSL is a protocol which is sequence of records. The record consists multiple bytes. So, the remote side of SSL sends a partial record, IO.select notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial will blocks.

Also, the remote side can request SSL renegotiation which forces the local SSL engine writes some data. This means OpenSSL::SSL::SSLSocket#readpartial may invoke write system call and it can block. In such situation, OpenSSL::SSL::SSLSocket#read_nonblock raises IO::WaitWritable instead of blocking. So, the caller should wait for ready for writability as above example.

The combination of nonblocking methods and IO.select is also useful for streams such as tty, pipe socket socket when multiple process read form a stream.

Finally, Linux kernel developers doesn’t guarantee that readability of select(2) means readability of following read(2) even for single process. See select(2) manual on GNU/Linux system.

Invoking IO.select before IO#readpartial works well in usual. However it is not the best way to use IO.select.

The writability notified by select(2) doesn’t show how many bytes writable. IO#write method blocks until given whole string is written. So, IO#write(two or more bytes) can block after writability is notified by IO.select. IO#write_nonblock is required to avoid the blocking.

Blocking write (write) can be emulated using write_nonblock and IO.select as follows: IO::WaitReadable should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket.

while 0 < string.bytesize
  begin
    written = io_like.write_nonblock(string)
  rescue IO::WaitReadable
    IO.select([io_like])
    retry
  rescue IO::WaitWritable
    IO.select(nil, [io_like])
    retry
  end
  string = string.byteslice(written..-1)
end

Parameters

read_array

an array of IO objects that wait until ready for read

write_array

an array of IO objects that wait until ready for write

error_array

an array of IO objects that wait for exceptions

timeout

a numeric value in second

Example

rp, wp = IO.pipe
mesg = "ping "
100.times {
  # IO.select follows IO#read.  Not the best way to use IO.select.
  rs, ws, = IO.select([rp], [wp])
  if r = rs[0]
    ret = r.read(5)
    print ret
    case ret
    when /ping/
      mesg = "pong\n"
    when /pong/
      mesg = "ping "
    end
  end
  if w = ws[0]
    w.write(mesg)
  end
}

produces:

ping pong
ping pong
ping pong
(snipped)
ping


8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
# File 'io.c', line 8816

static VALUE
rb_f_select(int argc, VALUE *argv, VALUE obj)
{
    VALUE timeout;
    struct select_args args;
    struct timeval timerec;
    int i;

    rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout);
    if (NIL_P(timeout)) {
	args.timeout = 0;
    }
    else {
	timerec = rb_time_interval(timeout);
	args.timeout = &timerec;
    }

    for (i = 0; i < numberof(args.fdsets); ++i)
	rb_fd_init(&args.fdsets[i]);

    return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args);
}

#set_trace_func(proc) ⇒ Proc #set_trace_func(nil) ⇒ nil

Establishes proc as the handler for tracing, or disables tracing if the parameter is nil.

Note: this method is obsolete, please use TracePoint instead.

proc takes up to six parameters:

* an event name * a filename * a line number * an object id * a binding * the name of a class

proc is invoked whenever an event occurs.

Events are:

c-call

call a C-language routine

c-return

return from a C-language routine

call

call a Ruby method

class

start a class or module definition),

end

finish a class or module definition),

line

execute code on a new line

raise

raise an exception

return

return from a Ruby method

Tracing is disabled within the context of proc.

class Test

def test

a = 1
b = 2

end

   end

   set_trace_func proc { |event, file, line, id, binding, classname|
 printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
   }
   t = Test.new
   t.test

line prog.rb:11               false
   c-call prog.rb:11        new    Class
   c-call prog.rb:11 initialize   Object
 c-return prog.rb:11 initialize   Object
 c-return prog.rb:11        new    Class
line prog.rb:12               false

call prog.rb:2 test Test

line prog.rb:3        test     Test
line prog.rb:4        test     Test
   return prog.rb:4        test     Test

Overloads:

  • #set_trace_func(proc) ⇒ Proc

    Returns:

  • #set_trace_func(nil) ⇒ nil

    Returns:

    • (nil)


488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# File 'vm_trace.c', line 488

static VALUE
set_trace_func(VALUE obj, VALUE trace)
{

    rb_remove_event_hook(call_trace_func);

    if (NIL_P(trace)) {
	return Qnil;
    }

    if (!rb_obj_is_proc(trace)) {
	rb_raise(rb_eTypeError, "trace_func needs to be Proc");
    }

    rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace);
    return trace;
}

#sleep([duration]) ⇒ Fixnum

Suspends the current thread for duration seconds (which may be any number, including a Float with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run. Called without an argument, sleep() will sleep forever.

