Class: Object

Inherits:
BasicObject
Includes:
Kernel
Defined in:
object.c,
class.c,
object.c

Overview

Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on Object are available to all classes unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.

When referencing constants in classes inheriting from Object you do not need to use the full namespace. For example, referencing File inside YourClass will find the top-level File class.

In the descriptions of Object’s methods, the parameter symbol refers to a symbol, which is either a quoted string or a Symbol (such as :name).

Instance Method Summary collapse

Methods included from Kernel

#Array, #Complex, #Float, #Hash, #Integer, #Rational, #String, #__callee__, #__dir__, #__method__, #`, #abort, #at_exit, #autoload, #autoload?, #binding, #block_given?, #callcc, #caller, #caller_locations, #catch, #eval, #exec, #exit, #exit!, #fail, #fork, #format, #gets, #global_variables, #iterator?, #lambda, #load, #local_variables, #loop, #open, #p, #print, #printf, #proc, #putc, #puts, #raise, #rand, #readline, #readlines, #require, #require_relative, #select, #set_trace_func, #sleep, #spawn, #sprintf, #srand, #syscall, #system, #test, #throw, #trace_var, #trap, #untrace_var, #warn

Instance Method Details

#!~(other) ⇒ Boolean

Returns true if two objects do not match (using the =~ method), otherwise false.

Returns:

  • (Boolean)


1399
1400
1401
1402
1403
1404
# File 'object.c', line 1399

static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
    VALUE result = rb_funcall(obj1, id_match, 1, obj2);
    return RTEST(result) ? Qfalse : Qtrue;
}

#<=>(other) ⇒ 0?

Returns 0 if obj and other are the same object or obj == other, otherwise nil.

The <=> is used by various methods to compare objects, for example Enumerable#sort, Enumerable#max etc.

Your implementation of <=> should return one of the following values: -1, 0, 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. 1 means self is bigger than other. Nil means the two values could not be compared.

When you define <=>, you can include Comparable to gain the methods <=, <, ==, >=, > and between?.

Returns:

  • (0, nil)


1425
1426
1427
1428
1429
1430
1431
# File 'object.c', line 1425

static VALUE
rb_obj_cmp(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2 || rb_equal(obj1, obj2))
	return INT2FIX(0);
    return Qnil;
}

#===(other) ⇒ Boolean

Case Equality – For class Object, effectively the same as calling #==, but typically overridden by descendants to provide meaningful semantics in case statements.

Returns:

  • (Boolean)


85
86
87
88
89
90
91
92
93
94
# File 'object.c', line 85

VALUE
rb_equal(VALUE obj1, VALUE obj2)
{
    VALUE result;

    if (obj1 == obj2) return Qtrue;
    result = rb_funcall(obj1, id_eq, 1, obj2);
    if (RTEST(result)) return Qtrue;
    return Qfalse;
}

#=~(other) ⇒ nil

Pattern Match—Overridden by descendants (notably Regexp and String) to provide meaningful pattern-match semantics.

Returns:

  • (nil)


1385
1386
1387
1388
1389
# File 'object.c', line 1385

static VALUE
rb_obj_match(VALUE obj1, VALUE obj2)
{
    return Qnil;
}

#assert_Qundef(obj, msg) ⇒ Object

:nodoc:



18047
18048
18049
18050
18051
18052
18053
18054
18055
# File 'parse.c', line 18047

static VALUE
ripper_assert_Qundef(VALUE self, VALUE obj, VALUE msg)
{
    StringValue(msg);
    if (obj == Qundef) {
        rb_raise(rb_eArgError, "%"PRIsVALUE, msg);
    }
    return Qnil;
}

#classClass

Returns the class of obj. This method must always be called with an explicit receiver, as class is also a reserved word in Ruby.

1.class      #=> Fixnum
self.class   #=> Object

Returns:



228
229
230
231
232
# File 'object.c', line 228

VALUE
rb_obj_class(VALUE obj)
{
    return rb_class_real(CLASS_OF(obj));
}

#cloneObject

Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. clone copies the frozen and tainted state of obj. See also the discussion under Object#dup.

class Klass
   attr_accessor :str
end
s1 = Klass.new      #=> #<Klass:0x401b3a38>
s1.str = "Hello"    #=> "Hello"
s2 = s1.clone       #=> #<Klass:0x401b3998 @str="Hello">
s2.str[1,4] = "i"   #=> "i"
s1.inspect          #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
s2.inspect          #=> "#<Klass:0x401b3998 @str=\"Hi\">"

This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy method of the class.

