Class: Float
Overview
******************************************************************
Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. see following:
- http://docs.sun.com/source/806-3568/ncg_goldberg.html
- http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
- http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constant Summary collapse
- ROUNDS =
-1:: Indeterminable 0:: Rounding towards zero 1:: Rounding to the nearest number 2:: Rounding towards positive infinity 3:: Rounding towards negative infinity
Represents the rounding mode for floating point addition. Usually defaults to 1, rounding to the nearest number. Other modes include
- RADIX =
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
INT2FIX(FLT_RADIX)
- MANT_DIG =
The number of base digits for the
double
data type.Usually defaults to 53.
INT2FIX(DBL_MANT_DIG)
- DIG =
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
INT2FIX(DBL_DIG)
- MIN_EXP =
The smallest posable exponent value in a double-precision floating point.
Usually defaults to -1021.
INT2FIX(DBL_MIN_EXP)
- MAX_EXP =
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
INT2FIX(DBL_MAX_EXP)
- MIN_10_EXP =
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
INT2FIX(DBL_MIN_10_EXP)
- MAX_10_EXP =
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
INT2FIX(DBL_MAX_10_EXP)
- MIN =
:MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
The smallest positive normalized number in a double-precision floating point. Usually defaults to 2.2250738585072014e-308. If the platform supports denormalized numbers, there are numbers between zero and Float
- MAX =
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
DBL2NUM(DBL_MAX)
- EPSILON =
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
DBL2NUM(DBL_EPSILON)
- INFINITY =
An expression representing positive infinity.
DBL2NUM(INFINITY)
- NAN =
An expression representing a value which is “not a number”.
DBL2NUM(NAN)
Instance Method Summary collapse
-
#%(y) ⇒ Object
Return the modulo after division of
float
byother
. -
#*(other) ⇒ Float
Returns a new float which is the product of
float
andother
. -
#**(other) ⇒ Float
Raises
float
to the power ofother
. -
#+(other) ⇒ Float
Returns a new float which is the sum of
float
andother
. -
#-(other) ⇒ Float
Returns a new float which is the difference of
float
andother
. -
#- ⇒ Float
Returns float, negated.
-
#/(other) ⇒ Float
Returns a new float which is the result of dividing
float
byother
. -
#<(real) ⇒ Boolean
Returns
true
iffloat
is less thanreal
. -
#<=(real) ⇒ Boolean
Returns
true
iffloat
is less than or equal toreal
. -
#<=>(real) ⇒ -1, ...
Returns -1, 0, +1 or nil depending on whether
float
is less than, equal to, or greater thanreal
. -
#==(obj) ⇒ Boolean
Returns
true
only ifobj
has the same value asfloat
. -
#==(obj) ⇒ Boolean
Returns
true
only ifobj
has the same value asfloat
. -
#>(real) ⇒ Boolean
Returns
true
iffloat
is greater thanreal
. -
#>=(real) ⇒ Boolean
Returns
true
iffloat
is greater than or equal toreal
. -
#abs ⇒ Object
Returns the absolute value of
float
. -
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest Integer greater than or equal to
float
. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numeric
and afloat
represented as Float objects. -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#divmod(numeric) ⇒ Array
See Numeric#divmod.
-
#eql?(obj) ⇒ Boolean
Returns
true
only ifobj
is a Float with the same value asfloat
. -
#fdiv(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#finite? ⇒ Boolean
Returns
true
iffloat
is a valid IEEE floating point number (it is not infinite, and Float#nan? isfalse
). -
#floor ⇒ Integer
Returns the largest integer less than or equal to
float
. -
#hash ⇒ Integer
Returns a hash code for this float.
-
#infinite? ⇒ nil, ...
Return values corresponding to the value of
float
:. -
#magnitude ⇒ Object
Returns the absolute value of
float
. -
#modulo(y) ⇒ Object
Return the modulo after division of
float
byother
. -
#nan? ⇒ Boolean
Returns
true
iffloat
is an invalid IEEE floating point number. -
#negative? ⇒ Boolean
Returns
true
iffloat
is less than 0. -
#next_float ⇒ Float
Returns the next representable floating-point number.
