Module: Process
- Defined in:
- process.c
Defined Under Namespace
Classes: GID, Status, Sys, UID, Waiter
Constant Summary collapse
- WNOHANG =
see Process.wait
INT2FIX(0)
- WUNTRACED =
see Process.wait
INT2FIX(0)
- PRIO_PROCESS =
see Process.setpriority
INT2FIX(PRIO_PROCESS)
- PRIO_PGRP =
see Process.setpriority
INT2FIX(PRIO_PGRP)
- PRIO_USER =
see Process.setpriority
INT2FIX(PRIO_USER)
- RLIM_SAVED_MAX =
see Process.setrlimit
v
- RLIM_INFINITY =
see Process.setrlimit
inf
- RLIM_SAVED_CUR =
see Process.setrlimit
v
- RLIMIT_AS =
Maximum size of the process’s virtual memory (address space) in bytes.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_AS)
- RLIMIT_CORE =
Maximum size of the core file.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_CORE)
- RLIMIT_CPU =
CPU time limit in seconds.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_CPU)
- RLIMIT_DATA =
Maximum size of the process’s data segment.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_DATA)
- RLIMIT_FSIZE =
Maximum size of files that the process may create.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_FSIZE)
- RLIMIT_MEMLOCK =
Maximum number of bytes of memory that may be locked into RAM.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_MEMLOCK)
- RLIMIT_MSGQUEUE =
Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_MSGQUEUE)
- RLIMIT_NICE =
Specifies a ceiling to which the process’s nice value can be raised.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NICE)
- RLIMIT_NOFILE =
Specifies a value one greater than the maximum file descriptor number that can be opened by this process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NOFILE)
- RLIMIT_NPROC =
The maximum number of processes that can be created for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NPROC)
- RLIMIT_RSS =
Specifies the limit (in pages) of the process’s resident set.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RSS)
- RLIMIT_RTPRIO =
Specifies a ceiling on the real-time priority that may be set for this process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RTPRIO)
- RLIMIT_RTTIME =
Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RTTIME)
- RLIMIT_SBSIZE =
Maximum size of the socket buffer.
INT2FIX(RLIMIT_SBSIZE)
- RLIMIT_SIGPENDING =
Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_SIGPENDING)
- RLIMIT_STACK =
Maximum size of the stack, in bytes.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_STACK)
- CLOCK_REALTIME =
RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
- CLOCK_MONOTONIC =
RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
- CLOCK_PROCESS_CPUTIME_ID =
RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
- CLOCK_THREAD_CPUTIME_ID =
CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)
- CLOCK_VIRTUAL =
CLOCKID2NUM(CLOCK_VIRTUAL)
- CLOCK_PROF =
CLOCKID2NUM(CLOCK_PROF)
- CLOCK_REALTIME_FAST =
CLOCKID2NUM(CLOCK_REALTIME_FAST)
- CLOCK_REALTIME_PRECISE =
CLOCKID2NUM(CLOCK_REALTIME_PRECISE)
- CLOCK_REALTIME_COARSE =
CLOCKID2NUM(CLOCK_REALTIME_COARSE)
- CLOCK_REALTIME_ALARM =
CLOCKID2NUM(CLOCK_REALTIME_ALARM)
- CLOCK_MONOTONIC_FAST =
CLOCKID2NUM(CLOCK_MONOTONIC_FAST)
- CLOCK_MONOTONIC_PRECISE =
CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)
- CLOCK_MONOTONIC_RAW =
CLOCKID2NUM(CLOCK_MONOTONIC_RAW)
- CLOCK_MONOTONIC_COARSE =
CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)
- CLOCK_BOOTTIME =
CLOCKID2NUM(CLOCK_BOOTTIME)
- CLOCK_BOOTTIME_ALARM =
CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)
- CLOCK_UPTIME =
CLOCKID2NUM(CLOCK_UPTIME)
- CLOCK_UPTIME_FAST =
CLOCKID2NUM(CLOCK_UPTIME_FAST)
- CLOCK_UPTIME_PRECISE =
CLOCKID2NUM(CLOCK_UPTIME_PRECISE)
- CLOCK_SECOND =
CLOCKID2NUM(CLOCK_SECOND)
Class Method Summary collapse
-
.abort(*args) ⇒ Object
Terminate execution immediately, effectively by calling
Kernel.exit(false)
. -
.argv0 ⇒ Object
Returns the name of the script being executed.
-
.clock_getres(clock_id[, unit]) ⇒ Numeric
Returns the time resolution returned by POSIX clock_getres() function.
-
.clock_gettime(clock_id[, unit]) ⇒ Numeric
Returns a time returned by POSIX clock_gettime() function.
-
.daemon(*args) ⇒ Object
Detach the process from controlling terminal and run in the background as system daemon.
-
.detach(pid) ⇒ Object
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of
wait()
. If the parent never collects this status, the child stays around as a zombie process.Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Usedetach
only when you do not intent to explicitly wait for the child to terminate. -
.egid ⇒ Object
Returns the effective group ID for this process.
- .egid= ⇒ Object
-
.euid ⇒ Object
Returns the effective user ID for this process.
-
.euid=(user) ⇒ Object
Sets the effective user ID for this process.
-
.exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:.
-
.exit(*args) ⇒ Object
Initiates the termination of the Ruby script by raising the
SystemExit
exception. -
.exit!(status = false) ⇒ Object
Exits the process immediately.
-
.fork ⇒ Object
Creates a subprocess.
-
.getpgid(pid) ⇒ Integer
Returns the process group ID for the given process id.
-
.getpgrp ⇒ Integer
Returns the process group ID for this process.
-
.getpriority(kind, integer) ⇒ Fixnum
Gets the scheduling priority for specified process, process group, or user.
-
.getrlimit(resource) ⇒ Array
Gets the resource limit of the process.
-
.getsid(*args) ⇒ Object
Returns the session ID for for the given process id.
-
.gid ⇒ Object
Returns the (real) group ID for this process.
-
.gid=(fixnum) ⇒ Fixnum
Sets the group ID for this process.
-
.groups ⇒ Array
Get an
Array
of the gids of groups in the supplemental group access list for this process. -
.groups=(array) ⇒ Array
Set the supplemental group access list to the given
Array
of group IDs. -
.initgroups(username, gid) ⇒ Array
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member.
-
.kill(signal, pid, ...) ⇒ Fixnum
Sends the given signal to the specified process id(s) if pid is positive.