Returns:



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# File 'object.c', line 324

VALUE
rb_obj_clone(VALUE obj)
{
    VALUE clone;
    VALUE singleton;

    if (rb_special_const_p(obj)) {
        rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
    }
    clone = rb_obj_alloc(rb_obj_class(obj));
    RBASIC(clone)->flags &= (FL_TAINT|FL_PROMOTED0|FL_PROMOTED1);
    RBASIC(clone)->flags |= RBASIC(obj)->flags & ~(FL_PROMOTED0|FL_PROMOTED1|FL_FREEZE|FL_FINALIZE);

    singleton = rb_singleton_class_clone_and_attach(obj, clone);
    RBASIC_SET_CLASS(clone, singleton);
    if (FL_TEST(singleton, FL_SINGLETON)) {
	rb_singleton_class_attached(singleton, clone);
    }

    init_copy(clone, obj);
    rb_funcall(clone, id_init_clone, 1, obj);
    RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;

    return clone;
}

#define_singleton_method(symbol, method) ⇒ Object #define_singleton_method(symbol) { ... } ⇒ Proc

Defines a singleton method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body.

class A
  class << self
    def class_name
      to_s
    end
  end
end
A.define_singleton_method(:who_am_i) do
  "I am: #{class_name}"
end
A.who_am_i   # ==> "I am: A"

guy = "Bob"
guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
guy.hello    #=>  "Bob: Hello there!"

Overloads:

  • #define_singleton_method(symbol) { ... } ⇒ Proc

    Yields:

    Returns:



1868
1869
1870
1871
1872
1873
1874
# File 'proc.c', line 1868

static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
    VALUE klass = rb_singleton_class(obj);

    return rb_mod_define_method(argc, argv, klass);
}

#display(port = $>) ⇒ nil

Prints obj on the given port (default $>). Equivalent to:

def display(port=$>)
  port.write self
end

For example:

1.display
"cat".display
[ 4, 5, 6 ].display
puts

produces:

1cat456

Returns:

  • (nil)


7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
# File 'io.c', line 7236

static VALUE
rb_obj_display(int argc, VALUE *argv, VALUE self)
{
    VALUE out;

    if (argc == 0) {
	out = rb_stdout;
    }
    else {
	rb_scan_args(argc, argv, "01", &out);
    }
    rb_io_write(out, self);

    return Qnil;
}

#dupObject

Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. dup copies the tainted state of obj.

This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy method of the class.

on dup vs clone

In general, clone and dup may have different semantics in descendant classes. While clone is used to duplicate an object, including its internal state, dup typically uses the class of the descendant object to create the new instance.

When using #dup, any modules that the object has been extended with will not be copied.

class Klass

attr_accessor :str

end

module Foo

def foo; 'foo'; end

end

s1 = Klass.new #=> #<Klass:0x401b3a38> s1.extend(Foo) #=> #<Klass:0x401b3a38> s1.foo #=> “foo”

s2 = s1.clone #=> #<Klass:0x401b3a38> s2.foo #=> “foo”

s3 = s1.dup #=> #<Klass:0x401b3a38> s3.foo #=> NoMethodError: undefined method ‘foo’ for #<Klass:0x401b3a38>

Returns:



393
394
395
396
397
398
399
400
401
402
403
404
405
406
# File 'object.c', line 393

VALUE
rb_obj_dup(VALUE obj)
{
    VALUE dup;

    if (rb_special_const_p(obj)) {
        rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
    }
    dup = rb_obj_alloc(rb_obj_class(obj));
    init_copy(dup, obj);
    rb_funcall(dup, id_init_dup, 1, obj);

    return dup;
}

#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator

Creates a new Enumerator which will enumerate by calling method on obj, passing args if any.

If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).

Examples

str = "xyz"

enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122

# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)

It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.

Here is such an example, with parameter passing and a sizing block:

module Enumerable
  # a generic method to repeat the values of any enumerable
  def repeat(n)
    raise ArgumentError, "#{n} is negative!" if n < 0
    unless block_given?
      return to_enum(__method__, n) do # __method__ is :repeat here
        sz = size     # Call size and multiply by n...
        sz * n if sz  # but return nil if size itself is nil
      end
    end
    each do |*val|
      n.times { yield *val }
    end
  end
end

%i[hello world].repeat(2) { |w| puts w }
  # => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
  # => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42

Overloads:



239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'enumerator.c', line 239

static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
    VALUE enumerator, meth = sym_each;

    if (argc > 0) {
	--argc;
	meth = *argv++;
    }
    enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
    if (rb_block_given_p()) {
	enumerator_ptr(enumerator)->size = rb_block_proc();
    }
    return enumerator;
}

#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Overloads:

  • #==(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #equal?(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #eql?(other) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


138
139
140
141
142
143
# File 'object.c', line 138

VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}

#extendObject

Adds to obj the instance methods from each module given as a parameter.

