Class: Numeric
Overview
The top-level number class.
Instance Method Summary collapse
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#+ ⇒ Numeric
Unary Plus—Returns the receiver’s value.
-
#- ⇒ Numeric
Unary Minus—Returns the receiver’s value, negated.
-
#<=>(other) ⇒ 0?
Returns zero if
number
equalsother
, otherwisenil
is returned if the two values are incomparable. -
#abs ⇒ Object
Returns the absolute value of
num
. -
#abs2 ⇒ Object
Returns square of self.
-
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest possible Integer that is greater than or equal to
num
. -
#coerce(numeric) ⇒ Array
If a +numeric is the same type as
num
, returns an array containingnumeric
andnum
. -
#conj ⇒ Object
Returns self.
-
#conjugate ⇒ Object
Returns self.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing
num
bynumeric
. -
#eql?(numeric) ⇒ Boolean
Returns
true
ifnum
andnumeric
are the same type and have equal values. -
#fdiv(numeric) ⇒ Float
Returns float division.
-
#floor ⇒ Integer
Returns the largest integer less than or equal to
num
. -
#i ⇒ Complex(0]
Returns the corresponding imaginary number.
-
#imag ⇒ Object
Returns zero.
-
#imaginary ⇒ Object
Returns zero.
-
#initialize_copy(y) ⇒ Object
Numerics are immutable values, which should not be copied.
-
#integer? ⇒ Boolean
Returns
true
ifnum
is an Integer (including Fixnum and Bignum). -
#magnitude ⇒ Object
Returns the absolute value of
num
. -
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#nonzero? ⇒ self?
Returns
self
ifnum
is not zero,nil
otherwise. -
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#quo(y) ⇒ Object
Returns most exact division (rational for integers, float for floats).
-
#real ⇒ self
Returns self.
-
#real? ⇒ Boolean
Returns
true
ifnum
is a Real number. -
#rect ⇒ Object
Returns an array; [num, 0].
-
#rectangular ⇒ Object
Returns an array; [num, 0].
-
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate.
-
#round([ndigits]) ⇒ Integer, Float
Rounds
num
to a given precision in decimal digits (default 0 digits). -
#singleton_method_added(name) ⇒ Object
Trap attempts to add methods to Numeric objects.
-
#step(*args) ⇒ Object
Invokes the given block with the sequence of numbers starting at
num
, incremented bystep
(defaulted to1
) on each call. -
#to_c ⇒ Object
Returns the value as a complex.
-
#to_int ⇒ Integer
Invokes the child class’s
to_i
method to convertnum
to an integer. -
#truncate ⇒ Integer
Returns
num
truncated to an Integer. -
#zero? ⇒ Boolean
Returns
true
ifnum
has a zero value.
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(numeric)[1]
.
See Numeric#divmod.
451 452 453 454 455 456 457 |
# File 'numeric.c', line 451
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#+ ⇒ Numeric
Unary Plus—Returns the receiver’s value.
367 368 369 370 371 |
# File 'numeric.c', line 367
static VALUE
num_uplus(VALUE num)
{
return num;
}
|
#- ⇒ Numeric
Unary Minus—Returns the receiver’s value, negated.
395 396 397 398 399 400 401 402 403 404 |
# File 'numeric.c', line 395
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return rb_funcall(zero, '-', 1, num);
}
|
#<=>(other) ⇒ 0?
Returns zero if number
equals other
, otherwise nil
is returned if the two values are incomparable.
1076 1077 1078 1079 1080 1081 |
# File 'numeric.c', line 1076
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num
.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
Numeric#magnitude is an alias of Numeric#abs.
574 575 576 577 578 579 580 581 |
# File 'numeric.c', line 574
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#abs2 ⇒ Object
Returns square of self.
1941 1942 1943 1944 1945 |
# File 'complex.c', line 1941
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1957 1958 1959 1960 1961 1962 1963 |
# File 'complex.c', line 1957
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1957 1958 1959 1960 1961 1962 1963 |
# File 'complex.c', line 1957
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil ⇒ Integer
Returns the smallest possible Integer that is greater than or equal to num
.
Numeric achieves this by converting itself to a Float then invoking Float#ceil.
