Class: Float

Inherits:
Numeric show all
Defined in:
numeric.c,
numeric.c

Overview

******************************************************************

Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. see following:

- http://docs.sun.com/source/806-3568/ncg_goldberg.html
- http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
- http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems

Constant Summary collapse

ROUNDS =

-1:: Indeterminable 0:: Rounding towards zero 1:: Rounding to the nearest number 2:: Rounding towards positive infinity 3:: Rounding towards negative infinity

Represents the rounding mode for floating point addition.

Usually defaults to 1, rounding to the nearest number.

Other modes include
RADIX =

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.
INT2FIX(FLT_RADIX)
MANT_DIG =

The number of base digits for the double data type.

Usually defaults to 53.

INT2FIX(DBL_MANT_DIG)
DIG =

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

INT2FIX(DBL_DIG)
MIN_EXP =

The smallest posable exponent value in a double-precision floating point.

Usually defaults to -1021.

INT2FIX(DBL_MIN_EXP)
MAX_EXP =

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

INT2FIX(DBL_MAX_EXP)
MIN_10_EXP =

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

INT2FIX(DBL_MIN_10_EXP)
MAX_10_EXP =

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

INT2FIX(DBL_MAX_10_EXP)
MIN =

:MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

The smallest positive normalized number in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers,
there are numbers between zero and Float
MAX =

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

DBL2NUM(DBL_MAX)
EPSILON =

The difference between 1 and the smallest double-precision floating point number greater than 1.

Usually defaults to 2.2204460492503131e-16.

DBL2NUM(DBL_EPSILON)
INFINITY =

An expression representing positive infinity.

DBL2NUM(INFINITY)
NAN =

An expression representing a value which is “not a number”.

DBL2NUM(NAN)

Instance Method Summary collapse

Methods inherited from Numeric

#+@, #abs2, #conj, #conjugate, #div, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c

Methods included from Comparable

#between?

Instance Method Details

#%(other) ⇒ Float #modulo(other) ⇒ Float

Return the modulo after division of float by other.

6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996

Overloads:



999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
# File 'numeric.c', line 999

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#*(other) ⇒ Float

Returns a new float which is the product of float and other.

Returns:



878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# File 'numeric.c', line 878

static VALUE
flo_mul(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }
}

#**(other) ⇒ Float

Raises float to the power of other.

2.0**3      #=> 8.0

Returns:



1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# File 'numeric.c', line 1073

static VALUE
flo_pow(VALUE x, VALUE y)
{
    double dx, dy;
    if (RB_TYPE_P(y, T_FIXNUM)) {
	dx = RFLOAT_VALUE(x);
	dy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	dx = RFLOAT_VALUE(x);
	dy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	dx = RFLOAT_VALUE(x);
	dy = RFLOAT_VALUE(y);
	if (dx < 0 && dy != round(dy))
	    return rb_funcall(rb_complex_raw1(x), idPow, 1, y);
    }
    else {
	return rb_num_coerce_bin(x, y, idPow);
    }
    return DBL2NUM(pow(dx, dy));
}

#+(other) ⇒ Float

Returns a new float which is the sum of float and other.

Returns:



830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
# File 'numeric.c', line 830

static VALUE
flo_plus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Float

Returns a new float which is the difference of float and other.

Returns:



854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# File 'numeric.c', line 854

static VALUE
flo_minus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Float

Returns float, negated.

Returns:



817
818
819
820
821
# File 'numeric.c', line 817

static VALUE
flo_uminus(VALUE flt)
{
    return DBL2NUM(-RFLOAT_VALUE(flt));
}

#/(other) ⇒ Float

Returns a new float which is the result of dividing float by other.

Returns:



902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
# File 'numeric.c', line 902

static VALUE
flo_div(VALUE x, VALUE y)
{
    long f_y;
    double d;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	f_y = FIX2LONG(y);
	return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	d = rb_big2dbl(y);
	return DBL2NUM(RFLOAT_VALUE(x) / d);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '/');
    }
}

#<(real) ⇒ Boolean

Returns true if float is less than real.

