Class: Rational
Overview
A rational number can be represented as a paired integer number; a/b (b>0). Where a is numerator and b is denominator. Integer a equals rational a/1 mathematically.
In ruby, you can create rational object with Rational, to_r or rationalize method. The return values will be irreducible.
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3)
3.to_r #=> (3/1)
You can also create rational object from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write program without any rounding errors.
10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
However, when an expression has inexact factor (numerical value or operation), will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Defined Under Namespace
Classes: compatible
Instance Method Summary collapse
-
#*(numeric) ⇒ Numeric
Performs multiplication.
-
#**(numeric) ⇒ Numeric
Performs exponentiation.
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#/(other) ⇒ Object
Performs division.
-
#//(other) ⇒ Object
:nodoc:.
-
#<=>(numeric) ⇒ -1, ...
Performs comparison and returns -1, 0, or +1.
-
#==(object) ⇒ Boolean
Returns true if rat equals object numerically.
-
#ceil(*args) ⇒ Object
Returns the truncated value (toward positive infinity).
-
#coerce(other) ⇒ Object
:nodoc:.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#exact? ⇒ Boolean
:nodoc:.
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a float.
-
#floor(*args) ⇒ Object
Returns the truncated value (toward negative infinity).
-
#hash ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#marshal_dump ⇒ Object
private
:nodoc:.
-
#numerator ⇒ Integer
Returns the numerator.
-
#quo(other) ⇒ Object
Performs division.
-
#quot(other) ⇒ Object
:nodoc:.
-
#quotrem(other) ⇒ Object
:nodoc:.
-
#rational? ⇒ Boolean
:nodoc:.
-
#rationalize(*args) ⇒ Object
Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
-
#round(*args) ⇒ Object
Returns the truncated value (toward the nearest integer; 0.5 => 1; -0.5 => -1).
-
#to_f ⇒ Float
Return the value as a float.
-
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate(*args) ⇒ Object
Returns the truncated value (toward zero).
Methods inherited from Numeric
#%, #+@, #-@, #abs, #abs2, #angle, #arg, #conj, #conjugate, #div, #divmod, #eql?, #i, #imag, #imaginary, #initialize_copy, #integer?, #magnitude, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?
Methods included from Comparable
Instance Method Details
#*(numeric) ⇒ Numeric
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# File 'rational.c', line 868
static VALUE
nurat_mul(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_mul(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
}
else {
return rb_num_coerce_bin(self, other, '*');
}
}
|
#**(numeric) ⇒ Numeric
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
# File 'rational.c', line 986
static VALUE
nurat_expt(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_rational_new_bang1(CLASS_OF(self), ONE);
if (k_rational_p(other)) {
get_dat1(other);
if (f_one_p(dat->den))
other = dat->num; /* c14n */
}
/* Deal with special cases of 0**n and 1**n */
if (k_numeric_p(other) && k_exact_p(other)) {
get_dat1(self);
if (f_one_p(dat->den)) {
if (f_one_p(dat->num)) {
return f_rational_new_bang1(CLASS_OF(self), ONE);
}
else if (f_minus_one_p(dat->num) && k_integer_p(other)) {
return f_rational_new_bang1(CLASS_OF(self), INT2FIX(f_odd_p(other) ? -1 : 1));
}
else if (f_zero_p(dat->num)) {
if (FIX2INT(f_cmp(other, ZERO)) == -1) {
rb_raise_zerodiv();
}
else {
return f_rational_new_bang1(CLASS_OF(self), ZERO);
}
}
}
}
/* General case */
if (RB_TYPE_P(other, T_FIXNUM)) {
{
VALUE num, den;
get_dat1(self);
switch (FIX2INT(f_cmp(other, ZERO))) {
case 1:
num = f_expt(dat->num, other);
den = f_expt(dat->den, other);
break;
case -1:
num = f_expt(dat->den, f_negate(other));
den = f_expt(dat->num, f_negate(other));
break;
default:
num = ONE;
den = ONE;
break;
}
return f_rational_new2(CLASS_OF(self), num, den);
}
}
else if (RB_TYPE_P(other, T_BIGNUM)) {
rb_warn("in a**b, b may be too big");
return f_expt(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_FLOAT) || RB_TYPE_P(other, T_RATIONAL)) {
return f_expt(f_to_f(self), other);
}
else {
return rb_num_coerce_bin(self, other, id_expt);
}
}
|
#+(numeric) ⇒ Numeric
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
# File 'rational.c', line 747
static VALUE
nurat_add(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '+');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_add(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
}
else {
return rb_num_coerce_bin(self, other, '+');
}
}
|
#-(numeric) ⇒ Numeric
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# File 'rational.c', line 788
static VALUE
nurat_sub(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '-');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_sub(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
}
else {
return rb_num_coerce_bin(self, other, '-');
}
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# File 'rational.c', line 910
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_TYPE_P(other, T_FLOAT))
return rb_funcall(f_to_f(self), '/', 1, other);
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#//(other) ⇒ Object
:nodoc:
1186 1187 1188 1189 1190 |
# File 'rational.c', line 1186
static VALUE
nurat_idiv(VALUE self, VALUE other)
{
return f_idiv(self, other);
}
|
#<=>(numeric) ⇒ -1, ...