Time.new    #=> 2008-03-08 19:56:19 +0900
sleep 1.2   #=> 1
Time.new    #=> 2008-03-08 19:56:20 +0900
sleep 1.9   #=> 2
Time.new    #=> 2008-03-08 19:56:22 +0900

Returns:



4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
# File 'process.c', line 4329

static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
    time_t beg, end;

    beg = time(0);
    if (argc == 0) {
	rb_thread_sleep_forever();
    }
    else {
	rb_check_arity(argc, 0, 1);
	rb_thread_wait_for(rb_time_interval(argv[0]));
    }

    end = time(0) - beg;

    return INT2FIX(end);
}

#spawn([env,][,options]) ⇒ Object #spawn([env,][,options]) ⇒ Object

spawn executes specified command and return its pid.

pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid

pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid

This method is similar to Kernel#system but it doesn’t wait for the command to finish.

The parent process should use Process.wait to collect the termination status of its child or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

spawn has bunch of options to specify process attributes:

env: hash
  name => val : set the environment variable
  name => nil : unset the environment variable
command...:
  commandline                 : command line string which is passed to the standard shell
  cmdname, arg1, ...          : command name and one or more arguments (This form does not use the shell. See below for caveats.)
  [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
  clearing environment variables:
    :unsetenv_others => true   : clear environment variables except specified by env
    :unsetenv_others => false  : don't clear (default)
  process group:
    :pgroup => true or 0 : make a new process group
    :pgroup => pgid      : join to specified process group
    :pgroup => nil       : don't change the process group (default)
  create new process group: Windows only
    :new_pgroup => true  : the new process is the root process of a new process group
    :new_pgroup => false : don't create a new process group (default)
  resource limit: resourcename is core, cpu, data, etc.  See Process.setrlimit.
    :rlimit_resourcename => limit
    :rlimit_resourcename => [cur_limit, max_limit]
  umask:
    :umask => int
  redirection:
    key:
      FD              : single file descriptor in child process
      [FD, FD, ...]   : multiple file descriptor in child process
    value:
      FD                        : redirect to the file descriptor in parent process
      string                    : redirect to file with open(string, "r" or "w")
      [string]                  : redirect to file with open(string, File::RDONLY)
      [string, open_mode]       : redirect to file with open(string, open_mode, 0644)
      [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
      [:child, FD]              : redirect to the redirected file descriptor
      :close                    : close the file descriptor in child process
    FD is one of follows
      :in     : the file descriptor 0 which is the standard input
      :out    : the file descriptor 1 which is the standard output
      :err    : the file descriptor 2 which is the standard error
      integer : the file descriptor of specified the integer
      io      : the file descriptor specified as io.fileno
  file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
    :close_others => true  : don't inherit
  current directory:
    :chdir => str

  The 'cmdname, arg1, ...' form does not use the shell. However,
  on different OSes, different things are provided as built-in
  commands. An example of this is 'echo', which is a built-in
  on Windows, but is a normal program on Linux and Mac OS X.
  This means that `Process.spawn 'echo', '%Path%'` will display
  the contents of the `%Path%` environment variable on Windows,
  but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.

If a hash is given as env, the environment is updated by env before exec(2) in the child process. If a pair in env has nil as the value, the variable is deleted.

# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)

If a hash is given as options, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.

The :unsetenv_others key in options specifies to clear environment variables, other than specified by env.

pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only

The :pgroup key in options specifies a process group. The corresponding value should be true, zero or positive integer. true and zero means the process should be a process leader of a new process group. Other values specifies a process group to be belongs.

pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10

The :new_pgroup key in options specifies to pass CREATE_NEW_PROCESS_GROUP flag to CreateProcessW() that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid) on the subprocess. :new_pgroup is false by default.

pid = spawn(command, :new_pgroup=>true)  # new process group
pid = spawn(command, :new_pgroup=>false) # same process group

The :rlimit_foo key specifies a resource limit. foo should be one of resource types such as core. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.

cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.

The :umask key in options specifies the umask.

pid = spawn(command, :umask=>077)

The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.

