Class: BasicObject
Overview
BasicObject is the parent class of all classes in Ruby. It’s an explicit blank class.
BasicObject can be used for creating object hierarchies independent of Ruby’s object hierarchy, proxy objects like the Delegator class, or other uses where namespace pollution from Ruby’s methods and classes must be avoided.
To avoid polluting BasicObject for other users an appropriately named subclass of BasicObject should be created instead of directly modifying BasicObject:
class MyObjectSystem < BasicObject
end
BasicObject does not include Kernel (for methods like puts
) and BasicObject is outside of the namespace of the standard library so common classes will not be found without using a full class path.
A variety of strategies can be used to provide useful portions of the standard library to subclasses of BasicObject. A subclass could include Kernel
to obtain puts
, exit
, etc. A custom Kernel-like module could be created and included or delegation can be used via #method_missing:
class MyObjectSystem < BasicObject
DELEGATE = [:puts, :p]
def method_missing(name, *args, &block)
super unless DELEGATE.include? name
::Kernel.send(name, *args, &block)
end
def respond_to_missing?(name, include_private = false)
DELEGATE.include?(name) or super
end
end
Access to classes and modules from the Ruby standard library can be obtained in a BasicObject subclass by referencing the desired constant from the root like ::File
or ::Enumerator
. Like #method_missing, #const_missing can be used to delegate constant lookup to Object
:
class MyObjectSystem < BasicObject
def self.const_missing(name)
::Object.const_get(name)
end
end
Direct Known Subclasses
Instance Method Summary collapse
-
#! ⇒ Boolean
Boolean negate.
-
#!=(other) ⇒ Boolean
Returns true if two objects are not-equal, otherwise false.
-
#==(obj2) ⇒ Object
Equality — At the
Object
level,==
returnstrue
only ifobj
andother
are the same object. -
#__id__ ⇒ Object
call-seq: obj.__id__ -> integer obj.object_id -> integer.
-
#__send__(*args) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified.
-
#equal?(obj2) ⇒ Boolean
Equality — At the
Object
level,==
returnstrue
only ifobj
andother
are the same object. -
#initialize ⇒ Object
constructor
private
Not documented.
-
#instance_eval(*args) ⇒ Object
Evaluates a string containing Ruby source code, or the given block, within the context of the receiver (obj).
-
#instance_exec(arg...) {|var...| ... } ⇒ Object
Executes the given block within the context of the receiver (obj).
-
#method_missing(symbol[, *args]) ⇒ Object
private
Invoked by Ruby when obj is sent a message it cannot handle.
-
#singleton_method_added ⇒ Object
private
Not documented.
-
#singleton_method_removed ⇒ Object
private
Not documented.
-
#singleton_method_undefined ⇒ Object
private
Not documented.
Constructor Details
#initialize ⇒ Object (private)
Not documented
924 925 926 927 928 |
# File 'object.c', line 924
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(symbol[, *args]) ⇒ Object (private)
Invoked by Ruby when obj is sent a message it cannot handle. symbol is the symbol for the method called, and args are any arguments that were passed to it. By default, the interpreter raises an error when this method is called. However, it is possible to override the method to provide more dynamic behavior. If it is decided that a particular method should not be handled, then super should be called, so that ancestors can pick up the missing method. The example below creates a class Roman
, which responds to methods with names consisting of roman numerals, returning the corresponding integer values.
class Roman
def roman_to_int(str)
# ...
end
def method_missing(methId)
str = methId.id2name
roman_to_int(str)
end
end
r = Roman.new
r.iv #=> 4
r.xxiii #=> 23
r.mm #=> 2000
676 677 678 679 680 681 682 |
# File 'vm_eval.c', line 676
static VALUE
rb_method_missing(int argc, const VALUE *argv, VALUE obj)
{
rb_thread_t *th = GET_THREAD();
raise_method_missing(th, argc, argv, obj, th->method_missing_reason);
UNREACHABLE;
}
|
Instance Method Details
#! ⇒ Boolean
Boolean negate.