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 |
# File 'rational.c', line 1070
static VALUE
nurat_cmp(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
return f_cmp(dat->num, other); /* c14n */
return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_cmp(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
VALUE num1, num2;
get_dat2(self, other);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
}
else {
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
}
return f_cmp(f_sub(num1, num2), ZERO);
}
}
else {
return rb_num_coerce_cmp(self, other, id_cmp);
}
}
|
#==(object) ⇒ Boolean
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 |
# File 'rational.c', line 1120
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
if (f_zero_p(dat->num) && f_zero_p(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
if (f_eqeq_p(dat->num, other))
return Qtrue;
return Qfalse;
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_eqeq_p(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
if (f_zero_p(adat->num) && f_zero_p(bdat->num))
return Qtrue;
return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
f_eqeq_p(adat->den, bdat->den));
}
}
else {
return f_eqeq_p(other, self);
}
}
|
#ceil ⇒ Integer #ceil(precision = 0) ⇒ Object
Returns the truncated value (toward positive infinity).
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
'%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
1357 1358 1359 1360 1361 |
# File 'rational.c', line 1357
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil);
}
|
#coerce(other) ⇒ Object
:nodoc:
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 |
# File 'rational.c', line 1159
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return rb_assoc_new(other, f_to_f(self));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
return rb_assoc_new(other, self);
}
else if (RB_TYPE_P(other, T_COMPLEX)) {
if (k_exact_zero_p(RCOMPLEX(other)->imag))
return rb_assoc_new(f_rational_new_bang1
(CLASS_OF(self), RCOMPLEX(other)->real), self);
else
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
}
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
rb_obj_classname(other), rb_obj_classname(self));
return Qnil;
}
|
#denominator ⇒ Integer
644 645 646 647 648 649 |
# File 'rational.c', line 644
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self);
return dat->den;
}
|
#exact? ⇒ Boolean
:nodoc:
1210 1211 1212 1213 1214 |
# File 'rational.c', line 1210
static VALUE
nurat_true(VALUE self)
{
return Qtrue;
}
|
#fdiv(numeric) ⇒ Float
956 957 958 959 960 961 962 |
# File 'rational.c', line 956
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
if (f_zero_p(other))
return f_div(self, f_to_f(other));
return f_to_f(f_div(self, other));
}
|
#floor ⇒ Integer #floor(precision = 0) ⇒ Object
Returns the truncated value (toward negative infinity).
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
'%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
1333 1334 1335 1336 1337 |
# File 'rational.c', line 1333
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor);
}
|
#hash ⇒ Object
:nodoc:
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 |
# File 'rational.c', line 1579
static VALUE
nurat_hash(VALUE self)
{
st_index_t v, h[2];
VALUE n;
get_dat1(self);
n = rb_hash(dat->num);
h[0] = NUM2LONG(n);
n = rb_hash(dat->den);
h[1] = NUM2LONG(n);
v = rb_memhash(h, sizeof(h));
return LONG2FIX(v);
}
|
#inspect ⇒ String
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 |
# File 'rational.c', line 1633
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, f_inspect));
rb_str_cat2(s, ")");
return s;
}
|
#marshal_dump ⇒ Object (private)
:nodoc:
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
# File 'rational.c', line 1665
static VALUE
nurat_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->num, dat->den);
rb_copy_generic_ivar(a, self);
return a;
}
|
#numerator ⇒ Integer
625 626 627 628 629 630 |
# File 'rational.c', line 625
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self);
return dat->num;
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# File 'rational.c', line 910
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_TYPE_P(other, T_FLOAT))
return rb_funcall(f_to_f(self), '/', 1, other);
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#quot(other) ⇒ Object
:nodoc:
1193 1194 1195 1196 1197 |
# File 'rational.c', line 1193
static VALUE
nurat_quot(VALUE self, VALUE other)
{
return f_truncate(f_div(self, other));
}
|
#quotrem(other) ⇒ Object
:nodoc:
1200 1201 1202 1203 1204 1205 |
# File 'rational.c', line 1200
static VALUE
nurat_quotrem(VALUE self, VALUE other)
{
VALUE val = f_truncate(f_div(self, other));
return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
}
|
#rational? ⇒ Boolean
:nodoc:
1210 1211 1212 1213 1214 |
# File 'rational.c', line 1210
static VALUE
nurat_true(VALUE self)
{
return Qtrue;
}
|
#rationalize ⇒ self #rationalize(eps) ⇒ Object
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 |
# File 'rational.c', line 1555
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (argc == 0)
return self;
if (f_negative_p(self))
return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
rb_scan_args(argc, argv, "01", &e);
e = f_abs(e);
a = f_sub(self, e);
b = f_add(self, e);
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q);
return f_rational_new2(CLASS_OF(self), p, q);
}
|
#round ⇒ Integer #round(precision = 0) ⇒ Object
Returns the truncated value (toward the nearest integer; 0.5 => 1; -0.5 => -1).
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').round(+1) #=> "-123.500000"
'%f' % Rational('-123.456').round(-1) #=> "-120.000000"
1406 1407 1408 1409 1410 |
# File 'rational.c', line 1406
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_round);
}
|
#to_f ⇒ Float
1423 1424 1425 1426 1427 1428 |
# File 'rational.c', line 1423
static VALUE
nurat_to_f(VALUE self)
{
get_dat1(self);
return f_fdiv(dat->num, dat->den);
}
|
#to_i ⇒ Integer
1246 1247 1248 1249 1250 1251 1252 1253 |
# File 'rational.c', line 1246
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self);
if (f_negative_p(dat->num))
return f_negate(f_idiv(f_negate(dat->num), dat->den));
return f_idiv(dat->num, dat->den);
}
|
#to_r ⇒ self
1439 1440 1441 1442 1443 |
# File 'rational.c', line 1439
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
|
#to_s ⇒ String
1617 1618 1619 1620 1621 |
# File 'rational.c', line 1617
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s);
}
|
#truncate ⇒ Integer #truncate(precision = 0) ⇒ Object
Returns the truncated value (toward zero).
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
'%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
1381 1382 1383 1384 1385 |
# File 'rational.c', line 1381
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate);
}
|