module Mod
  def hello
    "Hello from Mod.\n"
  end
end

class Klass
  def hello
    "Hello from Klass.\n"
  end
end

k = Klass.new
k.hello         #=> "Hello from Klass.\n"
k.extend(Mod)   #=> #<Klass:0x401b3bc8>
k.hello         #=> "Hello from Mod.\n"

Returns:



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
# File 'eval.c', line 1375

static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
    int i;
    ID id_extend_object, id_extended;

    CONST_ID(id_extend_object, "extend_object");
    CONST_ID(id_extended, "extended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_extend_object, 1, obj);
	rb_funcall(argv[argc], id_extended, 1, obj);
    }
    return obj;
}

#freezeObject

Prevents further modifications to obj. A RuntimeError will be raised if modification is attempted. There is no way to unfreeze a frozen object. See also Object#frozen?.

This method returns self.

a = [ "a", "b", "c" ]
a.freeze
a << "z"

produces:

prog.rb:3:in `<<': can't modify frozen Array (RuntimeError)
	from prog.rb:3

Objects of the following classes are always frozen: Fixnum, Bignum, Float, Symbol.

Returns:



1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
# File 'object.c', line 1067

VALUE
rb_obj_freeze(VALUE obj)
{
    if (!OBJ_FROZEN(obj)) {
	OBJ_FREEZE(obj);
	if (SPECIAL_CONST_P(obj)) {
	    rb_bug("special consts should be frozen.");
	}
    }
    return obj;
}

#frozen?Boolean

Returns the freeze status of obj.

a = [ "a", "b", "c" ]
a.freeze    #=> ["a", "b", "c"]
a.frozen?   #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1090
1091
1092
1093
1094
# File 'object.c', line 1090

VALUE
rb_obj_frozen_p(VALUE obj)
{
    return OBJ_FROZEN(obj) ? Qtrue : Qfalse;
}

#hashObject



176
# File 'object.c', line 176

VALUE rb_obj_hash(VALUE obj);

#initialize_clone(orig) ⇒ Object

:nodoc:



439
440
441
442
443
444
# File 'object.c', line 439

VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
    rb_funcall(obj, id_init_copy, 1, orig);
    return obj;
}

#initialize_copy(orig) ⇒ Object

:nodoc:



426
427
428
429
430
431
432
433
434
435
436
# File 'object.c', line 426

VALUE
rb_obj_init_copy(VALUE obj, VALUE orig)
{
    if (obj == orig) return obj;
    rb_check_frozen(obj);
    rb_check_trusted(obj);
    if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
	rb_raise(rb_eTypeError, "initialize_copy should take same class object");
    }
    return obj;
}

#initialize_dup(orig) ⇒ Object

:nodoc:



439
440
441
442
443
444
# File 'object.c', line 439

VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
    rb_funcall(obj, id_init_copy, 1, orig);
    return obj;
}

#inspectString

Returns a string containing a human-readable representation of obj. The default inspect shows the object’s class name, an encoding of the object id, and a list of the instance variables and their values (by calling #inspect on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.

[ 1, 2, 3..4, 'five' ].inspect   #=> "[1, 2, 3..4, \"five\"]"
Time.new.inspect                 #=> "2008-03-08 19:43:39 +0900"

class Foo
end
Foo.new.inspect                  #=> "#<Foo:0x0300c868>"

class Bar
  def initialize
    @bar = 1
  end
end
Bar.new.inspect                  #=> "#<Bar:0x0300c868 @bar=1>"

Returns:



558
559
560
561
562
563
564
565
566
567
568
569
570
571
# File 'object.c', line 558

static VALUE
rb_obj_inspect(VALUE obj)
{
    if (rb_ivar_count(obj) > 0) {
	VALUE str;
	VALUE c = rb_class_name(CLASS_OF(obj));

	str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj);
	return rb_exec_recursive(inspect_obj, obj, str);
    }
    else {
	return rb_any_to_s(obj);
    }
}

#instance_of?Boolean

Returns true if obj is an instance of the given class. See also Object#kind_of?.

class A;     end
class B < A; end
class C < B; end

b = B.new
b.instance_of? A   #=> false
b.instance_of? B   #=> true
b.instance_of? C   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


609
610
611
612
613
614
615
# File 'object.c', line 609

VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
    c = class_or_module_required(c);
    if (rb_obj_class(obj) == c) return Qtrue;
    return Qfalse;
}

#instance_variable_defined?(symbol) ⇒ Boolean #instance_variable_defined?(string) ⇒ Boolean

Returns true if the given instance variable is defined in obj. String arguments are converted to symbols.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_defined?(:@a)    #=> true
fred.instance_variable_defined?("@b")   #=> true
fred.instance_variable_defined?("@c")   #=> false