-
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#positive? ⇒ Boolean
Returns
true
iffloat
is greater than 0. -
#prev_float ⇒ Float
Returns the previous representable floating-point number.
-
#quo(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|).
-
#round([ndigits]) ⇒ Integer, Float
Rounds
float
to a given precision in decimal digits (default 0 digits). -
#to_f ⇒ self
Since
float
is already a float, returnsself
. -
#to_i ⇒ Object
Returns the
float
truncated to an Integer. -
#to_int ⇒ Object
Returns the
float
truncated to an Integer. -
#to_r ⇒ Object
Returns the value as a rational.
-
#to_s ⇒ String
(also: #inspect)
Returns a string containing a representation of self.
-
#truncate ⇒ Object
Returns the
float
truncated to an Integer. -
#zero? ⇒ Boolean
Returns
true
iffloat
is 0.0.
Methods inherited from Numeric
#+@, #abs2, #conj, #conjugate, #div, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c
Methods included from Comparable
Instance Method Details
#%(other) ⇒ Float #modulo(other) ⇒ Float
Return the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21
6543.21.modulo(137.24) #=> 92.9299999999996
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
# File 'numeric.c', line 999
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#*(other) ⇒ Float
Returns a new float which is the product of float
and other
.
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
# File 'numeric.c', line 878
static VALUE
flo_mul(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
|
#**(other) ⇒ Float
Raises float
to the power of other
.
2.0**3 #=> 8.0
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
# File 'numeric.c', line 1073
static VALUE
flo_pow(VALUE x, VALUE y)
{
double dx, dy;
if (RB_TYPE_P(y, T_FIXNUM)) {
dx = RFLOAT_VALUE(x);
dy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
dx = RFLOAT_VALUE(x);
dy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx < 0 && dy != round(dy))
return rb_funcall(rb_complex_raw1(x), idPow, 1, y);
}
else {
return rb_num_coerce_bin(x, y, idPow);
}
return DBL2NUM(pow(dx, dy));
}
|
#+(other) ⇒ Float
Returns a new float which is the sum of float
and other
.
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
# File 'numeric.c', line 830
static VALUE
flo_plus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
|
#-(other) ⇒ Float
Returns a new float which is the difference of float
and other
.
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
# File 'numeric.c', line 854
static VALUE
flo_minus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
|
#- ⇒ Float
Returns float, negated.
817 818 819 820 821 |
# File 'numeric.c', line 817
static VALUE
flo_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
|
#/(other) ⇒ Float
Returns a new float which is the result of dividing float
by other
.
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
# File 'numeric.c', line 902
static VALUE
flo_div(VALUE x, VALUE y)
{
long f_y;
double d;
if (RB_TYPE_P(y, T_FIXNUM)) {
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '/');
}
}
|
#<(real) ⇒ Boolean
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so the implementation-dependent value is returned.
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 |
# File 'numeric.c', line 1342
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '<');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a < b)?Qtrue:Qfalse;
}
|
#<=(real) ⇒ Boolean
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so the implementation-dependent value is returned.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
# File 'numeric.c', line 1379
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a <= b)?Qtrue:Qfalse;
}
|
#<=>(real) ⇒ -1, ...
Returns -1, 0, +1 or nil depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in Comparable.
The result of NaN <=> NaN
is undefined, so the implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 |
# File 'numeric.c', line 1226
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return INT2FIX(-FIX2INT(rel));
return rel;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
|
#==(obj) ⇒ Boolean
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
# File 'numeric.c', line 1153
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
return rb_integer_float_eq(y, x);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}
|
#==(obj) ⇒ Boolean
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
# File 'numeric.c', line 1153
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
return rb_integer_float_eq(y, x);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}
|
#>(real) ⇒ Boolean
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so the implementation-dependent value is returned.
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
# File 'numeric.c', line 1268
static VALUE
flo_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '>');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a > b)?Qtrue:Qfalse;
}
|
#>=(real) ⇒ Boolean
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so the implementation-dependent value is returned.
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 |
# File 'numeric.c', line 1305
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a >= b)?Qtrue:Qfalse;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
1459 1460 1461 1462 1463 1464 |
# File 'numeric.c', line 1459
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2074 2075 2076 2077 2078 2079 2080 2081 2082 |
# File 'complex.c', line 2074
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2074 2075 2076 2077 2078 2079 2080 2081 2082 |
# File 'complex.c', line 2074
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil ⇒ Integer
Returns the smallest Integer greater than or equal to float
.