For example, stderr can be merged into stdout as follows:

pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)

The hash keys specifies a file descriptor in the child process started by spawn. :err, 2 and STDERR specifies the standard error stream (stderr).

The hash values specifies a file descriptor in the parent process which invokes spawn. :out, 1 and STDOUT specifies the standard output stream (stdout).

In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.

The standard input stream (stdin) can be specified by :in, 0 and STDIN.

A filename can be specified as a hash value.

pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode

For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.

For specifying flags and permission of file creation explicitly, an array is used instead.

pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])

The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.

If an array of IOs and integers are specified as a hash key, all the elements are redirected.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])

Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])

[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.

io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"

The :chdir key in options specifies the current directory.

pid = spawn(command, :chdir=>"/var/tmp")

spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.

pid = spawn(command, :close_others=>true)  # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...

:close_others is true by default for spawn and IO.popen.

Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.

So IO.pipe and spawn can be used as IO.popen.

# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w)   # r, w is closed in the child process.
w.close

:close is specified as a hash value to close a fd individually.

f = open(foo)
system(command, f=>:close)        # don't inherit f.

If a file descriptor need to be inherited, io=>io can be used.

# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read

It is also possible to exchange file descriptors.

pid = spawn(command, :out=>:err, :err=>:out)

The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn uses an extra file descriptor to resolve such cyclic file descriptor mapping.

See Kernel.exec for the standard shell.



4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
# File 'process.c', line 4282

static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
    rb_pid_t pid;
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;

    execarg_obj = rb_execarg_new(argc, argv, TRUE);
    eargp = rb_execarg_get(execarg_obj);
    rb_execarg_fixup(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

    pid = rb_spawn_process(eargp, errmsg, sizeof(errmsg));
    RB_GC_GUARD(execarg_obj);

    if (pid == -1) {
	const char *prog = errmsg;
	if (!prog[0]) {
	    rb_sys_fail_str(fail_str);
	}
	rb_sys_fail(prog);
    }
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}

#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String

Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.

The syntax of a format sequence is follows.

%[flags][width][.precision]type

A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf argument is to be interpreted, while the flags modify that interpretation.

The field type characters are:

Field |  Integer Format
------+--------------------------------------------------------------
  b   | Convert argument as a binary number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..1'.
  B   | Equivalent to `b', but uses an uppercase 0B for prefix
      | in the alternative format by #.
  d   | Convert argument as a decimal number.
  i   | Identical to `d'.
  o   | Convert argument as an octal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..7'.
  u   | Identical to `d'.
  x   | Convert argument as a hexadecimal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..f' (representing an infinite string of
      | leading 'ff's).
  X   | Equivalent to `x', but uses uppercase letters.

Field |  Float Format
------+--------------------------------------------------------------
  e   | Convert floating point argument into exponential notation
      | with one digit before the decimal point as [-]d.dddddde[+-]dd.
      | The precision specifies the number of digits after the decimal
      | point (defaulting to six).
  E   | Equivalent to `e', but uses an uppercase E to indicate
      | the exponent.
  f   | Convert floating point argument as [-]ddd.dddddd,
      | where the precision specifies the number of digits after
      | the decimal point.
  g   | Convert a floating point number using exponential form
      | if the exponent is less than -4 or greater than or
      | equal to the precision, or in dd.dddd form otherwise.
      | The precision specifies the number of significant digits.
  G   | Equivalent to `g', but use an uppercase `E' in exponent form.
  a   | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
      | which is consisted from optional sign, "0x", fraction part
      | as hexadecimal, "p", and exponential part as decimal.
  A   | Equivalent to `a', but use uppercase `X' and `P'.

Field |  Other Format
------+--------------------------------------------------------------
  c   | Argument is the numeric code for a single character or
      | a single character string itself.
  p   | The valuing of argument.inspect.
  s   | Argument is a string to be substituted.  If the format
      | sequence contains a precision, at most that many characters
      | will be copied.
  %   | A percent sign itself will be displayed.  No argument taken.