Overloads:

  • #instance_variable_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #instance_variable_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
# File 'object.c', line 2404

static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, an, instance);

    if (!id) {
	return Qfalse;
    }
    return rb_ivar_defined(obj, id);
}

#instance_variable_get(symbol) ⇒ Object #instance_variable_get(string) ⇒ Object

Returns the value of the given instance variable, or nil if the instance variable is not set. The @ part of the variable name should be included for regular instance variables. Throws a NameError exception if the supplied symbol is not valid as an instance variable name. String arguments are converted to symbols.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a)    #=> "cat"
fred.instance_variable_get("@b")   #=> 99

Overloads:

  • #instance_variable_get(symbol) ⇒ Object

    Returns:

  • #instance_variable_get(string) ⇒ Object

    Returns:



2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
# File 'object.c', line 2342

static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, an, instance);

    if (!id) {
	return Qnil;
    }
    return rb_ivar_get(obj, id);
}

#instance_variable_set(symbol, obj) ⇒ Object #instance_variable_set(string, obj) ⇒ Object

Sets the instance variable named by symbol to the given object, thereby frustrating the efforts of the class’s author to attempt to provide proper encapsulation. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog')   #=> "dog"
fred.instance_variable_set(:@c, 'cat')   #=> "cat"
fred.inspect                             #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"

Overloads:

  • #instance_variable_set(symbol, obj) ⇒ Object

    Returns:

  • #instance_variable_set(string, obj) ⇒ Object

    Returns:



2376
2377
2378
2379
2380
2381
2382
# File 'object.c', line 2376

static VALUE
rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, an, instance);
    if (!id) id = rb_intern_str(iv);
    return rb_ivar_set(obj, id, val);
}

#instance_variablesArray

Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.

class Fred
  attr_accessor :a1
  def initialize
    @iv = 3
  end
end
Fred.new.instance_variables   #=> [:@iv]

Returns:



1666
1667
1668
1669
1670
1671
1672
1673
1674
# File 'variable.c', line 1666

VALUE
rb_obj_instance_variables(VALUE obj)
{
    VALUE ary;

    ary = rb_ary_new();
    rb_ivar_foreach(obj, ivar_i, ary);
    return ary;
}

#is_a?Boolean #kind_of?Boolean

Returns true if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.

module M;    end
class A
  include M
end
class B < A; end
class C < B; end

b = B.new
b.is_a? A          #=> true
b.is_a? B          #=> true
b.is_a? C          #=> false
b.is_a? M          #=> true

b.kind_of? A       #=> true
b.kind_of? B       #=> true
b.kind_of? C       #=> false
b.kind_of? M       #=> true

Overloads:

  • #is_a?Boolean

    Returns:

    • (Boolean)
  • #kind_of?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


646
647
648
649
650
651
652
653
# File 'object.c', line 646

VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
    VALUE cl = CLASS_OF(obj);

    c = class_or_module_required(c);
    return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse;
}

#itselfObject

Returns obj.

string = ‘my string’ #=> “my string” string.itself.object_id == string.object_id #=> true

Returns:



419
420
421
422
423
# File 'object.c', line 419

static VALUE
rb_obj_itself(VALUE obj)
{
    return obj;
}

#is_a?Boolean #kind_of?Boolean

Returns true if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.

module M;    end
class A
  include M
end
class B < A; end
class C < B; end

b = B.new
b.is_a? A          #=> true
b.is_a? B          #=> true
b.is_a? C          #=> false
b.is_a? M          #=> true

b.kind_of? A       #=> true
b.kind_of? B       #=> true
b.kind_of? C       #=> false
b.kind_of? M       #=> true

Overloads:

  • #is_a?Boolean

    Returns:

    • (Boolean)
  • #kind_of?Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


646
647
648
649
650
651
652
653
# File 'object.c', line 646

VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
    VALUE cl = CLASS_OF(obj);

    c = class_or_module_required(c);
    return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse;
}

#method(sym) ⇒ Object

Looks up the named method as a receiver in obj, returning a Method object (or raising NameError). The Method object acts as a closure in obj’s object instance, so instance variables and the value of self remain available.

class Demo
  def initialize(n)
    @iv = n
  end
  def hello()
    "Hello, @iv = #{@iv}"
  end
end

k = Demo.new(99)
m = k.method(:hello)
m.call   #=> "Hello, @iv = 99"

l = Demo.new('Fred')
m = l.method("hello")
m.call   #=> "Hello, @iv = Fred"


1588
1589
1590
1591
1592
# File 'proc.c', line 1588

VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
    return obj_method(obj, vid, FALSE);
}

