Module: Math
- Defined in:
- math.c
Defined Under Namespace
Classes: DomainError
Constant Summary collapse
- PI =
Definition of the mathematical constant PI as a Float number.
DBL2NUM(atan(1.0)*4.0)
- E =
Definition of the mathematical constant E (e) as a Float number.
DBL2NUM(exp(1.0))
Class Method Summary collapse
-
.acos(x) ⇒ Float
Computes the arc cosine of
x
. -
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of
x
. -
.asin(x) ⇒ Float
Computes the arc sine of
x
. -
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of
x
. -
.atan(x) ⇒ Float
Computes the arc tangent of
x
. -
.atan2(y, x) ⇒ Float
Computes the arc tangent given
y
andx
. -
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of
x
. -
.cbrt(x) ⇒ Float
Returns the cube root of
x
. -
.cos(x) ⇒ Float
Computes the cosine of
x
(expressed in radians). -
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of
x
(expressed in radians). -
.erf(x) ⇒ Float
Calculates the error function of
x
. -
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
-
.exp(x) ⇒ Float
Returns e**x.
-
.frexp(x) ⇒ Array
Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of
x
. -
.gamma(x) ⇒ Float
Calculates the gamma function of x.
-
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides
x
andy
. -
.ldexp(fraction, exponent) ⇒ Float
Returns the value of
fraction
*(2**exponent
). -
.lgamma(x) ⇒ Array, ...
Calculates the logarithmic gamma of
x
and the sign of gamma ofx
. -
.log(*args) ⇒ Object
Returns the logarithm of
x
. -
.log10(x) ⇒ Float
Returns the base 10 logarithm of
x
. -
.log2(x) ⇒ Float
Returns the base 2 logarithm of
x
. -
.sin(x) ⇒ Float
Computes the sine of
x
(expressed in radians). -
.sinh(x) ⇒ Float
Computes the hyperbolic sine of
x
(expressed in radians). -
.sqrt(x) ⇒ Float
Returns the non-negative square root of
x
. -
.tan(x) ⇒ Float
Computes the tangent of
x
(expressed in radians). -
.tanh(x) ⇒ Float
Computes the hyperbolic tangent of
x
(expressed in radians).
Instance Method Summary collapse
-
#acos(x) ⇒ Float
private
Computes the arc cosine of
x
. -
#acosh(x) ⇒ Float
private
Computes the inverse hyperbolic cosine of
x
. -
#asin(x) ⇒ Float
private
Computes the arc sine of
x
. -
#asinh(x) ⇒ Float
private
Computes the inverse hyperbolic sine of
x
. -
#atan(x) ⇒ Float
private
Computes the arc tangent of
x
. -
#atan2(y, x) ⇒ Float
private
Computes the arc tangent given
y
andx
. -
#atanh(x) ⇒ Float
private
Computes the inverse hyperbolic tangent of
x
. -
#cbrt(x) ⇒ Float
private
Returns the cube root of
x
. -
#cos(x) ⇒ Float
private
Computes the cosine of
x
(expressed in radians). -
#cosh(x) ⇒ Float
private
Computes the hyperbolic cosine of
x
(expressed in radians). -
#erf(x) ⇒ Float
private
Calculates the error function of
x
. -
#erfc(x) ⇒ Float
private
Calculates the complementary error function of x.
-
#exp(x) ⇒ Float
private
Returns e**x.
-
#frexp(x) ⇒ Array
private
Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of
x
. -
#gamma(x) ⇒ Float
private
Calculates the gamma function of x.