-
.maxgroups ⇒ Fixnum
Returns the maximum number of gids allowed in the supplemental group access list.
-
.maxgroups=(fixnum) ⇒ Fixnum
Sets the maximum number of gids allowed in the supplemental group access list.
-
.pid ⇒ Fixnum
Returns the process id of this process.
-
.ppid ⇒ Fixnum
Returns the process id of the parent of this process.
-
.setpgid(pid, integer) ⇒ 0
Sets the process group ID of pid (0 indicates this process) to integer.
-
.setpgrp ⇒ 0
Equivalent to
setpgid(0,0)
. -
.setpriority(kind, integer, priority) ⇒ 0
See
Process#getpriority
. -
.setproctitle(string) ⇒ String
Sets the process title that appears on the ps(1) command.
-
.setrlimit(*args) ⇒ Object
Sets the resource limit of the process.
-
.setsid ⇒ Fixnum
Establishes this process as a new session and process group leader, with no controlling tty.
-
.spawn(*args) ⇒ Object
spawn executes specified command and return its pid.
-
.times ⇒ aProcessTms
Returns a
Tms
structure (seeProcess::Tms
) that contains user and system CPU times for this process, and also for children processes. -
.uid ⇒ Object
Returns the (real) user ID of this process.
-
.uid=(user) ⇒ Numeric
Sets the (user) user ID for this process.
-
.wait(*args) ⇒ Object
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
.wait2(*args) ⇒ Object
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child. -
.waitall ⇒ Array
Waits for all children, returning an array of pid/status pairs (where status is a
Process::Status
object). -
.waitpid(*args) ⇒ Object
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
.waitpid2(*args) ⇒ Object
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child.
Instance Method Summary collapse
-
#argv0 ⇒ Object
private
Returns the name of the script being executed.
-
#clock_getres(clock_id[, unit]) ⇒ Numeric
private
Returns the time resolution returned by POSIX clock_getres() function.
-
#clock_gettime(clock_id[, unit]) ⇒ Numeric
private
Returns a time returned by POSIX clock_gettime() function.
-
#daemon(*args) ⇒ Object
private
Detach the process from controlling terminal and run in the background as system daemon.
-
#detach(pid) ⇒ Object
private
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of
wait()
. If the parent never collects this status, the child stays around as a zombie process.Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Usedetach
only when you do not intent to explicitly wait for the child to terminate. -
#egid ⇒ Object
private
Returns the effective group ID for this process.
- #egid= ⇒ Object private
-
#euid ⇒ Object
private
Returns the effective user ID for this process.
-
#euid=(user) ⇒ Object
private
Sets the effective user ID for this process.
-
#getpgid(pid) ⇒ Integer
private
Returns the process group ID for the given process id.
-
#getpgrp ⇒ Integer
private
Returns the process group ID for this process.
-
#getpriority(kind, integer) ⇒ Fixnum
private
Gets the scheduling priority for specified process, process group, or user.
-
#getrlimit(resource) ⇒ Array
private
Gets the resource limit of the process.
-
#getsid(*args) ⇒ Object
private
Returns the session ID for for the given process id.
-
#gid ⇒ Object
private
Returns the (real) group ID for this process.
-
#gid=(fixnum) ⇒ Fixnum
private
Sets the group ID for this process.
-
#groups ⇒ Array
private
Get an
Array
of the gids of groups in the supplemental group access list for this process. -
#groups=(array) ⇒ Array
private
Set the supplemental group access list to the given
Array
of group IDs. -
#initgroups(username, gid) ⇒ Array
private
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member.
-
#kill(signal, pid, ...) ⇒ Fixnum
private
Sends the given signal to the specified process id(s) if pid is positive.
-
#maxgroups ⇒ Fixnum
private
Returns the maximum number of gids allowed in the supplemental group access list.
-
#maxgroups=(fixnum) ⇒ Fixnum
private
Sets the maximum number of gids allowed in the supplemental group access list.
-
#pid ⇒ Fixnum
private
Returns the process id of this process.
-
#ppid ⇒ Fixnum
private
Returns the process id of the parent of this process.
-
#setpgid(pid, integer) ⇒ 0
private
Sets the process group ID of pid (0 indicates this process) to integer.
-
#setpgrp ⇒ 0
private
Equivalent to
setpgid(0,0)
. -
#setpriority(kind, integer, priority) ⇒ 0
private
See
Process#getpriority
. -
#setproctitle(string) ⇒ String
private
Sets the process title that appears on the ps(1) command.
-
#setrlimit(*args) ⇒ Object
private
Sets the resource limit of the process.
-
#setsid ⇒ Fixnum
private
Establishes this process as a new session and process group leader, with no controlling tty.
-
#times ⇒ aProcessTms
private
Returns a
Tms
structure (seeProcess::Tms
) that contains user and system CPU times for this process, and also for children processes. -
#uid ⇒ Object
private
Returns the (real) user ID of this process.
-
#uid=(user) ⇒ Numeric
private
Sets the (user) user ID for this process.
-
#wait(*args) ⇒ Object
private
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
#wait2(*args) ⇒ Object
private
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child. -
#waitall ⇒ Array
private
Waits for all children, returning an array of pid/status pairs (where status is a
Process::Status
object). -
#waitpid(*args) ⇒ Object
private
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
#waitpid2(*args) ⇒ Object
private
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child.
Class Method Details
.abort ⇒ Object .Kernel::abort([msg]) ⇒ Object .Process::abort([msg]) ⇒ Object
Terminate execution immediately, effectively by calling Kernel.exit(false)
. If msg is given, it is written to STDERR prior to terminating.
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 |
# File 'process.c', line 3839
VALUE
rb_f_abort(int argc, const VALUE *argv)
{
rb_check_arity(argc, 0, 1);
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
args[1] = args[0] = argv[0];
StringValue(args[0]);
rb_io_puts(1, args, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
UNREACHABLE;
}
|
.argv0 ⇒ Object
Returns the name of the script being executed. The value is not affected by assigning a new value to $0.
This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.
1780 1781 1782 1783 1784 |
# File 'ruby.c', line 1780
static VALUE
proc_argv0(VALUE process)
{
return rb_orig_progname;
}
|
.clock_getres(clock_id[, unit]) ⇒ Numeric
Returns the time resolution returned by POSIX clock_getres() function.
clock_id
specifies a kind of clock. See the document of Process.clock_gettime
for details.
clock_id
can be a symbol as Process.clock_gettime
. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value. Process.clock_getres
accepts unit
as Process.clock_gettime
. The default value, :float_second
, is also same as Process.clock_gettime
.