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.0).ceil #=> -1
1852 1853 1854 1855 1856 |
# File 'numeric.c', line 1852
static VALUE
num_ceil(VALUE num)
{
return flo_ceil(rb_Float(num));
}
|
#coerce(numeric) ⇒ Array
If a +numeric is the same type as num
, returns an array containing numeric
and num
. Otherwise, returns an array with both a numeric
and num
represented as Float objects.
This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
220 221 222 223 224 225 226 227 228 |
# File 'numeric.c', line 220
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
1997 1998 1999 2000 2001 |
# File 'complex.c', line 1997
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
1997 1998 1999 2000 2001 |
# File 'complex.c', line 1997
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#denominator ⇒ Integer
Returns the denominator (always positive).
1819 1820 1821 1822 1823 |
# File 'rational.c', line 1819
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
|
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. numeric
does not define the /
operator; this is left to subclasses.
Equivalent to num.divmod(numeric)[0]
.
See Numeric#divmod.
432 433 434 435 436 437 |
# File 'numeric.c', line 432
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
|
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num
by numeric
.
If q, r = * x.divmod(y)
, then
q = floor(x/y)
x = q*y+r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------+-----+---------------+---------+-------------+---------------
13 | -4 | -4, -3 | -4 | -3 | 1
------+-----+---------------+---------+-------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------+-----+---------------+---------+-------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------+-----+---------------+---------+-------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------+-----+---------------+---------+-------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
(11.5).divmod(3.5) #=> [3, 1.0]
525 526 527 528 529 |
# File 'numeric.c', line 525
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
|
#eql?(numeric) ⇒ Boolean
Returns true
if num
and numeric
are the same type and have equal values.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
(1.0).eql?(1.0) #=> true
1060 1061 1062 1063 1064 1065 1066 |
# File 'numeric.c', line 1060
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
|
#fdiv(numeric) ⇒ Float
Returns float division.
413 414 415 416 417 |
# File 'numeric.c', line 413
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to num
.
Numeric implements this by converting an Integer to a Float and invoking Float#floor.
1.floor #=> 1
(-1).floor #=> -1
1829 1830 1831 1832 1833 |
# File 'numeric.c', line 1829
static VALUE
num_floor(VALUE num)
{
return flo_floor(rb_Float(num));
}
|
#i ⇒ Complex(0]
Returns the corresponding imaginary number. Not available for complex numbers.
381 382 383 384 385 |
# File 'numeric.c', line 381
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1929 1930 1931 1932 1933 |
# File 'complex.c', line 1929
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1929 1930 1931 1932 1933 |
# File 'complex.c', line 1929
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#initialize_copy(y) ⇒ Object
Numerics are immutable values, which should not be copied.
Any attempt to use this method on a Numeric will raise a TypeError.
352 353 354 355 356 357 358 |
# File 'numeric.c', line 352
static VALUE
num_init_copy(VALUE x, VALUE y)
{
rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x));
UNREACHABLE;
}
|
#integer? ⇒ Boolean
Returns true
if num
is an Integer (including Fixnum and Bignum).
(1.0).integer? #=> false
(1).integer? #=> true
554 555 556 557 558 |
# File 'numeric.c', line 554
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num
.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
Numeric#magnitude is an alias of Numeric#abs.
574 575 576 577 578 579 580 581 |
# File 'numeric.c', line 574
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(numeric)[1]
.
See Numeric#divmod.
451 452 453 454 455 456 457 |
# File 'numeric.c', line 451
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#nonzero? ⇒ self?
Returns self
if num
is not zero, nil
otherwise.
This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
614 615 616 617 618 619 620 621 |
# File 'numeric.c', line 614
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
|
#numerator ⇒ Integer
Returns the numerator.
1807 1808 1809 1810 1811 |
# File 'rational.c', line 1807
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1957 1958 1959 1960 1961 1962 1963 |
# File 'complex.c', line 1957
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
1984 1985 1986 1987 1988 |
# File 'complex.c', line 1984
static VALUE
numeric_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
|
#quo(int_or_rat) ⇒ Object #quo(flo) ⇒ Object
Returns most exact division (rational for integers, float for floats).