The result of NaN < NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
# File 'numeric.c', line 1342

static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '<');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a < b)?Qtrue:Qfalse;
}

#<=(real) ⇒ Boolean

Returns true if float is less than or equal to real.

The result of NaN <= NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
# File 'numeric.c', line 1379

static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, idLE);
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a <= b)?Qtrue:Qfalse;
}

#<=>(real) ⇒ -1, ...

Returns -1, 0, +1 or nil depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in Comparable.

The result of NaN <=> NaN is undefined, so the implementation-dependent value is returned.

nil is returned if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
# File 'numeric.c', line 1226

static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return INT2FIX(-FIX2INT(rel));
        return rel;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
    }
    else {
	if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
	    if (RTEST(i)) {
		int j = rb_cmpint(i, x, y);
		j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
		return INT2FIX(j);
	    }
	    if (a > 0.0) return INT2FIX(1);
	    return INT2FIX(-1);
	}
	return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

1.0 == 1   #=> true

Returns:

  • (Boolean)


1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
# File 'numeric.c', line 1153

static VALUE
flo_eq(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a == b)?Qtrue:Qfalse;
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

1.0 == 1   #=> true

Returns:

  • (Boolean)


1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
# File 'numeric.c', line 1153

static VALUE
flo_eq(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a == b)?Qtrue:Qfalse;
}

#>(real) ⇒ Boolean

Returns true if float is greater than real.

The result of NaN > NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
# File 'numeric.c', line 1268

static VALUE
flo_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '>');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a > b)?Qtrue:Qfalse;
}

#>=(real) ⇒ Boolean

Returns true if float is greater than or equal to real.

The result of NaN >= NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
# File 'numeric.c', line 1305

static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, idGE);
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a >= b)?Qtrue:Qfalse;
}

#absFloat #magnitudeFloat

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Overloads:



1459
1460
1461
1462
1463
1464
# File 'numeric.c', line 1459

static VALUE
flo_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2074
2075
2076
2077
2078
2079
2080
2081
2082
# File 'complex.c', line 2074

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2074
2075
2076
2077
2078
2079
2080
2081
2082
# File 'complex.c', line 2074

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#ceilInteger

Returns the smallest Integer greater than or equal to float.

1.2.ceil      #=> 2
2.0.ceil      #=> 2
(-1.2).ceil   #=> -1
(-2.0).ceil   #=> -2

Returns:



1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
# File 'numeric.c', line 1707

static VALUE
flo_ceil(VALUE num)
{
    double f = ceil(RFLOAT_VALUE(num));
    long val;

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a float represented as Float objects.

This is achieved by converting a numeric to a Float.

1.2.coerce(3)       #=> [3.0, 1.2]
2.5.coerce(1.1)     #=> [1.1, 2.5]

Returns:



804
805
806
807
808
# File 'numeric.c', line 804

static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}

#denominatorInteger

Returns the denominator (always positive). The result is machine dependent.

See numerator.

Returns:



1906
1907
1908
1909
1910
1911
1912
1913
# File 'rational.c', line 1906

static VALUE
float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    if (isinf(d) || isnan(d))
	return INT2FIX(1);
    return rb_call_super(0, 0);
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

42.0.divmod 6 #=> [7, 0.0]
42.0.divmod 5 #=> [8, 2.0]

Returns:



1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# File 'numeric.c', line 1039

static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, id_divmod);
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.

The result of NaN.eql?(NaN) is undefined, so the implementation-dependent value is returned.

1.0.eql?(1)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
# File 'numeric.c', line 1419

static VALUE
flo_eql(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FLOAT)) {
	double a = RFLOAT_VALUE(x);
	double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(a) || isnan(b)) return Qfalse;
#endif
	if (a == b)
	    return Qtrue;
    }
    return Qfalse;
}

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float

Returns float / numeric, same as Float#/.

Overloads:



932
933
934
935
936
# File 'numeric.c', line 932

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return rb_funcall(x, '/', 1, y);
}

#finite?Boolean

Returns true if float is a valid IEEE floating point number (it is not infinite, and Float#nan? is false).