Process.clock_getres
also accepts :hertz
as unit
. :hertz
means a the reciprocal of :float_second
.
:hertz
can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.
Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.
p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 |
# File 'process.c', line 7401
VALUE
rb_clock_getres(int argc, VALUE *argv)
{
VALUE clk_id, unit;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
clockid_t c = NUM2CLOCKID(clk_id);
int ret = clock_getres(c, &ts);
if (ret == -1)
rb_sys_fail("clock_getres");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
if (unit == ID2SYM(id_hertz)) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
|
.clock_gettime(clock_id[, unit]) ⇒ Numeric
Returns a time returned by POSIX clock_gettime() function.
p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096
clock_id
specifies a kind of clock. It is specifed as a constant which begins with Process::CLOCK_
such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.
The supported constants depends on OS and version. Ruby provides following types of clock_id
if available.
- CLOCK_REALTIME
-
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1
- CLOCK_MONOTONIC
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4
- CLOCK_PROCESS_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, OpenBSD 5.4
- CLOCK_THREAD_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4
- CLOCK_VIRTUAL
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_PROF
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_REALTIME_FAST
-
FreeBSD 8.1
- CLOCK_REALTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_REALTIME_COARSE
-
Linux 2.6.32
- CLOCK_REALTIME_ALARM
-
Linux 3.0
- CLOCK_MONOTONIC_FAST
-
FreeBSD 8.1
- CLOCK_MONOTONIC_PRECISE
-
FreeBSD 8.1
- CLOCK_MONOTONIC_COARSE
-
Linux 2.6.32
- CLOCK_MONOTONIC_RAW
-
Linux 2.6.28
- CLOCK_BOOTTIME
-
Linux 2.6.39
- CLOCK_BOOTTIME_ALARM
-
Linux 3.0
- CLOCK_UPTIME
-
FreeBSD 7.0, OpenBSD 5.5
- CLOCK_UPTIME_FAST
-
FreeBSD 8.1
- CLOCK_UPTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_SECOND
-
FreeBSD 8.1
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.
Also, several symbols are accepted as clock_id
. There are emulations for clock_gettime().
For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME
when clock_gettime() is not available.
Emulations for CLOCK_REALTIME
:
- :GETTIMEOFDAY_BASED_CLOCK_REALTIME
-
Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.
- :TIME_BASED_CLOCK_REALTIME
-
Use time() defined by ISO C. The resolution is 1 second.
Emulations for CLOCK_MONOTONIC
:
- :MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
-
Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.
- :TIMES_BASED_CLOCK_MONOTONIC
-
Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
Emulations for CLOCK_PROCESS_CPUTIME_ID
:
- :GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.
- :TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.
- :CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value.
- :float_second
-
number of seconds as a float (default)
- :float_millisecond
-
number of milliseconds as a float
- :float_microsecond
-
number of microseconds as a float
- :second
-
number of seconds as an integer
- :millisecond
-
number of milliseconds as an integer
- :microsecond
-
number of microseconds as an integer
- :nanosecond
-
number of nanoseconds as an integer
The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds
as the unit
.
The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.
The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 |
# File 'process.c', line 7205
VALUE
rb_clock_gettime(int argc, VALUE *argv)
{
VALUE clk_id, unit;
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*
* gettimeofday is always available on platforms supported by Ruby.
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
clockid_t c;
c = NUM2CLOCKID(clk_id);
ret = clock_gettime(c, &ts);
if (ret == -1)
rb_sys_fail("clock_gettime");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
|
.daemon ⇒ 0 .daemon(nochdir = nil, noclose = nil) ⇒ 0
Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 |
# File 'process.c', line 5960
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
int n;
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
prefork();
n = rb_daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
|
.detach(pid) ⇒ Object
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()
. If the parent never collects this status, the child stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use detach
only when you do not intent to explicitly wait for the child to terminate.
The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join
to know the result. If specified pid is not a valid child process ID, the thread returns nil
immediately.
The waiting thread has pid
method which returns the pid.
In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach
is used to reap the child automatically.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
(produces no output)
1114 1115 1116 1117 1118 1119 |
# File 'process.c', line 1114
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
|
.egid ⇒ Fixnum .Process::GID.eid ⇒ Fixnum .Process::Sys.geteid ⇒ Fixnum
Returns the effective group ID for this process. Not available on all platforms.
Process.egid #=> 500
6354 6355 6356 6357 6358 6359 6360 |
# File 'process.c', line 6354
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
|
.egid= ⇒ Object
.euid ⇒ Fixnum .Process::UID.eid ⇒ Fixnum .Process::Sys.geteuid ⇒ Fixnum
Returns the effective user ID for this process.
Process.euid #=> 501
6230 6231 6232 6233 6234 6235 |
# File 'process.c', line 6230
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
|
.euid=(user) ⇒ Object
Sets the effective user ID for this process. Not available on all platforms.
6269 6270 6271 6272 6273 6274 6275 |
# File 'process.c', line 6269
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
|
.exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:
exec(commandline)
-
command line string which is passed to the standard shell
exec(cmdname, arg1, ...)
-
command name and one or more arguments (no shell)
exec([cmdname, argv0], arg1, ...)
-
command name, argv and zero or more arguments (no shell)
In the first form, the string is taken as a command line that is subject to shell expansion before being executed.
The standard shell always means
"/bin/sh"
on Unix-like systems, same asENV["RUBYSHELL"]
(orENV["COMSPEC"]
on Windows NT series), and similar.If the string from the first form (
exec("command")
) follows these simple rules:-
no meta characters
-
no shell reserved word and no special built-in
-
Ruby invokes the command directly without shell
You can force shell invocation by adding “;” to the string (because “;” is a meta character).
Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.
In the second form (
exec("command1", "arg1", ...)
), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.In the third form (
exec(["command", "argv0"], "arg1", ...)
), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as theargv[0]
value, which may show up in process listings.In order to execute the command, one of the
exec(2)
system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).This behavior is modified by the given
env
andoptions
parameters. See ::spawn for details.If the command fails to execute (typically
Errno::ENOENT
when it was not found) a SystemCallError exception is raised.This method modifies process attributes according to given
options
beforeexec(2)
system call. See ::spawn for more details about the givenoptions
.The modified attributes may be retained when
exec(2)
system call fails.For example, hard resource limits are not restorable.
Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
-
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 |
# File 'process.c', line 2453
VALUE
rb_f_exec(int argc, const VALUE *argv)
{
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
rb_execarg_fixup(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
#if defined(__APPLE__) || defined(__HAIKU__)
rb_exec_without_timer_thread(eargp, errmsg, sizeof(errmsg));
#else
before_exec_async_signal_safe(); /* async-signal-safe */
rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
preserving_errno(after_exec_async_signal_safe()); /* async-signal-safe */
#endif
RB_GC_GUARD(execarg_obj);
if (errmsg[0])
rb_sys_fail(errmsg);
rb_sys_fail_str(fail_str);
return Qnil; /* dummy */
}
|
.exit(status = true) ⇒ Object .Kernel::exit(status = true) ⇒ Object .Process::exit(status = true) ⇒ Object
Initiates the termination of the Ruby script by raising the SystemExit
exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true
and FALSE
of status means success and failure respectively. The interpretation of other integer values are system dependent.
begin
exit
puts "never get here"
rescue SystemExit
puts "rescued a SystemExit exception"
end
puts "after begin block"
produces:
rescued a SystemExit exception
after begin block
Just prior to termination, Ruby executes any at_exit
functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).
at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
exit
produces:
at_exit function
in finalizer
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 |
# File 'process.c', line 3810
VALUE
rb_f_exit(int argc, const VALUE *argv)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
UNREACHABLE;
}
|
.exit!(status = false) ⇒ Object
Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.
Process.exit!(true)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 |
# File 'process.c', line 3738
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
UNREACHABLE;
}
|
.fork { ... } ⇒ Fixnum? .fork { ... } ⇒ Fixnum?
Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork
call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit!
to avoid running any at_exit
functions. The parent process should use Process.wait
to collect the termination statuses of its children or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.
If fork is not usable, Process.respond_to?(:fork) returns false.
Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 |
# File 'process.c', line 3674
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
rb_secure(2);
switch (pid = rb_fork_ruby(NULL)) {
case 0:
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
}
|
.getpgid(pid) ⇒ Integer
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 |
# File 'process.c', line 4422
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
|
.getpgrp ⇒ Integer
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 |
# File 'process.c', line 4361
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
|
.getpriority(kind, integer) ⇒ Fixnum
Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP
, Process::PRIO_USER
, or Process::PRIO_PROCESS
. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 |
# File 'process.c', line 4574
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
|
.getrlimit(resource) ⇒ Array
Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. See Process.setrlimit for details.
cur_limit and max_limit may be Process::RLIM_INFINITY
, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR
. See Process.setrlimit and the system getrlimit(2) manual for details.
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 |
# File 'process.c', line 4846
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
|
.getsid ⇒ Integer .getsid(pid) ⇒ Integer
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 |
# File 'process.c', line 4476
static VALUE
proc_getsid(int argc, VALUE *argv)
{
rb_pid_t sid;
VALUE pid;
rb_secure(2);
rb_scan_args(argc, argv, "01", &pid);
if (NIL_P(pid))
pid = INT2FIX(0);
sid = getsid(NUM2PIDT(pid));
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
|
.gid ⇒ Fixnum .Process::GID.rid ⇒ Fixnum .Process::Sys.getgid ⇒ Fixnum
Returns the (real) group ID for this process.
Process.gid #=> 500
5675 5676 5677 5678 5679 5680 |
# File 'process.c', line 5675
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
|
.gid=(fixnum) ⇒ Fixnum
Sets the group ID for this process.
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 |
# File 'process.c', line 5691
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
|
.groups ⇒ Array
Get an Array
of the gids of groups in the supplemental group access list for this process.
Process.groups #=> [27, 6, 10, 11]
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 |
# File 'process.c', line 5782
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
|
.groups=(array) ⇒ Array
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 |
# File 'process.c', line 5826
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
|
.initgroups(username, gid) ⇒ Array
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array
of the gids of all the groups in the supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
Process.groups #=> [30, 6, 10, 11]
5879 5880 5881 5882 5883 5884 5885 5886 |
# File 'process.c', line 5879
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
|
.kill(signal, pid, ...) ⇒ Fixnum
Sends the given signal to the specified process id(s) if pid is positive. If pid is zero signal is sent to all processes whose group ID is equal to the group ID of the process. signal may be an integer signal number or a POSIX signal name (either with or without a SIG
prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list
are known signal names and numbers, respectively.
pid = fork do
Signal.trap("HUP") { puts "Ouch!"; exit }
# ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait
produces:
Ouch!
If signal is an integer but wrong for signal, Errno::EINVAL
or RangeError
will be raised. Otherwise unless signal is a String
or a Symbol
, and a known signal name, ArgumentError
will be raised.
Also, Errno::ESRCH
or RangeError
for invalid pid, Errno::EPERM
when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# File 'signal.c', line 405
VALUE
rb_f_kill(int argc, const VALUE *argv)
{
#ifndef HAVE_KILLPG
#define killpg(pg, sig) kill(-(pg), (sig))
#endif
int negative = 0;
int sig;
int i;
VALUE str;
const char *s;
rb_secure(2);
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
switch (TYPE(argv[0])) {
case T_FIXNUM:
sig = FIX2INT(argv[0]);
break;
case T_SYMBOL:
str = rb_sym2str(argv[0]);
goto str_signal;
case T_STRING:
str = argv[0];
str_signal:
s = RSTRING_PTR(str);
if (s[0] == '-') {
negative++;
s++;
}
if (strncmp(signame_prefix, s, sizeof(signame_prefix)) == 0)
s += 3;
if ((sig = signm2signo(s)) == 0) {
long ofs = s - RSTRING_PTR(str);
if (ofs) str = rb_str_subseq(str, ofs, RSTRING_LEN(str)-ofs);
rb_raise(rb_eArgError, "unsupported name `SIG%"PRIsVALUE"'", str);
}
if (negative)
sig = -sig;
break;
default:
str = rb_check_string_type(argv[0]);
if (!NIL_P(str)) {
goto str_signal;
}
rb_raise(rb_eArgError, "bad signal type %s",
rb_obj_classname(argv[0]));
break;
}
if (argc <= 1) return INT2FIX(0);
if (sig < 0) {
sig = -sig;
for (i=1; i<argc; i++) {
if (killpg(NUM2PIDT(argv[i]), sig) < 0)
rb_sys_fail(0);
}
}
else {
const rb_pid_t self = (GET_THREAD() == GET_VM()->main_thread) ? getpid() : -1;
int wakeup = 0;
for (i=1; i<argc; i++) {
rb_pid_t pid = NUM2PIDT(argv[i]);
if ((sig != 0) && (self != -1) && (pid == self)) {
int t;
/*
* When target pid is self, many caller assume signal will be
* delivered immediately and synchronously.