-
#hypot(x, y) ⇒ Float
private
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides
x
andy
. -
#ldexp(fraction, exponent) ⇒ Float
private
Returns the value of
fraction
*(2**exponent
). -
#lgamma(x) ⇒ Array, ...
private
Calculates the logarithmic gamma of
x
and the sign of gamma ofx
. -
#log(*args) ⇒ Object
private
Returns the logarithm of
x
. -
#log10(x) ⇒ Float
private
Returns the base 10 logarithm of
x
. -
#log2(x) ⇒ Float
private
Returns the base 2 logarithm of
x
. -
#sin(x) ⇒ Float
private
Computes the sine of
x
(expressed in radians). -
#sinh(x) ⇒ Float
private
Computes the hyperbolic sine of
x
(expressed in radians). -
#sqrt(x) ⇒ Float
private
Returns the non-negative square root of
x
. -
#tan(x) ⇒ Float
private
Computes the tangent of
x
(expressed in radians). -
#tanh(x) ⇒ Float
private
Computes the hyperbolic tangent of
x
(expressed in radians).
Class Method Details
.acos(x) ⇒ Float
169 170 171 172 173 174 175 176 177 178 |
# File 'math.c', line 169
static VALUE
math_acos(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("acos");
return DBL2NUM(acos(d));
}
|
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of x
.
Domain: [1, INFINITY)
Codomain: [0, INFINITY)
Math.acosh(1) #=> 0.0
321 322 323 324 325 326 327 328 329 330 |
# File 'math.c', line 321
static VALUE
math_acosh(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 1.0) domain_error("acosh");
return DBL2NUM(acosh(d));
}
|
.asin(x) ⇒ Float
193 194 195 196 197 198 199 200 201 202 |
# File 'math.c', line 193
static VALUE
math_asin(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("asin");
return DBL2NUM(asin(d));
}
|
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.asinh(1) #=> 0.881373587019543
346 347 348 349 350 |
# File 'math.c', line 346
static VALUE
math_asinh(VALUE obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x)));
}
|
.atan(x) ⇒ Float
Computes the arc tangent of x
. Returns -PI/2..PI/2.
Domain: (-INFINITY, INFINITY)
Codomain: (-PI/2, PI/2)
Math.atan(0) #=> 0.0
217 218 219 220 221 |
# File 'math.c', line 217
static VALUE
math_atan(VALUE obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x)));
}
|
.atan2(y, x) ⇒ Float
Computes the arc tangent given y
and x
. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x
, y
) on it.
Domain: (-INFINITY, INFINITY)
Codomain: [-PI, PI]
Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
Math.atan2(-0.0, 1.0) #=> -0.0
Math.atan2(0.0, 1.0) #=> 0.0
Math.atan2(1.0, 1.0) #=> 0.7853981633974483
Math.atan2(1.0, 0.0) #=> 1.5707963267948966
Math.atan2(1.0, -1.0) #=> 2.356194490192345
Math.atan2(0.0, -1.0) #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'math.c', line 62
static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x);
dy = Get_Double(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
else {
const double dz = (M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
}
#endif
return DBL2NUM(atan2(dy, dx));
}
|
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of x
.
Domain: (-1, 1)
Codomain: (-INFINITY, INFINITY)
Math.atanh(1) #=> Infinity
366 367 368 369 370 371 372 373 374 375 376 377 378 |
# File 'math.c', line 366
static VALUE
math_atanh(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || +1.0 < d) domain_error("atanh");
/* check for pole error */
if (d == -1.0) return DBL2NUM(-INFINITY);
if (d == +1.0) return DBL2NUM(+INFINITY);
return DBL2NUM(atanh(d));
}
|
.cbrt(x) ⇒ Float
Returns the cube root of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x|
p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
# [-8, -2.0, -8.0]
# [-7, -1.91293118277239, -7.0]
# [-6, -1.81712059283214, -6.0]
# [-5, -1.7099759466767, -5.0]
# [-4, -1.5874010519682, -4.0]
# [-3, -1.44224957030741, -3.0]
# [-2, -1.25992104989487, -2.0]
# [-1, -1.0, -1.0]
# [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.25992104989487, 2.0]
# [3, 1.44224957030741, 3.0]
# [4, 1.5874010519682, 4.0]
# [5, 1.7099759466767, 5.0]
# [6, 1.81712059283214, 6.0]
# [7, 1.91293118277239, 7.0]
# [8, 2.0, 8.0]
# [9, 2.0800838230519, 9.0]
638 639 640 641 642 |