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
# File 'numeric.c', line 1541

static VALUE
flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

#ifdef HAVE_ISFINITE
    if (!isfinite(value))
	return Qfalse;
#else
    if (isinf(value) || isnan(value))
	return Qfalse;
#endif

    return Qtrue;
}

#floorInteger

Returns the largest integer less than or equal to float.

1.2.floor      #=> 1
2.0.floor      #=> 2
(-1.2).floor   #=> -2
(-2.0).floor   #=> -2

Returns:



1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
# File 'numeric.c', line 1682

static VALUE
flo_floor(VALUE num)
{
    double f = floor(RFLOAT_VALUE(num));
    long val;

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#hashInteger

Returns a hash code for this float.

See also Object#hash.

Returns:



1186
1187
1188
1189
1190
# File 'numeric.c', line 1186

static VALUE
flo_hash(VALUE num)
{
    return rb_dbl_hash(RFLOAT_VALUE(num));
}

#infinite?nil, ...

Return values corresponding to the value of float:

finite:: nil

-Infinity

-1

+Infinity

1

For example:

(0.0).infinite?        #=> nil
(-1.0/0.0).infinite?   #=> -1
(+1.0/0.0).infinite?   #=> 1

Returns:

  • (nil, -1, +1)

Returns:

  • (Boolean)


1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
# File 'numeric.c', line 1520

static VALUE
flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
	return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}

#absFloat #magnitudeFloat

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Overloads:



1459
1460
1461
1462
1463
1464
# File 'numeric.c', line 1459

static VALUE
flo_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

#%(other) ⇒ Float #modulo(other) ⇒ Float

Return the modulo after division of float by other.

6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996

Overloads:



999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
# File 'numeric.c', line 999

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#nan?Boolean

Returns true if float is an invalid IEEE floating point number.

a = -1.0      #=> -1.0
a.nan?        #=> false
a = 0.0/0.0   #=> NaN
a.nan?        #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1495
1496
1497
1498
1499
1500
1501
# File 'numeric.c', line 1495

static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return isnan(value) ? Qtrue : Qfalse;
}

#negative?Boolean

Returns true if float is less than 0.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1890
1891
1892
1893
1894
1895
# File 'numeric.c', line 1890

static VALUE
flo_negative_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f < 0.0 ? Qtrue : Qfalse;
}

#next_floatFloat

Returns the next representable floating-point number.

Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

Float::NAN.next_float is Float::NAN.

For example:

p 0.01.next_float  #=> 0.010000000000000002
p 1.0.next_float   #=> 1.0000000000000002
p 100.0.next_float #=> 100.00000000000001

p 0.01.next_float - 0.01   #=> 1.734723475976807e-18
p 1.0.next_float - 1.0     #=> 2.220446049250313e-16
p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147cp-7 0.010000000000000002
#   0x1.47ae147ae147dp-7 0.010000000000000004
#   0x1.47ae147ae147ep-7 0.010000000000000005
#   0x1.47ae147ae147fp-7 0.010000000000000007
#   0x1.47ae147ae148p-7  0.010000000000000009
#   0x1.47ae147ae1481p-7 0.01000000000000001
#   0x1.47ae147ae1482p-7 0.010000000000000012
#   0x1.47ae147ae1483p-7 0.010000000000000014
#   0x1.47ae147ae1484p-7 0.010000000000000016
#   0x1.47ae147ae1485p-7 0.010000000000000018
#   0x1.47ae147ae1486p-7 0.01000000000000002
#   0x1.47ae147ae1487p-7 0.010000000000000021
#   0x1.47ae147ae1488p-7 0.010000000000000023
#   0x1.47ae147ae1489p-7 0.010000000000000024
#   0x1.47ae147ae148ap-7 0.010000000000000026
#   0x1.47ae147ae148bp-7 0.010000000000000028
#   0x1.47ae147ae148cp-7 0.01000000000000003
#   0x1.47ae147ae148dp-7 0.010000000000000031
#   0x1.47ae147ae148ep-7 0.010000000000000033

f = 0.0
100.times { f += 0.1 }
p f                            #=> 9.99999999999998       # should be 10.0 in the ideal world.
p 10-f                         #=> 1.9539925233402755e-14 # the floating-point error.
p(10.0.next_float-10)          #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
p((10-f)/(10.0.next_float-10)) #=> 11.0                   # the error is 11 ulp.
p((10-f)/(10*Float::EPSILON))  #=> 8.8                    # approximation of the above.
p "%a" % f                     #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Returns:



1609
1610
1611
1612
1613
1614
1615
1616
# File 'numeric.c', line 1609

static VALUE
flo_next_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, INFINITY);
    return DBL2NUM(y);
}

#numeratorInteger

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

Returns:



1888
1889
1890
1891
1892
1893
1894
1895
# File 'rational.c', line 1888

static VALUE
float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    if (isinf(d) || isnan(d))
	return self;
    return rb_call_super(0, 0);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2074
2075
2076
2077
2078
2079
2080
2081
2082
# File 'complex.c', line 2074

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#positive?Boolean

Returns true if float is greater than 0.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1876
1877
1878
1879
1880
1881
# File 'numeric.c', line 1876

static VALUE
flo_positive_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f > 0.0 ? Qtrue : Qfalse;
}

#prev_floatFloat

Returns the previous representable floating-point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is Float::NAN.

For example:

p 0.01.prev_float  #=> 0.009999999999999998
p 1.0.prev_float   #=> 0.9999999999999999
p 100.0.prev_float #=> 99.99999999999999

p 0.01 - 0.01.prev_float   #=> 1.734723475976807e-18
p 1.0 - 1.0.prev_float     #=> 1.1102230246251565e-16
p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147ap-7 0.009999999999999998
#   0x1.47ae147ae1479p-7 0.009999999999999997
#   0x1.47ae147ae1478p-7 0.009999999999999995
#   0x1.47ae147ae1477p-7 0.009999999999999993
#   0x1.47ae147ae1476p-7 0.009999999999999992
#   0x1.47ae147ae1475p-7 0.00999999999999999
#   0x1.47ae147ae1474p-7 0.009999999999999988
#   0x1.47ae147ae1473p-7 0.009999999999999986
#   0x1.47ae147ae1472p-7 0.009999999999999985
#   0x1.47ae147ae1471p-7 0.009999999999999983
#   0x1.47ae147ae147p-7  0.009999999999999981
#   0x1.47ae147ae146fp-7 0.00999999999999998
#   0x1.47ae147ae146ep-7 0.009999999999999978
#   0x1.47ae147ae146dp-7 0.009999999999999976
#   0x1.47ae147ae146cp-7 0.009999999999999974
#   0x1.47ae147ae146bp-7 0.009999999999999972
#   0x1.47ae147ae146ap-7 0.00999999999999997
#   0x1.47ae147ae1469p-7 0.009999999999999969
#   0x1.47ae147ae1468p-7 0.009999999999999967

Returns:



1661
1662
1663
1664
1665
1666
1667
1668
# File 'numeric.c', line 1661

static VALUE
flo_prev_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, -INFINITY);
    return DBL2NUM(y);
}

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float

Returns float / numeric, same as Float#/.

Overloads:



932
933
934
935
936
# File 'numeric.c', line 932

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return rb_funcall(x, '/', 1, y);
}

#rationalize([eps]) ⇒ Object

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See to_r.



2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
# File 'rational.c', line 2103

static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e;

    if (f_negative_p(self))
        return f_negate(float_rationalize(argc, argv, f_abs(self)));

    rb_scan_args(argc, argv, "01", &e);

    if (argc != 0) {
        return rb_flt_rationalize_with_prec(self, e);
    }
    else {
        return rb_flt_rationalize(self);
    }
}

#round([ndigits]) ⇒ Integer, Float

Rounds float to a given precision in decimal digits (default 0 digits).

Precision may be negative. Returns a floating point number when ndigits is more than zero.