*/
switch (sig) {
case SIGSEGV:
#ifdef SIGBUS
case SIGBUS:
#endif
#ifdef SIGKILL
case SIGKILL:
#endif
#ifdef SIGSTOP
case SIGSTOP:
#endif
ruby_kill(pid, sig);
break;
default:
t = signal_ignored(sig);
if (t) {
if (t < 0 && kill(pid, sig))
rb_sys_fail(0);
break;
}
signal_enque(sig);
wakeup = 1;
}
}
else if (kill(pid, sig) < 0) {
rb_sys_fail(0);
}
}
if (wakeup) {
rb_threadptr_check_signal(GET_VM()->main_thread);
}
}
rb_thread_execute_interrupts(rb_thread_current());
return INT2FIX(i-1);
}
|
.maxgroups ⇒ Fixnum
Returns the maximum number of gids allowed in the supplemental group access list.
Process.maxgroups #=> 32
5902 5903 5904 5905 5906 |
# File 'process.c', line 5902
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
|
.maxgroups=(fixnum) ⇒ Fixnum
Sets the maximum number of gids allowed in the supplemental group access list.
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 |
# File 'process.c', line 5920
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
|
.pid ⇒ Fixnum
Returns the process id of this process. Not available on all platforms.
Process.pid #=> 27415
293 294 295 296 297 298 |
# File 'process.c', line 293
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
|
.ppid ⇒ Fixnum
317 318 319 320 321 322 |
# File 'process.c', line 317
static VALUE
get_ppid(void)
{
rb_secure(2);
return PIDT2NUM(getppid());
}
|
.setpgid(pid, integer) ⇒ 0
Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 |
# File 'process.c', line 4446
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
|
.setpgrp ⇒ 0
Equivalent to setpgid(0,0)
. Not available on all platforms.
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 |
# File 'process.c', line 4391
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
|
.setpriority(kind, integer, priority) ⇒ 0
See Process#getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 |
# File 'process.c', line 4606
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
|
.setproctitle(string) ⇒ String
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
1803 1804 1805 1806 1807 1808 1809 1810 1811 |
# File 'ruby.c', line 1803
static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
StringValue(title);
setproctitle("%.*s", RSTRING_LENINT(title), RSTRING_PTR(title));
return title;
}
|
.setrlimit(resource, cur_limit, max_limit) ⇒ nil .setrlimit(resource, cur_limit) ⇒ nil
Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. The available resources are OS dependent. Ruby may support following resources.
- AS
-
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
- CORE
-
core size (bytes) (SUSv3)
- CPU
-
CPU time (seconds) (SUSv3)
- DATA
-
data segment (bytes) (SUSv3)
- FSIZE
-
file size (bytes) (SUSv3)
- MEMLOCK
-
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
- MSGQUEUE
-
allocation for POSIX message queues (bytes) (GNU/Linux)
- NICE
-
ceiling on process’s nice(2) value (number) (GNU/Linux)
- NOFILE
-
file descriptors (number) (SUSv3)
- NPROC
-
number of processes for the user (number) (4.4BSD, GNU/Linux)
- RSS
-
resident memory size (bytes) (4.2BSD, GNU/Linux)
- RTPRIO
-
ceiling on the process’s real-time priority (number) (GNU/Linux)
- RTTIME
-
CPU time for real-time process (us) (GNU/Linux)
- SBSIZE
-
all socket buffers (bytes) (NetBSD, FreeBSD)
- SIGPENDING
-
number of queued signals allowed (signals) (GNU/Linux)
- STACK
-
stack size (bytes) (SUSv3)
cur_limit and max_limit may be :INFINITY
, "INFINITY"
or Process::RLIM_INFINITY
, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX
, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual for details.
The following example raises the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 |
# File 'process.c', line 4914
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
|
.setsid ⇒ Fixnum
Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.
Process.setsid #=> 27422
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 |
# File 'process.c', line 4513
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
|
.spawn([env,][,options]) ⇒ Object .spawn([env,][,options]) ⇒ Object
spawn executes specified command and return its pid.
pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid
pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid
This method is similar to Kernel#system but it doesn’t wait for the command to finish.
The parent process should use Process.wait
to collect the termination status of its child or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
spawn has bunch of options to specify process attributes:
env: hash
name => val : set the environment variable
name => nil : unset the environment variable
command...:
commandline : command line string which is passed to the standard shell
cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
clearing environment variables:
:unsetenv_others => true : clear environment variables except specified by env
:unsetenv_others => false : don't clear (default)
process group:
:pgroup => true or 0 : make a new process group
:pgroup => pgid : join to specified process group
:pgroup => nil : don't change the process group (default)
create new process group: Windows only
:new_pgroup => true : the new process is the root process of a new process group
:new_pgroup => false : don't create a new process group (default)
resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
:rlimit_resourcename => limit
:rlimit_resourcename => [cur_limit, max_limit]
umask:
:umask => int
redirection:
key:
FD : single file descriptor in child process
[FD, FD, ...] : multiple file descriptor in child process
value:
FD : redirect to the file descriptor in parent process
string : redirect to file with open(string, "r" or "w")
[string] : redirect to file with open(string, File::RDONLY)
[string, open_mode] : redirect to file with open(string, open_mode, 0644)
[string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
[:child, FD] : redirect to the redirected file descriptor
:close : close the file descriptor in child process
FD is one of follows
:in : the file descriptor 0 which is the standard input
:out : the file descriptor 1 which is the standard output
:err : the file descriptor 2 which is the standard error
integer : the file descriptor of specified the integer
io : the file descriptor specified as io.fileno
file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
:close_others => true : don't inherit
current directory:
:chdir => str
The 'cmdname, arg1, ...' form does not use the shell. However,
on different OSes, different things are provided as built-in
commands. An example of this is 'echo', which is a built-in
on Windows, but is a normal program on Linux and Mac OS X.