# File 'math.c', line 638
static VALUE
math_cbrt(VALUE obj, VALUE x)
{
return DBL2NUM(cbrt(Get_Double(x)));
}
|
.cos(x) ⇒ Float
107 108 109 110 111 |
# File 'math.c', line 107
static VALUE
math_cos(VALUE obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x)));
}
|
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of x
(expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: [1, INFINITY)
Math.cosh(0) #=> 1.0
245 246 247 248 249 |
# File 'math.c', line 245
static VALUE
math_cosh(VALUE obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x)));
}
|
.erf(x) ⇒ Float
Calculates the error function of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
711 712 713 714 715 |
# File 'math.c', line 711
static VALUE
math_erf(VALUE obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x)));
}
|
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
731 732 733 734 735 |
# File 'math.c', line 731
static VALUE
math_erfc(VALUE obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x)));
}
|
.exp(x) ⇒ Float
396 397 398 399 400 |
# File 'math.c', line 396
static VALUE
math_exp(VALUE obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x)));
}
|
.frexp(x) ⇒ Array
Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of x
.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
fraction * 2**exponent #=> 1234.0
655 656 657 658 659 660 661 662 663 |
# File 'math.c', line 655
static VALUE
math_frexp(VALUE obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
|
.gamma(x) ⇒ Float
Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
# [2, 1.0, 1]
# [3, 2.0, 2]
# [4, 6.0, 6]
# [5, 24.0, 24]
# [6, 120.0, 120]
# [7, 720.0, 720]
# [8, 5040.0, 5040]
# [9, 40320.0, 40320]
# [10, 362880.0, 362880]
# [11, 3628800.0, 3628800]
# [12, 39916800.0, 39916800]
# [13, 479001600.0, 479001600]
# [14, 6227020800.0, 6227020800]
# [15, 87178291200.0, 87178291200]
# [16, 1307674368000.0, 1307674368000]
# [17, 20922789888000.0, 20922789888000]
# [18, 355687428096000.0, 355687428096000]
# [19, 6.402373705728e+15, 6402373705728000]
# [20, 1.21645100408832e+17, 121645100408832000]
# [21, 2.43290200817664e+18, 2432902008176640000]
# [22, 5.109094217170944e+19, 51090942171709440000]
# [23, 1.1240007277776077e+21, 1124000727777607680000]
# [24, 2.5852016738885062e+22, 25852016738884976640000]
# [25, 6.204484017332391e+23, 620448401733239439360000]
# [26, 1.5511210043330954e+25, 15511210043330985984000000]
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
# File 'math.c', line 809
static VALUE
math_gamma(VALUE obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x);
/* check for domain error */
if (isinf(d) && signbit(d)) domain_error("gamma");
if (d == floor(d)) {
if (d < 0.0) domain_error("gamma");
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]);
}
}
return DBL2NUM(tgamma(d));
}
|
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x
and y
.
Math.hypot(3, 4) #=> 5.0
691 692 693 694 695 |
# File 'math.c', line 691
static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
|
.ldexp(fraction, exponent) ⇒ Float
675 676 677 678 679 |
# File 'math.c', line 675
static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
|
.lgamma(x) ⇒ Array, ...
Calculates the logarithmic gamma of x
and the sign of gamma of x
.
Math.lgamma(x) is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.
Math.lgamma(0) #=> [Infinity, 1]
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
# File 'math.c', line 868
static VALUE
math_lgamma(VALUE obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
}
v = DBL2NUM(lgamma_r(d, &sign));
return rb_assoc_new(v, INT2FIX(sign));
}
|
.log(x) ⇒ Float .log(x, base) ⇒ Float
Returns the logarithm of x
. If additional second argument is given, it will be the base of logarithm. Otherwise it is e
(for the natural logarithm).