1.4.round      #=> 1
1.5.round      #=> 2
1.6.round      #=> 2
(-1.5).round   #=> -2

1.234567.round(2)  #=> 1.23
1.234567.round(3)  #=> 1.235
1.234567.round(4)  #=> 1.2346
1.234567.round(5)  #=> 1.23457

34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0)  #=> 34568
34567.89.round(1)  #=> 34567.9
34567.89.round(2)  #=> 34567.89
34567.89.round(3)  #=> 34567.89

Returns:



1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
# File 'numeric.c', line 1793

static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    VALUE nd;
    double number, f;
    int ndigits = 0;
    int binexp;
    enum {float_dig = DBL_DIG+2};

    if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
	ndigits = NUM2INT(nd);
    }
    if (ndigits < 0) {
	return int_round_0(flo_truncate(num), ndigits);
    }
    number  = RFLOAT_VALUE(num);
    if (ndigits == 0) {
	return dbl2ival(number);
    }
    frexp(number, &binexp);

/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
   i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
   Recall that up to float_dig digits can be needed to represent a double,
   so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
   will be an integer and thus the result is the original number.
   If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
   if ndigits + exp < 0, the result is 0.
   We have:
	2 ** (binexp-1) <= |number| < 2 ** binexp
	10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
	If binexp >= 0, and since log_2(10) = 3.322259:
	   10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
	   floor(binexp/4) <= exp <= ceil(binexp/3)
	If binexp <= 0, swap the /4 and the /3
	So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
	If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
    if (isinf(number) || isnan(number) ||
	(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
	return num;
    }
    if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
	return DBL2NUM(0);
    }
    f = pow(10, ndigits);
    return DBL2NUM(round(number * f) / f);
}

#to_fself

Since float is already a float, returns self.

Returns:

  • (self)


1441
1442
1443
1444
1445
# File 'numeric.c', line 1441

static VALUE
flo_to_f(VALUE num)
{
    return num;
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
# File 'numeric.c', line 1853

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
# File 'numeric.c', line 1853

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#to_rObject

Returns the value as a rational.

NOTE: 0.3.to_r isn’t the same as ‘0.3’.to_r. The latter is equivalent to ‘3/10’.to_r, but the former isn’t so.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)

See rationalize.



2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
# File 'rational.c', line 2013

static VALUE
float_to_r(VALUE self)
{
    VALUE f, n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    {
	long ln = FIX2LONG(n);

	if (ln == 0)
	    return f_to_r(f);
	if (ln > 0)
	    return f_to_r(f_lshift(f, n));
	ln = -ln;
	return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
    }
#else
    return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
#endif
}

#to_sString Also known as: inspect

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

Returns:



723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
# File 'numeric.c', line 723

static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value))
	return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
    else if (isnan(value))
	return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
	if (decpt < digs) {
	    memmove(buf + decpt + 1, buf + decpt, digs - decpt);
	    buf[decpt] = '.';
	    rb_str_cat(s, buf, digs + 1);
	}
	else if (decpt <= DBL_DIG) {
	    long len;
	    char *ptr;
	    rb_str_cat(s, buf, digs);
	    rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
	    ptr = RSTRING_PTR(s) + len;
	    if (decpt > digs) {
		memset(ptr, '0', decpt - digs);
		ptr += decpt - digs;
	    }
	    memcpy(ptr, ".0", 2);
	}
	else {
	    goto exp;
	}
    }
    else if (decpt > -4) {
	long len;
	char *ptr;
	rb_str_cat(s, "0.", 2);
	rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
	ptr = RSTRING_PTR(s);
	memset(ptr += len, '0', -decpt);
	memcpy(ptr -= decpt, buf, digs);
    }
    else {
      exp:
	if (digs > 1) {
	    memmove(buf + 2, buf + 1, digs - 1);
	}
	else {
	    buf[2] = '0';
	    digs++;
	}
	buf[1] = '.';
	rb_str_cat(s, buf, digs + 1);
	rb_str_catf(s, "e%+03d", decpt - 1);
    }
    return s;
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
# File 'numeric.c', line 1853

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#zero?Boolean

Returns true if float is 0.0.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1474
1475
1476
1477
1478
1479
1480
1481
# File 'numeric.c', line 1474

static VALUE
flo_zero_p(VALUE num)
{
    if (RFLOAT_VALUE(num) == 0.0) {
	return Qtrue;
    }
    return Qfalse;
}