This means that `Process.spawn 'echo', '%Path%'` will display
the contents of the `%Path%` environment variable on Windows,
but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.
If a hash is given as env
, the environment is updated by env
before exec(2)
in the child process. If a pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.
The :unsetenv_others
key in options
specifies to clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process group. The corresponding value should be true, zero or positive integer. true and zero means the process should be a process leader of a new process group. Other values specifies a process group to be belongs.
pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid)
on the subprocess. :new_pgroup is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group
pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit. foo should be one of resource types such as core
. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.
cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by spawn
. :err, 2 and STDERR specifies the standard error stream (stderr).
The hash values specifies a file descriptor in the parent process which invokes spawn
. :out, 1 and STDOUT specifies the standard output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is true by default for spawn and IO.popen.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w) # r, w is closed in the child process.
w.close
:close is specified as a hash value to close a fd individually.
f = open(foo)
system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn
uses an extra file descriptor to resolve such cyclic file descriptor mapping.
See Kernel.exec
for the standard shell.
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 |
# File 'process.c', line 4282
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
rb_execarg_fixup(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
pid = rb_spawn_process(eargp, errmsg, sizeof(errmsg));
RB_GC_GUARD(execarg_obj);
if (pid == -1) {
const char *prog = errmsg;
if (!prog[0]) {
rb_sys_fail_str(fail_str);
}
rb_sys_fail(prog);
}
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
|
.times ⇒ aProcessTms
Returns a Tms
structure (see Process::Tms
) that contains user and system CPU times for this process, and also for children processes.
t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00]
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 |
# File 'process.c', line 6858
VALUE
rb_proc_times(VALUE obj)
{
const double hertz = get_clk_tck();
struct tms buf;
VALUE utime, stime, cutime, cstime, ret;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
|
.uid ⇒ Fixnum .Process::UID.rid ⇒ Fixnum .Process::Sys.getuid ⇒ Fixnum
Returns the (real) user ID of this process.
Process.uid #=> 501
5263 5264 5265 5266 5267 5268 |
# File 'process.c', line 5263
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
|
.uid=(user) ⇒ Numeric
Sets the (user) user ID for this process. Not available on all platforms.
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 |
# File 'process.c', line 5280
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
|
.wait ⇒ Fixnum .wait(pid = -1, flags = 0) ⇒ Fixnum .waitpid(pid = -1, flags = 0) ⇒ Fixnum
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# File 'process.c', line 921
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
966 967 968 969 970 971 972 |
# File 'process.c', line 966
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
.waitall ⇒ Array
Waits for all children, returning an array of pid/status pairs (where status is a Process::Status
object).
fork { sleep 0.2; exit 2 } #=> 27432
fork { sleep 0.1; exit 1 } #=> 27433
fork { exit 0 } #=> 27434
p Process.waitall
produces:
[[30982, #<Process::Status: pid 30982 exit 0>],
[30979, #<Process::Status: pid 30979 exit 1>],
[30976, #<Process::Status: pid 30976 exit 2>]]
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# File 'process.c', line 995
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
|
.wait ⇒ Fixnum .wait(pid = -1, flags = 0) ⇒ Fixnum .waitpid(pid = -1, flags = 0) ⇒ Fixnum
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# File 'process.c', line 921
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
966 967 968 969 970 971 972 |
# File 'process.c', line 966
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
Instance Method Details
#argv0 ⇒ Object (private)
Returns the name of the script being executed. The value is not affected by assigning a new value to $0.
This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.
1780 1781 1782 1783 1784 |
# File 'ruby.c', line 1780
static VALUE
proc_argv0(VALUE process)
{
return rb_orig_progname;
}
|
#clock_getres(clock_id[, unit]) ⇒ Numeric (private)
Returns the time resolution returned by POSIX clock_getres() function.
clock_id
specifies a kind of clock. See the document of Process.clock_gettime
for details.
clock_id
can be a symbol as Process.clock_gettime
. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value. Process.clock_getres
accepts unit
as Process.clock_gettime
. The default value, :float_second
, is also same as Process.clock_gettime
.
Process.clock_getres
also accepts :hertz
as unit
. :hertz
means a the reciprocal of :float_second
.
:hertz
can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.
Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.
p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 |
# File 'process.c', line 7401
VALUE
rb_clock_getres(int argc, VALUE *argv)
{
VALUE clk_id, unit;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
clockid_t c = NUM2CLOCKID(clk_id);
int ret = clock_getres(c, &ts);
if (ret == -1)
rb_sys_fail("clock_getres");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
if (unit == ID2SYM(id_hertz)) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
|
#clock_gettime(clock_id[, unit]) ⇒ Numeric (private)
Returns a time returned by POSIX clock_gettime() function.
p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096
clock_id
specifies a kind of clock. It is specifed as a constant which begins with Process::CLOCK_
such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.
The supported constants depends on OS and version. Ruby provides following types of clock_id
if available.
- CLOCK_REALTIME
-
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1
- CLOCK_MONOTONIC
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4
- CLOCK_PROCESS_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, OpenBSD 5.4
- CLOCK_THREAD_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4
- CLOCK_VIRTUAL
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_PROF
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_REALTIME_FAST
-
FreeBSD 8.1
- CLOCK_REALTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_REALTIME_COARSE
-
Linux 2.6.32
- CLOCK_REALTIME_ALARM
-
Linux 3.0
- CLOCK_MONOTONIC_FAST
-
FreeBSD 8.1
- CLOCK_MONOTONIC_PRECISE
-
FreeBSD 8.1
- CLOCK_MONOTONIC_COARSE
-
Linux 2.6.32
- CLOCK_MONOTONIC_RAW
-
Linux 2.6.28
- CLOCK_BOOTTIME
-
Linux 2.6.39
- CLOCK_BOOTTIME_ALARM
-
Linux 3.0
- CLOCK_UPTIME
-
FreeBSD 7.0, OpenBSD 5.5
- CLOCK_UPTIME_FAST
-
FreeBSD 8.1
- CLOCK_UPTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_SECOND
-
FreeBSD 8.1
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.
Also, several symbols are accepted as clock_id
. There are emulations for clock_gettime().
For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME
when clock_gettime() is not available.
Emulations for CLOCK_REALTIME
:
- :GETTIMEOFDAY_BASED_CLOCK_REALTIME
-
Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.
- :TIME_BASED_CLOCK_REALTIME
-
Use time() defined by ISO C. The resolution is 1 second.