186 187 188 189 190 |
# File 'object.c', line 186
VALUE
rb_obj_not(VALUE obj)
{
return RTEST(obj) ? Qfalse : Qtrue;
}
|
#!=(other) ⇒ Boolean
Returns true if two objects are not-equal, otherwise false.
199 200 201 202 203 204 |
# File 'object.c', line 199
VALUE
rb_obj_not_equal(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_eq, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object
level, ==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition by aliasing eql?
to their overridden ==
method, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
138 139 140 141 142 143 |
# File 'object.c', line 138
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#__id__ ⇒ Object
call-seq:
obj.__id__ -> integer
obj.object_id -> integer
Returns an integer identifier for obj
.
The same number will be returned on all calls to object_id
for a given object, and no two active objects will share an id.
Note: that some objects of builtin classes are reused for optimization. This is the case for immediate values and frozen string literals.
Immediate values are not passed by reference but are passed by value: nil
, true
, false
, Fixnums, Symbols, and some Floats.
Object.new.object_id == Object.new.object_id # => false
(21 * 2).object_id == (21 * 2).object_id # => true
"hello".object_id == "hello".object_id # => false
"hi".freeze.object_id == "hi".freeze.object_id # => true
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 |
# File 'gc.c', line 3007
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (STATIC_SYM_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
|
#send(symbol[, args...]) ⇒ Object #__send__(symbol[, args...]) ⇒ Object #send(string[, args...]) ⇒ Object #__send__(string[, args...]) ⇒ Object
Invokes the method identified by symbol, passing it any
arguments specified. You can use <code>__send__</code> if the name
+send+ clashes with an existing method in _obj_.
When the method is identified by a string, the string is converted
to a symbol.
class Klass
def hello(*args)
"Hello " + args.join(' ')
end
end
k = Klass.new
k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
979 980 981 982 983 |
# File 'vm_eval.c', line 979
VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal(argc, argv, recv, CALL_FCALL);
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object
level, ==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition by aliasing eql?
to their overridden ==
method, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
138 139 140 141 142 143 |
# File 'object.c', line 138
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#instance_eval(string[, filename [, lineno]]) ⇒ Object #instance_eval {|obj| ... } ⇒ Object
Evaluates a string containing Ruby source code, or the given block, within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables and private methods.
When instance_eval
is given a block, obj is also passed in as the block’s only argument.
When instance_eval
is given a String
, the optional second and third parameters supply a filename and starting line number that are used when reporting compilation errors.
class KlassWithSecret
def initialize
@secret = 99
end
private
def the_secret
"Ssssh! The secret is #{@secret}."
end
end
k = KlassWithSecret.new
k.instance_eval { @secret } #=> 99
k.instance_eval { the_secret } #=> "Ssssh! The secret is 99."
k.instance_eval {|obj| obj == self } #=> true
1705 1706 1707 1708 1709 1710 |
# File 'vm_eval.c', line 1705
VALUE
rb_obj_instance_eval(int argc, const VALUE *argv, VALUE self)
{
VALUE klass = singleton_class_for_eval(self);
return specific_eval(argc, argv, klass, self);
}
|
#instance_exec(arg...) {|var...| ... } ⇒ Object
Executes the given block within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables. Arguments are passed as block parameters.
class KlassWithSecret
def initialize
@secret = 99
end
end
k = KlassWithSecret.new
k.instance_exec(5) {|x| @secret+x } #=> 104
1730 1731 1732 1733 1734 1735 |
# File 'vm_eval.c', line 1730
VALUE
rb_obj_instance_exec(int argc, const VALUE *argv, VALUE self)
{
VALUE klass = singleton_class_for_eval(self);
return yield_under(klass, self, rb_ary_new4(argc, argv));
}
|
#singleton_method_added ⇒ Object (private)
Not documented
924 925 926 927 928 |
# File 'object.c', line 924
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#singleton_method_removed ⇒ Object (private)
Not documented
924 925 926 927 928 |
# File 'object.c', line 924
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#singleton_method_undefined ⇒ Object (private)
Not documented
924 925 926 927 928 |
# File 'object.c', line 924
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|