#methods(regular = true) ⇒ Array

Returns a list of the names of public and protected methods of obj. This will include all the methods accessible in obj’s ancestors. If the optional parameter is false, it returns an array of obj<i>‘s public and protected singleton methods, the array will not include methods in modules included in <i>obj.

class Klass
  def klass_method()
  end
end
k = Klass.new
k.methods[0..9]    #=> [:klass_method, :nil?, :===,
                   #    :==~, :!, :eql?
                   #    :hash, :<=>, :class, :singleton_class]
k.methods.length   #=> 56

k.methods(false)   #=> []
def k.singleton_method; end
k.methods(false)   #=> [:singleton_method]

module M123; def m123; end end
k.extend M123
k.methods(false)   #=> [:singleton_method]

Returns:



1315
1316
1317
1318
1319
1320
1321
1322
1323
# File 'class.c', line 1315

VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
    rb_check_arity(argc, 0, 1);
    if (argc > 0 && !RTEST(argv[0])) {
	return rb_obj_singleton_methods(argc, argv, obj);
    }
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}

#nil?Boolean

Only the object nil responds true to nil?.

Object.new.nil?   #=> false
nil.nil?          #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1369
1370
1371
1372
1373
# File 'object.c', line 1369

static VALUE
rb_false(VALUE obj)
{
    return Qfalse;
}

#object_idObject

call-seq:

obj.__id__       -> integer
obj.object_id    -> integer

Returns an integer identifier for obj.

The same number will be returned on all calls to object_id for a given object, and no two active objects will share an id.

Note: that some objects of builtin classes are reused for optimization. This is the case for immediate values and frozen string literals.

Immediate values are not passed by reference but are passed by value: nil, true, false, Fixnums, Symbols, and some Floats.

Object.new.object_id  == Object.new.object_id  # => false
(21 * 2).object_id    == (21 * 2).object_id    # => true
"hello".object_id     == "hello".object_id     # => false
"hi".freeze.object_id == "hi".freeze.object_id # => true


3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
# File 'gc.c', line 3007

VALUE
rb_obj_id(VALUE obj)
{
    /*
     *                32-bit VALUE space
     *          MSB ------------------------ LSB
     *  false   00000000000000000000000000000000
     *  true    00000000000000000000000000000010
     *  nil     00000000000000000000000000000100
     *  undef   00000000000000000000000000000110
     *  symbol  ssssssssssssssssssssssss00001110
     *  object  oooooooooooooooooooooooooooooo00        = 0 (mod sizeof(RVALUE))
     *  fixnum  fffffffffffffffffffffffffffffff1
     *
     *                    object_id space
     *                                       LSB
     *  false   00000000000000000000000000000000
     *  true    00000000000000000000000000000010
     *  nil     00000000000000000000000000000100
     *  undef   00000000000000000000000000000110
     *  symbol   000SSSSSSSSSSSSSSSSSSSSSSSSSSS0        S...S % A = 4 (S...S = s...s * A + 4)
     *  object   oooooooooooooooooooooooooooooo0        o...o % A = 0
     *  fixnum  fffffffffffffffffffffffffffffff1        bignum if required
     *
     *  where A = sizeof(RVALUE)/4
     *
     *  sizeof(RVALUE) is
     *  20 if 32-bit, double is 4-byte aligned
     *  24 if 32-bit, double is 8-byte aligned
     *  40 if 64-bit
     */
    if (STATIC_SYM_P(obj)) {
        return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
    }
    else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
	return LONG2NUM((SIGNED_VALUE)obj);
#else
	return LL2NUM((SIGNED_VALUE)obj);
#endif
    }
    else if (SPECIAL_CONST_P(obj)) {
	return LONG2NUM((SIGNED_VALUE)obj);
    }
    return nonspecial_obj_id(obj);
}

#private_methods(all = true) ⇒ Array

Returns the list of private methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Returns:



1349
1350
1351
1352
1353
# File 'class.c', line 1349

VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}

#protected_methods(all = true) ⇒ Array

Returns the list of protected methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Returns:



1334
1335
1336
1337
1338
# File 'class.c', line 1334

VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}

#public_method(sym) ⇒ Object

Similar to method, searches public method only.



1601
1602
1603
1604
1605
# File 'proc.c', line 1601

VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
    return obj_method(obj, vid, TRUE);
}

#public_methods(all = true) ⇒ Array

Returns the list of public methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Returns:



1364
1365
1366
1367
1368
# File 'class.c', line 1364

VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
    return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}

#public_send(symbol[, args...]) ⇒ Object #public_send(string[, args...]) ⇒ Object

Invokes the method identified by symbol, passing it any arguments specified. Unlike send, public_send calls public methods only. When the method is identified by a string, the string is converted to a symbol.