Emulations for CLOCK_MONOTONIC
:
- :MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
-
Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.
- :TIMES_BASED_CLOCK_MONOTONIC
-
Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
Emulations for CLOCK_PROCESS_CPUTIME_ID
:
- :GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.
- :TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.
- :CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value.
- :float_second
-
number of seconds as a float (default)
- :float_millisecond
-
number of milliseconds as a float
- :float_microsecond
-
number of microseconds as a float
- :second
-
number of seconds as an integer
- :millisecond
-
number of milliseconds as an integer
- :microsecond
-
number of microseconds as an integer
- :nanosecond
-
number of nanoseconds as an integer
The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds
as the unit
.
The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.
The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 |
# File 'process.c', line 7205
VALUE
rb_clock_gettime(int argc, VALUE *argv)
{
VALUE clk_id, unit;
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*
* gettimeofday is always available on platforms supported by Ruby.
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
clockid_t c;
c = NUM2CLOCKID(clk_id);
ret = clock_gettime(c, &ts);
if (ret == -1)
rb_sys_fail("clock_gettime");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
|
#daemon ⇒ 0 (private) #daemon(nochdir = nil, noclose = nil) ⇒ 0 (private)
Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 |
# File 'process.c', line 5960
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
int n;
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
prefork();
n = rb_daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
|
#detach(pid) ⇒ Object (private)
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()
. If the parent never collects this status, the child stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use detach
only when you do not intent to explicitly wait for the child to terminate.
The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join
to know the result. If specified pid is not a valid child process ID, the thread returns nil
immediately.
The waiting thread has pid
method which returns the pid.
In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach
is used to reap the child automatically.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
(produces no output)
1114 1115 1116 1117 1118 1119 |
# File 'process.c', line 1114
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
|
#egid ⇒ Fixnum (private) #Process::GID.eid ⇒ Fixnum (private) #Process::Sys.geteid ⇒ Fixnum (private)
6354 6355 6356 6357 6358 6359 6360 |
# File 'process.c', line 6354
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
|
#egid= ⇒ Object (private)
#euid ⇒ Fixnum (private) #Process::UID.eid ⇒ Fixnum (private) #Process::Sys.geteuid ⇒ Fixnum (private)
6230 6231 6232 6233 6234 6235 |
# File 'process.c', line 6230
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
|
#euid=(user) ⇒ Object (private)
Sets the effective user ID for this process. Not available on all platforms.
6269 6270 6271 6272 6273 6274 6275 |
# File 'process.c', line 6269
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
|
#getpgid(pid) ⇒ Integer (private)
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 |
# File 'process.c', line 4422
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
|
#getpgrp ⇒ Integer (private)
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 |
# File 'process.c', line 4361
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
|
#getpriority(kind, integer) ⇒ Fixnum (private)
Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP
, Process::PRIO_USER
, or Process::PRIO_PROCESS
. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 |
# File 'process.c', line 4574
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
|
#getrlimit(resource) ⇒ Array (private)
Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. See Process.setrlimit for details.
cur_limit and max_limit may be Process::RLIM_INFINITY
, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR
. See Process.setrlimit and the system getrlimit(2) manual for details.
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 |
# File 'process.c', line 4846
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
|
#getsid ⇒ Integer (private) #getsid(pid) ⇒ Integer (private)
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 |
# File 'process.c', line 4476
static VALUE
proc_getsid(int argc, VALUE *argv)
{
rb_pid_t sid;
VALUE pid;
rb_secure(2);
rb_scan_args(argc, argv, "01", &pid);
if (NIL_P(pid))
pid = INT2FIX(0);
sid = getsid(NUM2PIDT(pid));
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
|
#gid ⇒ Fixnum (private) #Process::GID.rid ⇒ Fixnum (private) #Process::Sys.getgid ⇒ Fixnum (private)
5675 5676 5677 5678 5679 5680 |
# File 'process.c', line 5675
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
|
#gid=(fixnum) ⇒ Fixnum (private)
Sets the group ID for this process.
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 |
# File 'process.c', line 5691
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
|
#groups ⇒ Array (private)
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 |
# File 'process.c', line 5782
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
|
#groups=(array) ⇒ Array (private)
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 |
# File 'process.c', line 5826
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
|
#initgroups(username, gid) ⇒ Array (private)
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array
of the gids of all the groups in the supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
Process.groups #=> [30, 6, 10, 11]
5879 5880 5881 5882 5883 5884 5885 5886 |
# File 'process.c', line 5879
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
|
#kill(signal, pid, ...) ⇒ Fixnum (private)
Sends the given signal to the specified process id(s) if pid is positive. If pid is zero signal is sent to all processes whose group ID is equal to the group ID of the process. signal may be an integer signal number or a POSIX signal name (either with or without a SIG
prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list
are known signal names and numbers, respectively.
pid = fork do
Signal.trap("HUP") { puts "Ouch!"; exit }
# ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait
produces:
Ouch!
If signal is an integer but wrong for signal, Errno::EINVAL
or RangeError
will be raised. Otherwise unless signal is a String
or a Symbol
, and a known signal name, ArgumentError
will be raised.
Also, Errno::ESRCH
or RangeError
for invalid pid, Errno::EPERM
when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# File 'signal.c', line 405
VALUE
rb_f_kill(int argc, const VALUE *argv)
{
#ifndef HAVE_KILLPG
#define killpg(pg, sig) kill(-(pg), (sig))
#endif
int negative = 0;
int sig;
int i;
VALUE str;
const char *s;
rb_secure(2);
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
switch (TYPE(argv[0])) {
case T_FIXNUM:
sig = FIX2INT(argv[0]);
break;
case T_SYMBOL:
str = rb_sym2str(argv[0]);
goto str_signal;
case T_STRING:
str = argv[0];
str_signal:
s = RSTRING_PTR(str);
if (s[0] == '-') {
negative++;
s++;
}
if (strncmp(signame_prefix, s, sizeof(signame_prefix)) == 0)
s += 3;
if ((sig = signm2signo(s)) == 0) {
long ofs = s - RSTRING_PTR(str);
if (ofs) str = rb_str_subseq(str, ofs, RSTRING_LEN(str)-ofs);
rb_raise(rb_eArgError, "unsupported name `SIG%"PRIsVALUE"'", str);
}
if (negative)
sig = -sig;
break;
default:
str = rb_check_string_type(argv[0]);
if (!NIL_P(str)) {
goto str_signal;
}
rb_raise(rb_eArgError, "bad signal type %s",
rb_obj_classname(argv[0]));
break;
}
if (argc <= 1) return INT2FIX(0);
if (sig < 0) {
sig = -sig;
for (i=1; i<argc; i++) {
if (killpg(NUM2PIDT(argv[i]), sig) < 0)
rb_sys_fail(0);
}
}
else {
const rb_pid_t self = (GET_THREAD() == GET_VM()->main_thread) ? getpid() : -1;
int wakeup = 0;
for (i=1; i<argc; i++) {
rb_pid_t pid = NUM2PIDT(argv[i]);
if ((sig != 0) && (self != -1) && (pid == self)) {
int t;
/*
* When target pid is self, many caller assume signal will be
* delivered immediately and synchronously.