The flags modifies the behavior of the formats. The flag characters are:

Flag     | Applies to    | Meaning
---------+---------------+-----------------------------------------
space    | bBdiouxX      | Leave a space at the start of
         | aAeEfgG       | non-negative numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all           | Specifies the absolute argument number
         |               | for this field.  Absolute and relative
         |               | argument numbers cannot be mixed in a
         |               | sprintf string.
---------+---------------+-----------------------------------------
 #       | bBoxX         | Use an alternative format.
         | aAeEfgG       | For the conversions `o', increase the precision
         |               | until the first digit will be `0' if
         |               | it is not formatted as complements.
         |               | For the conversions `x', `X', `b' and `B'
         |               | on non-zero, prefix the result with ``0x'',
         |               | ``0X'', ``0b'' and ``0B'', respectively.
         |               | For `a', `A', `e', `E', `f', `g', and 'G',
         |               | force a decimal point to be added,
         |               | even if no digits follow.
         |               | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+        | bBdiouxX      | Add a leading plus sign to non-negative
         | aAeEfgG       | numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
-        | all           | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX      | Pad with zeros, not spaces.
         | aAeEfgG       | For `o', `x', `X', `b' and `B', radix-1
         | (numeric fmt) | is used for negative numbers formatted as
         |               | complements.
---------+---------------+-----------------------------------------
*        | all           | Use the next argument as the field width.
         |               | If negative, left-justify the result. If the
         |               | asterisk is followed by a number and a dollar
         |               | sign, use the indicated argument as the width.

Examples of flags:

# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123)  #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"

# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123)   #=> "173"
sprintf("%#o", 123)  #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123)  #=> "..7605"
sprintf("%#o", -123) #=> "..7605"

# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123)   #=> "7b"
sprintf("%#x", 123)  #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123)  #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0)    #=> "0"

# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123)  #=> "7B"
sprintf("%#X", 123) #=> "0X7B"

# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123)   #=> "1111011"
sprintf("%#b", 123)  #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123)  #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0)    #=> "0"

# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123)  #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"

# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1)  #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"

# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234)  #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."

# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4)   #=> "123.4"
sprintf("%#g", 123.4)  #=> "123.400"
sprintf("%g", 123456)  #=> "123456"
sprintf("%#g", 123456) #=> "123456."

The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.

Examples of width:

# padding is done by spaces,       width=20
# 0 or radix-1.             <------------------>
sprintf("%20d", 123)   #=> "                 123"
sprintf("%+20d", 123)  #=> "                +123"
sprintf("%020d", 123)  #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123)  #=> "123                 "
sprintf("%-+20d", 123) #=> "+123                "
sprintf("%- 20d", 123) #=> " 123                "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"

For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters to the result.)

Examples of precisions:

# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits               <------>
sprintf("%20.8d", 123)  #=> "            00000123"
sprintf("%20.8o", 123)  #=> "            00000173"
sprintf("%20.8x", 123)  #=> "            0000007b"
sprintf("%20.8b", 123)  #=> "            01111011"
sprintf("%20.8d", -123) #=> "           -00000123"
sprintf("%20.8o", -123) #=> "            ..777605"
sprintf("%20.8x", -123) #=> "            ..ffff85"
sprintf("%20.8b", -11)  #=> "            ..110101"

# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted.  <------>
sprintf("%#20.8d", 123)  #=> "            00000123"
sprintf("%#20.8o", 123)  #=> "            00000173"
sprintf("%#20.8x", 123)  #=> "          0x0000007b"
sprintf("%#20.8b", 123)  #=> "          0b01111011"
sprintf("%#20.8d", -123) #=> "           -00000123"
sprintf("%#20.8o", -123) #=> "            ..777605"
sprintf("%#20.8x", -123) #=> "          0x..ffff85"
sprintf("%#20.8b", -11)  #=> "          0b..110101"

# precision for `e' is number of
# digits after the decimal point           <------>
sprintf("%20.8e", 1234.56789) #=> "      1.23456789e+03"

# precision for `f' is number of
# digits after the decimal point               <------>
sprintf("%20.8f", 1234.56789) #=> "       1234.56789000"

# precision for `g' is number of
# significant digits                          <------->
sprintf("%20.8g", 1234.56789) #=> "           1234.5679"

#                                         <------->
sprintf("%20.8g", 123456789)  #=> "       1.2345679e+08"

# precision for `s' is
# maximum number of characters                    <------>
sprintf("%20.8s", "string test") #=> "            string t"

Examples:

sprintf("%d %04x", 123, 123)               #=> "123 007b"
sprintf("%08b '%4s'", 123, 123)            #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8)   #=> "   hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8)       #=> "hello    -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23)   #=> "+1.23: 1.23:1.23"
sprintf("%u", -123)                        #=> "-123"

For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.