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log(0) #=> -Infinity
Math.log(1) #=> 0.0
Math.log(Math::E) #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3) #=> 2.2618595071429146
434 435 436 437 438 439 440 441 442 443 444 445 446 |
# File 'math.c', line 434
static VALUE
math_log(int argc, const VALUE *argv, VALUE obj)
{
VALUE x, base;
double d;
rb_scan_args(argc, argv, "11", &x, &base);
d = math_log1(x);
if (argc == 2) {
d /= math_log1(base);
}
return DBL2NUM(d);
}
|
.log10(x) ⇒ Float
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
# File 'math.c', line 541
static VALUE
math_log10(VALUE obj, VALUE x)
{
double d;
size_t numbits;
if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
numbits -= DBL_MANT_DIG;
x = rb_big_rshift(x, SIZET2NUM(numbits));
}
else {
numbits = 0;
}
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("log10");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY);
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
|
.log2(x) ⇒ Float
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# File 'math.c', line 501
static VALUE
math_log2(VALUE obj, VALUE x)
{
double d;
size_t numbits;
if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
numbits -= DBL_MANT_DIG;
x = rb_big_rshift(x, SIZET2NUM(numbits));
}
else {
numbits = 0;
}
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("log2");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY);
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
|
.sin(x) ⇒ Float
128 129 130 131 132 |
# File 'math.c', line 128
static VALUE
math_sin(VALUE obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x)));
}
|
.sinh(x) ⇒ Float
Computes the hyperbolic sine of x
(expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.sinh(0) #=> 0.0
273 274 275 276 277 |
# File 'math.c', line 273
static VALUE
math_sinh(VALUE obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x)));
}
|
.sqrt(x) ⇒ Float
Returns the non-negative square root of x
.
Domain: [0, INFINITY)
Codomain:[0, INFINITY)
0.upto(10) {|x|
p [x, Math.sqrt(x), Math.sqrt(x)**2]
}
#=> [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.4142135623731, 2.0]
# [3, 1.73205080756888, 3.0]
# [4, 2.0, 4.0]
# [5, 2.23606797749979, 5.0]
# [6, 2.44948974278318, 6.0]
# [7, 2.64575131106459, 7.0]
# [8, 2.82842712474619, 8.0]
# [9, 3.0, 9.0]
# [10, 3.16227766016838, 10.0]
591 592 593 594 595 596 597 598 599 600 601 |
# File 'math.c', line 591
static VALUE
math_sqrt(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("sqrt");
if (d == 0.0) return DBL2NUM(0.0);
return DBL2NUM(sqrt(d));
}
|
Instance Method Details
#acos(x) ⇒ Float (private)
169 170 171 172 173 174 175 176 177 178 |
# File 'math.c', line 169
static VALUE
math_acos(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("acos");
return DBL2NUM(acos(d));
}
|
#acosh(x) ⇒ Float (private)
321 322 323 324 325 326 327 328 329 330 |
# File 'math.c', line 321
static VALUE
math_acosh(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 1.0) domain_error("acosh");
return DBL2NUM(acosh(d));
}
|
#asin(x) ⇒ Float (private)
193 194 195 196 197 198 199 200 201 202 |
# File 'math.c', line 193
static VALUE
math_asin(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("asin");
return DBL2NUM(asin(d));
}
|
#asinh(x) ⇒ Float (private)
346 347 348 349 350 |
# File 'math.c', line 346
static VALUE
math_asinh(VALUE obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x)));
}
|
#atan(x) ⇒ Float (private)
217 218 219 220 221 |
# File 'math.c', line 217
static VALUE
math_atan(VALUE obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x)));
}
|
#atan2(y, x) ⇒ Float (private)
Computes the arc tangent given y
and x
. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x
, y
) on it.