1.2.ceil #=> 2
2.0.ceil #=> 2
(-1.2).ceil #=> -1
(-2.0).ceil #=> -2
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 |
# File 'numeric.c', line 1707
static VALUE
flo_ceil(VALUE num)
{
double f = ceil(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
|
#coerce(numeric) ⇒ Array
Returns an array with both a numeric
and a float
represented as Float objects.
This is achieved by converting a numeric
to a Float.
1.2.coerce(3) #=> [3.0, 1.2]
2.5.coerce(1.1) #=> [1.1, 2.5]
804 805 806 807 808 |
# File 'numeric.c', line 804
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
|
#denominator ⇒ Integer
Returns the denominator (always positive). The result is machine dependent.
See numerator.
1906 1907 1908 1909 1910 1911 1912 1913 |
# File 'rational.c', line 1906
static VALUE
float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return INT2FIX(1);
return rb_call_super(0, 0);
}
|
#divmod(numeric) ⇒ Array
See Numeric#divmod.
42.0.divmod 6 #=> [7, 0.0]
42.0.divmod 5 #=> [8, 2.0]
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
# File 'numeric.c', line 1039
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
|
#eql?(obj) ⇒ Boolean
Returns true
only if obj
is a Float with the same value as float
. Contrast this with Float#==, which performs type conversions.
The result of NaN.eql?(NaN)
is undefined, so the implementation-dependent value is returned.
1.0.eql?(1) #=> false
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 |
# File 'numeric.c', line 1419
static VALUE
flo_eql(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FLOAT)) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a) || isnan(b)) return Qfalse;
#endif
if (a == b)
return Qtrue;
}
return Qfalse;
}
|
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
932 933 934 935 936 |
# File 'numeric.c', line 932
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
|
#finite? ⇒ Boolean
Returns true
if float
is a valid IEEE floating point number (it is not infinite, and Float#nan? is false
).
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 |
# File 'numeric.c', line 1541
static VALUE
flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE
if (!isfinite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to float
.
1.2.floor #=> 1
2.0.floor #=> 2
(-1.2).floor #=> -2
(-2.0).floor #=> -2
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 |
# File 'numeric.c', line 1682
static VALUE
flo_floor(VALUE num)
{
double f = floor(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
|
#hash ⇒ Integer
Returns a hash code for this float.
See also Object#hash.
1186 1187 1188 1189 1190 |
# File 'numeric.c', line 1186
static VALUE
flo_hash(VALUE num)
{
return rb_dbl_hash(RFLOAT_VALUE(num));
}
|
#infinite? ⇒ nil, ...
Return values corresponding to the value of float
:
finite
:: nil
-Infinity
-
-1
+Infinity
-
1
For example:
(0.0).infinite? #=> nil
(-1.0/0.0).infinite? #=> -1
(+1.0/0.0).infinite? #=> 1
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
# File 'numeric.c', line 1520
static VALUE
flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
1459 1460 1461 1462 1463 1464 |
# File 'numeric.c', line 1459
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#%(other) ⇒ Float #modulo(other) ⇒ Float
Return the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21
6543.21.modulo(137.24) #=> 92.9299999999996
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
# File 'numeric.c', line 999
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#nan? ⇒ Boolean
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0 #=> -1.0
a.nan? #=> false
a = 0.0/0.0 #=> NaN
a.nan? #=> true
1495 1496 1497 1498 1499 1500 1501 |
# File 'numeric.c', line 1495
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
|
#negative? ⇒ Boolean
Returns true
if float
is less than 0.
1890 1891 1892 1893 1894 1895 |
# File 'numeric.c', line 1890
static VALUE
flo_negative_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f < 0.0 ? Qtrue : Qfalse;
}
|
#next_float ⇒ Float
Returns the next representable floating-point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
Float::NAN.next_float is Float::NAN.