Examples:

sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
  #=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
  # => "1f"

Overloads:

  • #format(format_string[, arguments...]) ⇒ String

    Returns:

  • #sprintf(format_string[, arguments...]) ⇒ String

    Returns:



446
447
448
449
450
# File 'sprintf.c', line 446

VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
    return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}

#srand(number = Random.new_seed) ⇒ Object

Seeds the system pseudo-random number generator, Random::DEFAULT, with number. The previous seed value is returned.

If number is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.

srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.

srand 1234               # => 268519324636777531569100071560086917274
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234               # => 1234
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]


678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# File 'random.c', line 678

static VALUE
rb_f_srand(int argc, VALUE *argv, VALUE obj)
{
    VALUE seed, old;
    rb_random_t *r = &default_rand;

    if (argc == 0) {
	seed = random_seed();
    }
    else {
	rb_scan_args(argc, argv, "01", &seed);
    }
    old = r->seed;
    r->seed = rand_init(&r->mt, seed);

    return old;
}

#String(arg) ⇒ String

Returns arg as a String.

First tries to call its to_str method, then its to_s method.

String(self)        #=> "main"
String(self.class)  #=> "Object"
String(123456)      #=> "123456"

Returns:



3032
3033
3034
3035
3036
# File 'object.c', line 3032

static VALUE
rb_f_string(VALUE obj, VALUE arg)
{
    return rb_String(arg);
}

#syscall(num[, args...]) ⇒ Integer

Calls the operating system function identified by num and returns the result of the function or raises SystemCallError if it failed.

Arguments for the function can follow num. They must be either String objects or Integer objects. A String object is passed as a pointer to the byte sequence. An Integer object is passed as an integer whose bit size is same as a pointer. Up to nine parameters may be passed (14 on the Atari-ST).

The function identified by num is system dependent. On some Unix systems, the numbers may be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6   # '4' is write(2) on our box

produces:

hello

Calling syscall on a platform which does not have any way to an arbitrary system function just fails with NotImplementedError.

Note

syscall is essentially unsafe and unportable. Feel free to shoot your foot. DL (Fiddle) library is preferred for safer and a bit more portable programming.

Returns:



9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
# File 'io.c', line 9279

static VALUE
rb_f_syscall(int argc, VALUE *argv)
{
#ifdef atarist
    VALUE arg[13]; /* yes, we really need that many ! */
#else
    VALUE arg[8];
#endif
#if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */
# define SYSCALL __syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
# if SIZEOF_LONG == 8
    long num, retval = -1;
# elif SIZEOF_LONG_LONG == 8
    long long num, retval = -1;
# else
#  error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<----
# endif
#elif defined(__linux__)
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
    /*
     * Linux man page says, syscall(2) function prototype is below.
     *
     *     int syscall(int number, ...);
     *
     * But, it's incorrect. Actual one takes and returned long. (see unistd.h)
     */
    long num, retval = -1;
#else
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2INT(x)
# define RETVAL2NUM(x) INT2NUM(x)
    int num, retval = -1;
#endif
    int i;

    if (RTEST(ruby_verbose)) {
	rb_warning("We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative.");
    }

    rb_secure(2);
    if (argc == 0)
	rb_raise(rb_eArgError, "too few arguments for syscall");
    if (argc > numberof(arg))
	rb_raise(rb_eArgError, "too many arguments for syscall");
    num = NUM2SYSCALLID(argv[0]); ++argv;
    for (i = argc - 1; i--; ) {
	VALUE v = rb_check_string_type(argv[i]);

	if (!NIL_P(v)) {
	    SafeStringValue(v);
	    rb_str_modify(v);
	    arg[i] = (VALUE)StringValueCStr(v);
	}
	else {
	    arg[i] = (VALUE)NUM2LONG(argv[i]);
	}
    }

    switch (argc) {
      case 1:
	retval = SYSCALL(num);
	break;
      case 2:
	retval = SYSCALL(num, arg[0]);
	break;
      case 3:
	retval = SYSCALL(num, arg[0],arg[1]);
	break;
      case 4:
	retval = SYSCALL(num, arg[0],arg[1],arg[2]);
	break;
      case 5:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]);
	break;
      case 6:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]);
	break;
      case 7:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]);
	break;
      case 8:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]);
	break;
#ifdef atarist
      case 9:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7]);
	break;
      case 10:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8]);
	break;
      case 11:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9]);
	break;
      case 12:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10]);
	break;
      case 13:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10], arg[11]);
	break;
      case 14:
	retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
	  arg[7], arg[8], arg[9], arg[10], arg[11], arg[12]);
        break;
#endif
    }

    if (retval == -1)
	rb_sys_fail(0);
    return RETVAL2NUM(retval);
#undef SYSCALL
#undef NUM2SYSCALLID
#undef RETVAL2NUM
}

#system([env,][,options]) ⇒ true, ...