Domain: (-INFINITY, INFINITY)
Codomain: [-PI, PI]
Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
Math.atan2(-0.0, 1.0) #=> -0.0
Math.atan2(0.0, 1.0) #=> 0.0
Math.atan2(1.0, 1.0) #=> 0.7853981633974483
Math.atan2(1.0, 0.0) #=> 1.5707963267948966
Math.atan2(1.0, -1.0) #=> 2.356194490192345
Math.atan2(0.0, -1.0) #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'math.c', line 62
static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x);
dy = Get_Double(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
else {
const double dz = (M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
}
#endif
return DBL2NUM(atan2(dy, dx));
}
|
#atanh(x) ⇒ Float (private)
366 367 368 369 370 371 372 373 374 375 376 377 378 |
# File 'math.c', line 366
static VALUE
math_atanh(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || +1.0 < d) domain_error("atanh");
/* check for pole error */
if (d == -1.0) return DBL2NUM(-INFINITY);
if (d == +1.0) return DBL2NUM(+INFINITY);
return DBL2NUM(atanh(d));
}
|
#cbrt(x) ⇒ Float (private)
Returns the cube root of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x|
p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
# [-8, -2.0, -8.0]
# [-7, -1.91293118277239, -7.0]
# [-6, -1.81712059283214, -6.0]
# [-5, -1.7099759466767, -5.0]
# [-4, -1.5874010519682, -4.0]
# [-3, -1.44224957030741, -3.0]
# [-2, -1.25992104989487, -2.0]
# [-1, -1.0, -1.0]
# [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.25992104989487, 2.0]
# [3, 1.44224957030741, 3.0]
# [4, 1.5874010519682, 4.0]
# [5, 1.7099759466767, 5.0]
# [6, 1.81712059283214, 6.0]
# [7, 1.91293118277239, 7.0]
# [8, 2.0, 8.0]
# [9, 2.0800838230519, 9.0]
638 639 640 641 642 |
# File 'math.c', line 638
static VALUE
math_cbrt(VALUE obj, VALUE x)
{
return DBL2NUM(cbrt(Get_Double(x)));
}
|
#cos(x) ⇒ Float (private)
107 108 109 110 111 |
# File 'math.c', line 107
static VALUE
math_cos(VALUE obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x)));
}
|
#cosh(x) ⇒ Float (private)
245 246 247 248 249 |
# File 'math.c', line 245
static VALUE
math_cosh(VALUE obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x)));
}
|
#erf(x) ⇒ Float (private)
Calculates the error function of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
711 712 713 714 715 |
# File 'math.c', line 711
static VALUE
math_erf(VALUE obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x)));
}
|
#erfc(x) ⇒ Float (private)
Calculates the complementary error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
731 732 733 734 735 |
# File 'math.c', line 731
static VALUE
math_erfc(VALUE obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x)));
}
|
#exp(x) ⇒ Float (private)
396 397 398 399 400 |
# File 'math.c', line 396
static VALUE
math_exp(VALUE obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x)));
}
|
#frexp(x) ⇒ Array (private)
655 656 657 658 659 660 661 662 663 |
# File 'math.c', line 655
static VALUE
math_frexp(VALUE obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
|
#gamma(x) ⇒ Float (private)
Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
# [2, 1.0, 1]
# [3, 2.0, 2]
# [4, 6.0, 6]
# [5, 24.0, 24]
# [6, 120.0, 120]
# [7, 720.0, 720]
# [8, 5040.0, 5040]
# [9, 40320.0, 40320]
# [10, 362880.0, 362880]
# [11, 3628800.0, 3628800]
# [12, 39916800.0, 39916800]
# [13, 479001600.0, 479001600]
# [14, 6227020800.0, 6227020800]
# [15, 87178291200.0, 87178291200]
# [16, 1307674368000.0, 1307674368000]
# [17, 20922789888000.0, 20922789888000]
# [18, 355687428096000.0, 355687428096000]
# [19, 6.402373705728e+15, 6402373705728000]
# [20, 1.21645100408832e+17, 121645100408832000]
# [21, 2.43290200817664e+18, 2432902008176640000]
# [22, 5.109094217170944e+19, 51090942171709440000]
# [23, 1.1240007277776077e+21, 1124000727777607680000]
# [24, 2.5852016738885062e+22, 25852016738884976640000]
# [25, 6.204484017332391e+23, 620448401733239439360000]
# [26, 1.5511210043330954e+25, 15511210043330985984000000]
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
# File 'math.c', line 809
static VALUE
math_gamma(VALUE obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x);
/* check for domain error */
if (isinf(d) && signbit(d)) domain_error("gamma");
if (d == floor(d)) {
if (d < 0.0) domain_error("gamma");
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]);
}
}
return DBL2NUM(tgamma(d));
}
|
#hypot(x, y) ⇒ Float (private)
691 692 693 694 695 |
# File 'math.c', line 691
static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
|
#ldexp(fraction, exponent) ⇒ Float (private)
675 676 677 678 679 |
# File 'math.c', line 675
static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
|
#lgamma(x) ⇒ Array, ... (private)
Calculates the logarithmic gamma of x
and the sign of gamma of x
.