For example:
p 0.01.next_float #=> 0.010000000000000002
p 1.0.next_float #=> 1.0000000000000002
p 100.0.next_float #=> 100.00000000000001
p 0.01.next_float - 0.01 #=> 1.734723475976807e-18
p 1.0.next_float - 1.0 #=> 2.220446049250313e-16
p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147cp-7 0.010000000000000002
# 0x1.47ae147ae147dp-7 0.010000000000000004
# 0x1.47ae147ae147ep-7 0.010000000000000005
# 0x1.47ae147ae147fp-7 0.010000000000000007
# 0x1.47ae147ae148p-7 0.010000000000000009
# 0x1.47ae147ae1481p-7 0.01000000000000001
# 0x1.47ae147ae1482p-7 0.010000000000000012
# 0x1.47ae147ae1483p-7 0.010000000000000014
# 0x1.47ae147ae1484p-7 0.010000000000000016
# 0x1.47ae147ae1485p-7 0.010000000000000018
# 0x1.47ae147ae1486p-7 0.01000000000000002
# 0x1.47ae147ae1487p-7 0.010000000000000021
# 0x1.47ae147ae1488p-7 0.010000000000000023
# 0x1.47ae147ae1489p-7 0.010000000000000024
# 0x1.47ae147ae148ap-7 0.010000000000000026
# 0x1.47ae147ae148bp-7 0.010000000000000028
# 0x1.47ae147ae148cp-7 0.01000000000000003
# 0x1.47ae147ae148dp-7 0.010000000000000031
# 0x1.47ae147ae148ep-7 0.010000000000000033
f = 0.0
100.times { f += 0.1 }
p f #=> 9.99999999999998 # should be 10.0 in the ideal world.
p 10-f #=> 1.9539925233402755e-14 # the floating-point error.
p(10.0.next_float-10) #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
p((10-f)/(10.0.next_float-10)) #=> 11.0 # the error is 11 ulp.
p((10-f)/(10*Float::EPSILON)) #=> 8.8 # approximation of the above.
p "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
1609 1610 1611 1612 1613 1614 1615 1616 |
# File 'numeric.c', line 1609
static VALUE
flo_next_float(VALUE vx)
{
double x, y;
x = NUM2DBL(vx);
y = nextafter(x, INFINITY);
return DBL2NUM(y);
}
|
#numerator ⇒ Integer
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595
d = 0.3.denominator #=> 18014398509481984
n.fdiv(d) #=> 0.3
1888 1889 1890 1891 1892 1893 1894 1895 |
# File 'rational.c', line 1888
static VALUE
float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return self;
return rb_call_super(0, 0);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2074 2075 2076 2077 2078 2079 2080 2081 2082 |
# File 'complex.c', line 2074
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#positive? ⇒ Boolean
Returns true
if float
is greater than 0.
1876 1877 1878 1879 1880 1881 |
# File 'numeric.c', line 1876
static VALUE
flo_positive_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f > 0.0 ? Qtrue : Qfalse;
}
|
#prev_float ⇒ Float
Returns the previous representable floating-point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN.
For example:
p 0.01.prev_float #=> 0.009999999999999998
p 1.0.prev_float #=> 0.9999999999999999
p 100.0.prev_float #=> 99.99999999999999
p 0.01 - 0.01.prev_float #=> 1.734723475976807e-18
p 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147ap-7 0.009999999999999998
# 0x1.47ae147ae1479p-7 0.009999999999999997
# 0x1.47ae147ae1478p-7 0.009999999999999995
# 0x1.47ae147ae1477p-7 0.009999999999999993
# 0x1.47ae147ae1476p-7 0.009999999999999992
# 0x1.47ae147ae1475p-7 0.00999999999999999
# 0x1.47ae147ae1474p-7 0.009999999999999988
# 0x1.47ae147ae1473p-7 0.009999999999999986
# 0x1.47ae147ae1472p-7 0.009999999999999985
# 0x1.47ae147ae1471p-7 0.009999999999999983
# 0x1.47ae147ae147p-7 0.009999999999999981
# 0x1.47ae147ae146fp-7 0.00999999999999998
# 0x1.47ae147ae146ep-7 0.009999999999999978
# 0x1.47ae147ae146dp-7 0.009999999999999976
# 0x1.47ae147ae146cp-7 0.009999999999999974
# 0x1.47ae147ae146bp-7 0.009999999999999972
# 0x1.47ae147ae146ap-7 0.00999999999999997
# 0x1.47ae147ae1469p-7 0.009999999999999969
# 0x1.47ae147ae1468p-7 0.009999999999999967
1661 1662 1663 1664 1665 1666 1667 1668 |
# File 'numeric.c', line 1661
static VALUE
flo_prev_float(VALUE vx)
{
double x, y;
x = NUM2DBL(vx);
y = nextafter(x, -INFINITY);
return DBL2NUM(y);
}
|
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
932 933 934 935 936 |
# File 'numeric.c', line 932
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
|
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10)
1.333.rationalize #=> (1333/1000)
1.333.rationalize(0.01) #=> (4/3)
See to_r.