1.public_send(:puts, "hello")  # causes NoMethodError

Overloads:

  • #public_send(symbol[, args...]) ⇒ Object

    Returns:

  • #public_send(string[, args...]) ⇒ Object

    Returns:



999
1000
1001
1002
1003
# File 'vm_eval.c', line 999

VALUE
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
{
    return send_internal(argc, argv, recv, CALL_PUBLIC);
}

#rawVALUE(obj) ⇒ Object

:nodoc:



18058
18059
18060
18061
18062
# File 'parse.c', line 18058

static VALUE
ripper_value(VALUE self, VALUE obj)
{
    return ULONG2NUM(obj);
}

#remove_instance_variable(symbol) ⇒ Object

Removes the named instance variable from obj, returning that variable’s value.

class Dummy
  attr_reader :var
  def initialize
    @var = 99
  end
  def remove
    remove_instance_variable(:@var)
  end
end
d = Dummy.new
d.var      #=> 99
d.remove   #=> 99
d.var      #=> nil

Returns:



1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
# File 'variable.c', line 1719

VALUE
rb_obj_remove_instance_variable(VALUE obj, VALUE name)
{
    VALUE val = Qnil;
    const ID id = id_for_var(obj, name, an, instance);
    st_data_t n, v;
    struct st_table *iv_index_tbl;
    st_data_t index;

    rb_check_frozen(obj);
    if (!id) {
	goto not_defined;
    }

    switch (BUILTIN_TYPE(obj)) {
      case T_OBJECT:
        iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj);
        if (!iv_index_tbl) break;
        if (!st_lookup(iv_index_tbl, (st_data_t)id, &index)) break;
        if (ROBJECT_NUMIV(obj) <= (long)index) break;
        val = ROBJECT_IVPTR(obj)[index];
        if (val != Qundef) {
            ROBJECT_IVPTR(obj)[index] = Qundef;
            return val;
        }
	break;
      case T_CLASS:
      case T_MODULE:
	n = id;
	if (RCLASS_IV_TBL(obj) && st_delete(RCLASS_IV_TBL(obj), &n, &v)) {
	    return (VALUE)v;
	}
	break;
      default:
	if (FL_TEST(obj, FL_EXIVAR)) {
	    if (generic_ivar_remove(obj, id, &val)) {
		return val;
	    }
	}
	break;
    }

  not_defined:
    rb_name_err_raise("instance variable %1$s not defined",
		      obj, name);
    UNREACHABLE;
}

#respond_to?(symbol, include_all = false) ⇒ Boolean #respond_to?(string, include_all = false) ⇒ Boolean

Returns true if obj responds to the given method. Private and protected methods are included in the search only if the optional second parameter evaluates to true.

If the method is not implemented, as Process.fork on Windows, File.lchmod on GNU/Linux, etc., false is returned.

If the method is not defined, respond_to_missing? method is called and the result is returned.

When the method name parameter is given as a string, the string is converted to a symbol.

Overloads:

  • #respond_to?(symbol, include_all = false) ⇒ Boolean

    Returns:

    • (Boolean)
  • #respond_to?(string, include_all = false) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
# File 'vm_method.c', line 1999

static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
    VALUE mid, priv;
    ID id;
    rb_thread_t *th = GET_THREAD();

    rb_scan_args(argc, argv, "11", &mid, &priv);
    if (!(id = rb_check_id(&mid))) {
	VALUE ret = basic_obj_respond_to_missing(th, CLASS_OF(obj), obj,
						 rb_to_symbol(mid), priv);
	if (ret == Qundef) ret = Qfalse;
	return ret;
    }
    if (basic_obj_respond_to(th, obj, id, !RTEST(priv)))
	return Qtrue;
    return Qfalse;
}

#respond_to_missing?(symbol, include_all) ⇒ Boolean #respond_to_missing?(string, include_all) ⇒ Boolean

DO NOT USE THIS DIRECTLY.

Hook method to return whether the obj can respond to id method or not.

When the method name parameter is given as a string, the string is converted to a symbol.

See #respond_to?, and the example of BasicObject.

Overloads:

  • #respond_to_missing?(symbol, include_all) ⇒ Boolean

    Returns:

    • (Boolean)
  • #respond_to_missing?(string, include_all) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2033
2034
2035
2036
2037
# File 'vm_method.c', line 2033

static VALUE
obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv)
{
    return Qfalse;
}

#send(symbol[, args...]) ⇒ Object #__send__(symbol[, args...]) ⇒ Object #send(string[, args...]) ⇒ Object #__send__(string[, args...]) ⇒ Object

Invokes the method identified by symbol, passing it any

arguments specified. You can use <code>__send__</code> if the name
+send+ clashes with an existing method in _obj_.
When the method is identified by a string, the string is converted
to a symbol.

   class Klass
     def hello(*args)
       "Hello " + args.join(' ')
     end
   end
   k = Klass.new
   k.send :hello, "gentle", "readers"   #=> "Hello gentle readers"

Overloads:



979
980
981
982
983
# File 'vm_eval.c', line 979

VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
    return send_internal(argc, argv, recv, CALL_FCALL);
}

#singleton_classClass

Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.