*/
switch (sig) {
case SIGSEGV:
#ifdef SIGBUS
case SIGBUS:
#endif
#ifdef SIGKILL
case SIGKILL:
#endif
#ifdef SIGSTOP
case SIGSTOP:
#endif
ruby_kill(pid, sig);
break;
default:
t = signal_ignored(sig);
if (t) {
if (t < 0 && kill(pid, sig))
rb_sys_fail(0);
break;
}
signal_enque(sig);
wakeup = 1;
}
}
else if (kill(pid, sig) < 0) {
rb_sys_fail(0);
}
}
if (wakeup) {
rb_threadptr_check_signal(GET_VM()->main_thread);
}
}
rb_thread_execute_interrupts(rb_thread_current());
return INT2FIX(i-1);
}
|
#maxgroups ⇒ Fixnum (private)
5902 5903 5904 5905 5906 |
# File 'process.c', line 5902
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
|
#maxgroups=(fixnum) ⇒ Fixnum (private)
Sets the maximum number of gids allowed in the supplemental group access list.
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 |
# File 'process.c', line 5920
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
|
#pid ⇒ Fixnum (private)
293 294 295 296 297 298 |
# File 'process.c', line 293
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
|
#ppid ⇒ Fixnum (private)
317 318 319 320 321 322 |
# File 'process.c', line 317
static VALUE
get_ppid(void)
{
rb_secure(2);
return PIDT2NUM(getppid());
}
|
#setpgid(pid, integer) ⇒ 0 (private)
Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 |
# File 'process.c', line 4446
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
|
#setpgrp ⇒ 0 (private)
Equivalent to setpgid(0,0)
. Not available on all platforms.
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 |
# File 'process.c', line 4391
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
|
#setpriority(kind, integer, priority) ⇒ 0 (private)
See Process#getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 |
# File 'process.c', line 4606
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
|
#setproctitle(string) ⇒ String (private)
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
1803 1804 1805 1806 1807 1808 1809 1810 1811 |
# File 'ruby.c', line 1803
static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
StringValue(title);
setproctitle("%.*s", RSTRING_LENINT(title), RSTRING_PTR(title));
return title;
}
|
#setrlimit(resource, cur_limit, max_limit) ⇒ nil (private) #setrlimit(resource, cur_limit) ⇒ nil (private)
Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. The available resources are OS dependent. Ruby may support following resources.
- AS
-
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
- CORE
-
core size (bytes) (SUSv3)
- CPU
-
CPU time (seconds) (SUSv3)
- DATA
-
data segment (bytes) (SUSv3)
- FSIZE
-
file size (bytes) (SUSv3)
- MEMLOCK
-
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
- MSGQUEUE
-
allocation for POSIX message queues (bytes) (GNU/Linux)
- NICE
-
ceiling on process’s nice(2) value (number) (GNU/Linux)
- NOFILE
-
file descriptors (number) (SUSv3)
- NPROC
-
number of processes for the user (number) (4.4BSD, GNU/Linux)
- RSS
-
resident memory size (bytes) (4.2BSD, GNU/Linux)
- RTPRIO
-
ceiling on the process’s real-time priority (number) (GNU/Linux)
- RTTIME
-
CPU time for real-time process (us) (GNU/Linux)
- SBSIZE
-
all socket buffers (bytes) (NetBSD, FreeBSD)
- SIGPENDING
-
number of queued signals allowed (signals) (GNU/Linux)
- STACK
-
stack size (bytes) (SUSv3)
cur_limit and max_limit may be :INFINITY
, "INFINITY"
or Process::RLIM_INFINITY
, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX
, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual for details.
The following example raises the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 |
# File 'process.c', line 4914
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
|
#setsid ⇒ Fixnum (private)
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 |
# File 'process.c', line 4513
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
|
#times ⇒ aProcessTms (private)
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 |
# File 'process.c', line 6858
VALUE
rb_proc_times(VALUE obj)
{
const double hertz = get_clk_tck();
struct tms buf;
VALUE utime, stime, cutime, cstime, ret;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
|
#uid ⇒ Fixnum (private) #Process::UID.rid ⇒ Fixnum (private) #Process::Sys.getuid ⇒ Fixnum (private)
5263 5264 5265 5266 5267 5268 |
# File 'process.c', line 5263
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
|
#uid=(user) ⇒ Numeric (private)
Sets the (user) user ID for this process. Not available on all platforms.
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 |
# File 'process.c', line 5280
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
|
#wait ⇒ Fixnum (private) #wait(pid = -1, flags = 0) ⇒ Fixnum (private) #waitpid(pid = -1, flags = 0) ⇒ Fixnum (private)
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# File 'process.c', line 921
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
966 967 968 969 970 971 972 |
# File 'process.c', line 966
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
#waitall ⇒ Array (private)
Waits for all children, returning an array of pid/status pairs (where status is a Process::Status
object).
fork { sleep 0.2; exit 2 } #=> 27432
fork { sleep 0.1; exit 1 } #=> 27433
fork { exit 0 } #=> 27434
p Process.waitall
produces:
[[30982, #<Process::Status: pid 30982 exit 0>],
[30979, #<Process::Status: pid 30979 exit 1>],
[30976, #<Process::Status: pid 30976 exit 2>]]
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# File 'process.c', line 995
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
|
#wait ⇒ Fixnum (private) #wait(pid = -1, flags = 0) ⇒ Fixnum (private) #waitpid(pid = -1, flags = 0) ⇒ Fixnum (private)
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# File 'process.c', line 921
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
966 967 968 969 970 971 972 |
# File 'process.c', line 966
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|