Math.lgamma(x) is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.
Math.lgamma(0) #=> [Infinity, 1]
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
# File 'math.c', line 868
static VALUE
math_lgamma(VALUE obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
}
v = DBL2NUM(lgamma_r(d, &sign));
return rb_assoc_new(v, INT2FIX(sign));
}
|
#log(x) ⇒ Float (private) #log(x, base) ⇒ Float (private)
Returns the logarithm of x
. If additional second argument is given, it will be the base of logarithm. Otherwise it is e
(for the natural logarithm).
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log(0) #=> -Infinity
Math.log(1) #=> 0.0
Math.log(Math::E) #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3) #=> 2.2618595071429146
434 435 436 437 438 439 440 441 442 443 444 445 446 |
# File 'math.c', line 434
static VALUE
math_log(int argc, const VALUE *argv, VALUE obj)
{
VALUE x, base;
double d;
rb_scan_args(argc, argv, "11", &x, &base);
d = math_log1(x);
if (argc == 2) {
d /= math_log1(base);
}
return DBL2NUM(d);
}
|
#log10(x) ⇒ Float (private)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
# File 'math.c', line 541
static VALUE
math_log10(VALUE obj, VALUE x)
{
double d;
size_t numbits;
if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
numbits -= DBL_MANT_DIG;
x = rb_big_rshift(x, SIZET2NUM(numbits));
}
else {
numbits = 0;
}
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("log10");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY);
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
|
#log2(x) ⇒ Float (private)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# File 'math.c', line 501
static VALUE
math_log2(VALUE obj, VALUE x)
{
double d;
size_t numbits;
if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
numbits -= DBL_MANT_DIG;
x = rb_big_rshift(x, SIZET2NUM(numbits));
}
else {
numbits = 0;
}
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("log2");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY);
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
|
#sin(x) ⇒ Float (private)
128 129 130 131 132 |
# File 'math.c', line 128
static VALUE
math_sin(VALUE obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x)));
}
|
#sinh(x) ⇒ Float (private)
273 274 275 276 277 |
# File 'math.c', line 273
static VALUE
math_sinh(VALUE obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x)));
}
|
#sqrt(x) ⇒ Float (private)
Returns the non-negative square root of x
.
Domain: [0, INFINITY)
Codomain:[0, INFINITY)
0.upto(10) {|x|
p [x, Math.sqrt(x), Math.sqrt(x)**2]
}
#=> [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.4142135623731, 2.0]
# [3, 1.73205080756888, 3.0]
# [4, 2.0, 4.0]
# [5, 2.23606797749979, 5.0]
# [6, 2.44948974278318, 6.0]
# [7, 2.64575131106459, 7.0]
# [8, 2.82842712474619, 8.0]
# [9, 3.0, 9.0]
# [10, 3.16227766016838, 10.0]
591 592 593 594 595 596 597 598 599 600 601 |
# File 'math.c', line 591
static VALUE
math_sqrt(VALUE obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 0.0) domain_error("sqrt");
if (d == 0.0) return DBL2NUM(0.0);
return DBL2NUM(sqrt(d));
}
|
#tan(x) ⇒ Float (private)
149 150 151 152 153 |
# File 'math.c', line 149
static VALUE
math_tan(VALUE obj, VALUE x)
{
return DBL2NUM(tan(Get_Double(x)));
}
|