If obj is nil, true, or false, it returns NilClass, TrueClass, or FalseClass, respectively. If obj is a Fixnum or a Symbol, it raises a TypeError.

Object.new.singleton_class  #=> #<Class:#<Object:0xb7ce1e24>>
String.singleton_class      #=> #<Class:String>
nil.singleton_class         #=> NilClass

Returns:



251
252
253
254
255
# File 'object.c', line 251

static VALUE
rb_obj_singleton_class(VALUE obj)
{
    return rb_singleton_class(obj);
}

#singleton_method(sym) ⇒ Object

Similar to method, searches singleton method only.

class Demo
  def initialize(n)
    @iv = n
  end
  def hello()
    "Hello, @iv = #{@iv}"
  end
end

k = Demo.new(99)
def k.hi
  "Hi, @iv = #{@iv}"
end
m = k.singleton_method(:hi)
m.call   #=> "Hi, @iv = 99"
m = k.singleton_method(:hello) #=> NameError


1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
# File 'proc.c', line 1631

VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
    const rb_method_entry_t *me;
    VALUE klass;
    ID id = rb_check_id(&vid);

    if (!id) {
	if (!NIL_P(klass = rb_singleton_class_get(obj)) &&
	    respond_to_missing_p(klass, obj, vid, FALSE)) {
	    id = rb_intern_str(vid);
	    return mnew_missing(klass, obj, id, id, rb_cMethod);
	}
      undef:
	rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'",
			  obj, vid);
    }
    if (NIL_P(klass = rb_singleton_class_get(obj)) ||
	UNDEFINED_METHOD_ENTRY_P(me = rb_method_entry_at(klass, id)) ||
	UNDEFINED_REFINED_METHOD_P(me->def)) {
	vid = ID2SYM(id);
	goto undef;
    }
    return mnew_from_me(me, klass, obj, id, rb_cMethod, FALSE);
}

#singleton_methods(all = true) ⇒ Array

Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.

module Other
  def three() end
end

class Single
  def Single.four() end
end

a = Single.new

def a.one()
end

class << a
  include Other
  def two()
  end
end

Single.singleton_methods    #=> [:four]
a.singleton_methods(false)  #=> [:two, :one]
a.singleton_methods         #=> [:two, :one, :three]

Returns:



1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
# File 'class.c', line 1403

VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
    VALUE recur, ary, klass, origin;
    struct method_entry_arg me_arg;
    struct rb_id_table *mtbl;

    if (argc == 0) {
	recur = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &recur);
    }
    klass = CLASS_OF(obj);
    origin = RCLASS_ORIGIN(klass);
    me_arg.list = st_init_numtable();
    me_arg.recur = RTEST(recur);
    if (klass && FL_TEST(klass, FL_SINGLETON)) {
	if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
	klass = RCLASS_SUPER(klass);
    }
    if (RTEST(recur)) {
	while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
	    if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
	    klass = RCLASS_SUPER(klass);
	}
    }
    ary = rb_ary_new();
    st_foreach(me_arg.list, ins_methods_i, ary);
    st_free_table(me_arg.list);

    return ary;
}

#taintObject

Mark the object as tainted.

Objects that are marked as tainted will be restricted from various built-in methods. This is to prevent insecure data, such as command-line arguments or strings read from Kernel#gets, from inadvertently compromising the user’s system.

To check whether an object is tainted, use #tainted?.

You should only untaint a tainted object if your code has inspected it and determined that it is safe. To do so use #untaint.

Returns:



964
965
966
967
968
969
970
971
972
# File 'object.c', line 964

VALUE
rb_obj_taint(VALUE obj)
{
    if (!OBJ_TAINTED(obj) && OBJ_TAINTABLE(obj)) {
	rb_check_frozen(obj);
	OBJ_TAINT(obj);
    }
    return obj;
}

#tainted?Boolean

Returns true if the object is tainted.

See #taint for more information.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


939
940
941
942
943
944
945
# File 'object.c', line 939

VALUE
rb_obj_tainted(VALUE obj)
{
    if (OBJ_TAINTED(obj))
	return Qtrue;
    return Qfalse;
}

#tap {|x| ... } ⇒ Object

Yields self to the block, and then returns self. The primary purpose of this method is to “tap into” a method chain, in order to perform operations on intermediate results within the chain.