Executes command… in a subshell. command… is one of following forms.

commandline                 : command line string which is passed to the standard shell
cmdname, arg1, ...          : command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)

system returns true if the command gives zero exit status, false for non zero exit status. Returns nil if command execution fails. An error status is available in $?. The arguments are processed in the same way as for Kernel.spawn.

The hash arguments, env and options, are same as exec and spawn. See Kernel.spawn for details.

system("echo *")
system("echo", "*")

produces:

config.h main.rb
*

See Kernel.exec for the standard shell.

Returns:

  • (true, false, nil)


3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
# File 'process.c', line 3980

static VALUE
rb_f_system(int argc, VALUE *argv)
{
    rb_pid_t pid;
    int status;

#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif

#ifdef SIGCHLD
    RETSIGTYPE (*chfunc)(int);

    rb_last_status_clear();
    chfunc = signal(SIGCHLD, SIG_DFL);
#endif
    pid = rb_spawn_internal(argc, argv, NULL, 0);
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
    if (pid > 0) {
        int ret, status;
        ret = rb_waitpid(pid, &status, 0);
        if (ret == (rb_pid_t)-1)
            rb_sys_fail("Another thread waited the process started by system().");
    }
#endif
#ifdef SIGCHLD
    signal(SIGCHLD, chfunc);
#endif
    if (pid < 0) {
	return Qnil;
    }
    status = PST2INT(rb_last_status_get());
    if (status == EXIT_SUCCESS) return Qtrue;
    return Qfalse;
}

#test(cmd, file1[, file2]) ⇒ Object

Uses the character cmd to perform various tests on file1 (first table below) or on file1 and file2 (second table).

File tests on a single file:

Cmd    Returns   Meaning
"A"  | Time    | Last access time for file1
"b"  | boolean | True if file1 is a block device
"c"  | boolean | True if file1 is a character device
"C"  | Time    | Last change time for file1
"d"  | boolean | True if file1 exists and is a directory
"e"  | boolean | True if file1 exists
"f"  | boolean | True if file1 exists and is a regular file
"g"  | boolean | True if file1 has the \CF{setgid} bit
     |         | set (false under NT)
"G"  | boolean | True if file1 exists and has a group
     |         | ownership equal to the caller's group
"k"  | boolean | True if file1 exists and has the sticky bit set
"l"  | boolean | True if file1 exists and is a symbolic link
"M"  | Time    | Last modification time for file1
"o"  | boolean | True if file1 exists and is owned by
     |         | the caller's effective uid
"O"  | boolean | True if file1 exists and is owned by
     |         | the caller's real uid
"p"  | boolean | True if file1 exists and is a fifo
"r"  | boolean | True if file1 is readable by the effective
     |         | uid/gid of the caller
"R"  | boolean | True if file is readable by the real
     |         | uid/gid of the caller
"s"  | int/nil | If file1 has nonzero size, return the size,
     |         | otherwise return nil
"S"  | boolean | True if file1 exists and is a socket
"u"  | boolean | True if file1 has the setuid bit set
"w"  | boolean | True if file1 exists and is writable by
     |         | the effective uid/gid
"W"  | boolean | True if file1 exists and is writable by
     |         | the real uid/gid
"x"  | boolean | True if file1 exists and is executable by
     |         | the effective uid/gid
"X"  | boolean | True if file1 exists and is executable by
     |         | the real uid/gid
"z"  | boolean | True if file1 exists and has a zero length

Tests that take two files:

"-"  | boolean | True if file1 and file2 are identical
"="  | boolean | True if the modification times of file1
     |         | and file2 are equal
"<"  | boolean | True if the modification time of file1
     |         | is prior to that of file2
">"  | boolean | True if the modification time of file1
     |         | is after that of file2

Returns:



4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
# File 'file.c', line 4714

static VALUE
rb_f_test(int argc, VALUE *argv)
{
    int cmd;

    if (argc == 0) rb_check_arity(argc, 2, 3);
    cmd = NUM2CHR(argv[0]);
    if (cmd == 0) {
      unknown:
	/* unknown command */
	if (ISPRINT(cmd)) {
	    rb_raise(rb_eArgError, "unknown command '%s%c'", cmd == '\'' || cmd == '\\' ? "\\" : "", cmd);
	}
	else {
	    rb_raise(rb_eArgError, "unknown command \"\\x%02X\"", cmd);
	}
    }
    if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) {
	CHECK(1);
	switch (cmd) {
	  case 'b':
	    return rb_file_blockdev_p(0, argv[1]);

	  case 'c':
	    return rb_file_chardev_p(0, argv[1]);

	  case 'd':
	    return rb_file_directory_p(0, argv[1]);

	  case 'e':
	    return rb_file_exist_p(0, argv[1]);

	  case 'f':
	    return rb_file_file_p(0, argv[1]);

	  case 'g':
	    return rb_file_sgid_p(0, argv[1]);

	  case 'G':
	    return rb_file_grpowned_p(0, argv[1]);

	  case 'k':
	    return rb_file_sticky_p(0, argv[1]);

	  case 'l':
	    return rb_file_symlink_p(0, argv[1]);

	  case 'o':
	    return rb_file_owned_p(0, argv[1]);

	  case 'O':
	    return rb_file_rowned_p(0, argv[1]);

	  case 'p':
	    return rb_file_pipe_p(0, argv[1]);

	  case 'r':
	    return rb_file_readable_p(0, argv[1]);

	  case 'R':
	    return rb_file_readable_real_p(0, argv[1]);

	  case 's':
	    return rb_file_size_p(0, argv[1]);

	  case 'S':
	    return rb_file_socket_p(0, argv[1]);

	  case 'u':
	    return rb_file_suid_p(0, argv[1]);

	  case 'w':
	    return rb_file_writable_p(0, argv[1]);

	  case 'W':
	    return rb_file_writable_real_p(0, argv[1]);

	  case 'x':
	    return rb_file_executable_p(0, argv[1]);

	  case 'X':
	    return rb_file_executable_real_p(0, argv[1]);

	  case 'z':
	    return rb_file_zero_p(0, argv[1]);
	}
    }

    if (strchr("MAC", cmd)) {
	struct stat st;
	VALUE fname = argv[1];

	CHECK(1);
	if (rb_stat(fname, &st) == -1) {
	    FilePathValue(fname);
	    rb_sys_fail_path(fname);
	}

	switch (cmd) {
	  case 'A':
	    return stat_atime(&st);
	  case 'M':
	    return stat_mtime(&st);
	  case 'C':
	    return stat_ctime(&st);
	}
    }

    if (cmd == '-') {
	CHECK(2);
	return rb_file_identical_p(0, argv[1], argv[2]);
    }

    if (strchr("=<>", cmd)) {
	struct stat st1, st2;

	CHECK(2);
	if (rb_stat(argv[1], &st1) < 0) return Qfalse;
	if (rb_stat(argv[2], &st2) < 0) return Qfalse;

	switch (cmd) {
	  case '=':
	    if (st1.st_mtime == st2.st_mtime) return Qtrue;
	    return Qfalse;

	  case '>':
	    if (st1.st_mtime > st2.st_mtime) return Qtrue;
	    return Qfalse;

	  case '<':
	    if (st1.st_mtime < st2.st_mtime) return Qtrue;
	    return Qfalse;
	}
    }
    goto unknown;
}

#throw(tag[, obj]) ⇒ Object

Transfers control to the end of the active catch block waiting for tag. Raises UncaughtThrowError if there is no catch block for the tag. The optional second parameter supplies a return value for the catch block, which otherwise defaults to nil. For examples, see Kernel::catch.