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 |
# File 'rational.c', line 1834
static VALUE
numeric_quo(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FLOAT)) {
return f_fdiv(x, y);
}
#ifdef CANON
if (canonicalization) {
x = rb_rational_raw1(x);
}
else
#endif
{
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
}
return rb_funcall(x, '/', 1, y);
}
|
#real ⇒ self
Returns self.
1916 1917 1918 1919 1920 |
# File 'complex.c', line 1916
static VALUE
numeric_real(VALUE self)
{
return self;
}
|
#real? ⇒ Boolean
Returns true
if num
is a Real number. (i.e. not Complex).
538 539 540 541 542 |
# File 'numeric.c', line 538
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [num, 0].
1972 1973 1974 1975 1976 |
# File 'complex.c', line 1972
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [num, 0].
1972 1973 1974 1975 1976 |
# File 'complex.c', line 1972
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate
See Numeric#divmod.
468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# File 'numeric.c', line 468
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((negative_int_p(x) &&
positive_int_p(y)) ||
(positive_int_p(x) &&
negative_int_p(y)))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds num
to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits
is more than zero.
Numeric implements this by converting itself to a Float and invoking Float#round.
1871 1872 1873 1874 1875 |
# File 'numeric.c', line 1871
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
|
#singleton_method_added(name) ⇒ Object
Trap attempts to add methods to Numeric objects. Always raises a TypeError.
Numerics should be values; singleton_methods should not be added to them.
333 334 335 336 337 338 339 340 341 342 343 344 345 |
# File 'numeric.c', line 333
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
rb_id2str(mid),
rb_obj_class(x));
UNREACHABLE;
}
|
#step(by: step, to: limit) {|i| ... } ⇒ self #step(by: step, to: limit) ⇒ Object #step(limit = nil, step = 1) {|i| ... } ⇒ self #step(limit = nil, step = 1) ⇒ Object
Invokes the given block with the sequence of numbers starting at num
, incremented by step
(defaulted to 1
) on each call.
The loop finishes when the value to be passed to the block is greater than limit
(if step
is positive) or less than limit
(if step
is negative), where limit is defaulted to infinity.
In the recommended keyword argument style, either or both of step
and limit
(default infinity) can be omitted. In the fixed position argument style, zero as a step (i.e. num.step(limit, 0)) is not allowed for historical compatibility reasons.
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed the following expression:
floor(n + n*epsilon)+ 1
Where the n
is the following:
n = (limit - num)/step
Otherwise, the loop starts at num
, uses either the less-than (<) or greater-than (>) operator to compare the counter against limit
, and increments itself using the +
operator.
If no block is given, an Enumerator is returned instead.
For example:
p 1.step.take(4)
p 10.step(by: -1).take(4)
3.step(to: 5) { |i| print i, " " }
1.step(10, 2) { |i| print i, " " }
Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " }
Will produce:
[1, 2, 3, 4]
[10, 9, 8, 7]
3 4 5
1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 |
# File 'numeric.c', line 2104
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
desc = num_step_scan_args(argc, argv, &to, &step);
if (RTEST(rb_num_coerce_cmp(step, INT2FIX(0), id_eq))) {
inf = 1;
}
else if (RB_TYPE_P(to, T_FLOAT)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
|
#to_c ⇒ Object
Returns the value as a complex.
1489 1490 1491 1492 1493 |
# File 'complex.c', line 1489
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
|
#to_int ⇒ Integer
634 635 636 637 638 |
# File 'numeric.c', line 634
static VALUE
num_to_int(VALUE num)
{
return rb_funcall(num, id_to_i, 0, 0);
}
|
#truncate ⇒ Integer
Returns num
truncated to an Integer.
Numeric implements this by converting its value to a Float and invoking Float#truncate.
1887 1888 1889 1890 1891 |
# File 'numeric.c', line 1887
static VALUE
num_truncate(VALUE num)
{
return flo_truncate(rb_Float(num));
}
|
#zero? ⇒ Boolean
Returns true
if num
has a zero value.
591 592 593 594 595 596 597 598 |
# File 'numeric.c', line 591
static VALUE
num_zero_p(VALUE num)
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
|