(1..10) .tap {|x| puts “original: #{x.inspect}”}

.to_a                .tap {|x| puts "array: #{x.inspect}"}
.select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
.map {|x| x*x}       .tap {|x| puts "squares: #{x.inspect}"}

Yields:

  • (x)

Returns:



689
690
691
692
693
694
# File 'object.c', line 689

VALUE
rb_obj_tap(VALUE obj)
{
    rb_yield(obj);
    return obj;
}

#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator

Creates a new Enumerator which will enumerate by calling method on obj, passing args if any.

If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).

Examples

str = "xyz"

enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122

# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)

It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.

Here is such an example, with parameter passing and a sizing block:

module Enumerable
  # a generic method to repeat the values of any enumerable
  def repeat(n)
    raise ArgumentError, "#{n} is negative!" if n < 0
    unless block_given?
      return to_enum(__method__, n) do # __method__ is :repeat here
        sz = size     # Call size and multiply by n...
        sz * n if sz  # but return nil if size itself is nil
      end
    end
    each do |*val|
      n.times { yield *val }
    end
  end
end

%i[hello world].repeat(2) { |w| puts w }
  # => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
  # => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42

Overloads:



239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'enumerator.c', line 239

static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
    VALUE enumerator, meth = sym_each;

    if (argc > 0) {
	--argc;
	meth = *argv++;
    }
    enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
    if (rb_block_given_p()) {
	enumerator_ptr(enumerator)->size = rb_block_proc();
    }
    return enumerator;
}

#to_sString

Returns a string representing obj. The default to_s prints the object’s class and an encoding of the object id. As a special case, the top-level object that is the initial execution context of Ruby programs returns “main”.

Returns:



456
457
458
459
460
461
462
463
464
465
466
# File 'object.c', line 456

VALUE
rb_any_to_s(VALUE obj)
{
    VALUE str;
    VALUE cname = rb_class_name(CLASS_OF(obj));

    str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj);
    OBJ_INFECT(str, obj);

    return str;
}

#trustObject

Deprecated method that is equivalent to #untaint.

Returns:



1030
1031
1032
1033
1034
1035
# File 'object.c', line 1030

VALUE
rb_obj_trust(VALUE obj)
{
    rb_warning("trust is deprecated and its behavior is same as untaint");
    return rb_obj_untaint(obj);
}

#untaintObject

Removes the tainted mark from the object.

See #taint for more information.

Returns:



984
985
986
987
988
989
990
991
992
# File 'object.c', line 984

VALUE
rb_obj_untaint(VALUE obj)
{
    if (OBJ_TAINTED(obj)) {
	rb_check_frozen(obj);
	FL_UNSET(obj, FL_TAINT);
    }
    return obj;
}

#untrustObject

Deprecated method that is equivalent to #taint.

Returns:



1015
1016
1017
1018
1019
1020
# File 'object.c', line 1015

VALUE
rb_obj_untrust(VALUE obj)
{
    rb_warning("untrust is deprecated and its behavior is same as taint");
    return rb_obj_taint(obj);
}

#untrusted?Boolean

Deprecated method that is equivalent to #tainted?.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1001
1002
1003
1004
1005
1006
# File 'object.c', line 1001

VALUE
rb_obj_untrusted(VALUE obj)
{
    rb_warning("untrusted? is deprecated and its behavior is same as tainted?");
    return rb_obj_tainted(obj);
}

#validate_object(x) ⇒ Object

:nodoc:



17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
# File 'parse.c', line 17641

static VALUE
ripper_validate_object(VALUE self, VALUE x)
{
    if (x == Qfalse) return x;
    if (x == Qtrue) return x;
    if (x == Qnil) return x;
    if (x == Qundef)
        rb_raise(rb_eArgError, "Qundef given");
    if (FIXNUM_P(x)) return x;
    if (SYMBOL_P(x)) return x;
    if (!rb_is_pointer_to_heap(x))
        rb_raise(rb_eArgError, "invalid pointer: %p", x);
    switch (BUILTIN_TYPE(x)) {
      case T_STRING:
      case T_OBJECT:
      case T_ARRAY:
      case T_BIGNUM:
      case T_FLOAT:
      case T_COMPLEX:
      case T_RATIONAL:
        return x;
      case T_NODE:
	if (nd_type(x) != NODE_RIPPER) {
	    rb_raise(rb_eArgError, "NODE given: %p", x);
	}
	return ((NODE *)x)->nd_rval;
      default:
        rb_raise(rb_eArgError, "wrong type of ruby object: %p (%s)",
                 x, rb_obj_classname(x));
    }
    return x;
}