1846
1847
1848
1849
1850
1851
1852
1853
1854
# File 'vm_eval.c', line 1846

static VALUE
rb_f_throw(int argc, VALUE *argv)
{
    VALUE tag, value;

    rb_scan_args(argc, argv, "11", &tag, &value);
    rb_throw_obj(tag, value);
    UNREACHABLE;
}

#trace_var(symbol, cmd) ⇒ nil #trace_var(symbol) {|val| ... } ⇒ nil

Controls tracing of assignments to global variables. The parameter symbol identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc object) or block is executed whenever the variable is assigned. The block or Proc object receives the variable’s new value as a parameter. Also see Kernel::untrace_var.

trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
$_ = ' there'

produces:

$_ is now 'hello'
$_ is now ' there'

Overloads:

  • #trace_var(symbol, cmd) ⇒ nil

    Returns:

    • (nil)
  • #trace_var(symbol) {|val| ... } ⇒ nil

    Yields:

    • (val)

    Returns:

    • (nil)


653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# File 'variable.c', line 653

VALUE
rb_f_trace_var(int argc, const VALUE *argv)
{
    VALUE var, cmd;
    struct global_entry *entry;
    struct trace_var *trace;

    if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) {
	cmd = rb_block_proc();
    }
    if (NIL_P(cmd)) {
	return rb_f_untrace_var(argc, argv);
    }
    entry = rb_global_entry(rb_to_id(var));
    if (OBJ_TAINTED(cmd)) {
	rb_raise(rb_eSecurityError, "Insecure: tainted variable trace");
    }
    trace = ALLOC(struct trace_var);
    trace->next = entry->var->trace;
    trace->func = rb_trace_eval;
    trace->data = cmd;
    trace->removed = 0;
    entry->var->trace = trace;

    return Qnil;
}

#trap(signal, command) ⇒ Object #trap(signal) {|| ... } ⇒ Object

Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.

Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD")  { puts "Child died" }
fork && Process.wait

produces:

Terminating: 27461
Child died
Terminating: 27460

Overloads:



1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
# File 'signal.c', line 1268

static VALUE
sig_trap(int argc, VALUE *argv)
{
    int sig;
    sighandler_t func;
    VALUE cmd;

    rb_secure(2);
    rb_check_arity(argc, 1, 2);

    sig = trap_signm(argv[0]);
    if (reserved_signal_p(sig)) {
        const char *name = signo2signm(sig);
        if (name)
            rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name);
        else
            rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig);
    }

    if (argc == 1) {
	cmd = rb_block_proc();
	func = sighandler;
    }
    else {
	cmd = argv[1];
	func = trap_handler(&cmd, sig);
    }

    if (OBJ_TAINTED(cmd)) {
	rb_raise(rb_eSecurityError, "Insecure: tainted signal trap");
    }

    return trap(sig, func, cmd);
}

#untrace_var(symbol[, cmd]) ⇒ Array?

Removes tracing for the specified command on the given global variable and returns nil. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.

Returns:



712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# File 'variable.c', line 712

VALUE
rb_f_untrace_var(int argc, const VALUE *argv)
{
    VALUE var, cmd;
    ID id;
    struct global_entry *entry;
    struct trace_var *trace;
    st_data_t data;

    rb_scan_args(argc, argv, "11", &var, &cmd);
    id = rb_check_id(&var);
    if (!id) {
	rb_name_error_str(var, "undefined global variable %"PRIsVALUE"", QUOTE(var));
    }
    if (!st_lookup(rb_global_tbl, (st_data_t)id, &data)) {
	rb_name_error(id, "undefined global variable %"PRIsVALUE"", QUOTE_ID(id));
    }

    trace = (entry = (struct global_entry *)data)->var->trace;
    if (NIL_P(cmd)) {
	VALUE ary = rb_ary_new();

	while (trace) {
	    struct trace_var *next = trace->next;
	    rb_ary_push(ary, (VALUE)trace->data);
	    trace->removed = 1;
	    trace = next;
	}

	if (!entry->var->block_trace) remove_trace(entry->var);
	return ary;
    }
    else {
	while (trace) {
	    if (trace->data == cmd) {
		trace->removed = 1;
		if (!entry->var->block_trace) remove_trace(entry->var);
		return rb_ary_new3(1, cmd);
	    }
	    trace = trace->next;
	}
    }
    return Qnil;
}

#warn(msg, ...) ⇒ nil

Displays each of the given messages followed by a record separator on STDERR unless warnings have been disabled (for example with the -W0 flag).

  warn("warning 1", "warning 2")

<em>produces:</em>

  warning 1
  warning 2

Returns:

  • (nil)


297
298
299
300
301
302
303
304
# File 'error.c', line 297

static VALUE
rb_warn_m(int argc, VALUE *argv, VALUE exc)
{
    if (!NIL_P(ruby_verbose) && argc > 0) {
	rb_io_puts(argc, argv, rb_stderr);
    }
    return Qnil;
}