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 |
# File 'rational.c', line 2103
static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e;
if (f_negative_p(self))
return f_negate(float_rationalize(argc, argv, f_abs(self)));
rb_scan_args(argc, argv, "01", &e);
if (argc != 0) {
return rb_flt_rationalize_with_prec(self, e);
}
else {
return rb_flt_rationalize(self);
}
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds float
to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits
is more than zero.
1.4.round #=> 1
1.5.round #=> 2
1.6.round #=> 2
(-1.5).round #=> -2
1.234567.round(2) #=> 1.23
1.234567.round(3) #=> 1.235
1.234567.round(4) #=> 1.2346
1.234567.round(5) #=> 1.23457
34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0) #=> 34568
34567.89.round(1) #=> 34567.9
34567.89.round(2) #=> 34567.89
34567.89.round(3) #=> 34567.89
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 |
# File 'numeric.c', line 1793
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
VALUE nd;
double number, f;
int ndigits = 0;
int binexp;
enum {float_dig = DBL_DIG+2};
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
if (ndigits < 0) {
return int_round_0(flo_truncate(num), ndigits);
}
number = RFLOAT_VALUE(num);
if (ndigits == 0) {
return dbl2ival(number);
}
frexp(number, &binexp);
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
Recall that up to float_dig digits can be needed to represent a double,
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
will be an integer and thus the result is the original number.
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
2 ** (binexp-1) <= |number| < 2 ** binexp
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
If binexp >= 0, and since log_2(10) = 3.322259:
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
floor(binexp/4) <= exp <= ceil(binexp/3)
If binexp <= 0, swap the /4 and the /3
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (isinf(number) || isnan(number) ||
(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
return num;
}
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
return DBL2NUM(0);
}
f = pow(10, ndigits);
return DBL2NUM(round(number * f) / f);
}
|
#to_f ⇒ self
Since float
is already a float, returns self
.
1441 1442 1443 1444 1445 |
# File 'numeric.c', line 1441
static VALUE
flo_to_f(VALUE num)
{
return num;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float
truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 |
# File 'numeric.c', line 1853
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float
truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 |
# File 'numeric.c', line 1853
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
|
#to_r ⇒ Object
Returns the value as a rational.
NOTE: 0.3.to_r isn’t the same as ‘0.3’.to_r. The latter is equivalent to ‘3/10’.to_r, but the former isn’t so.
2.0.to_r #=> (2/1)
2.5.to_r #=> (5/2)
-0.75.to_r #=> (-3/4)
0.0.to_r #=> (0/1)
See rationalize.
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 |
# File 'rational.c', line 2013
static VALUE
float_to_r(VALUE self)
{
VALUE f, n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
{
long ln = FIX2LONG(n);
if (ln == 0)
return f_to_r(f);
if (ln > 0)
return f_to_r(f_lshift(f, n));
ln = -ln;
return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
}
#else
return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
#endif
}
|
#to_s ⇒ String Also known as: inspect
Returns a string containing a representation of self. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
# File 'numeric.c', line 723
static VALUE
flo_to_s(VALUE flt)
{
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float
truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 |
# File 'numeric.c', line 1853
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
|
#zero? ⇒ Boolean
Returns true
if float
is 0.0.
1474 1475 1476 1477 1478 1479 1480 1481 |
# File 'numeric.c', line 1474
static VALUE
flo_zero_p(VALUE num)
{
if (RFLOAT_VALUE(num) == 0.0) {
return Qtrue;
}
return Qfalse;
}
|