Module: Kernel
- Included in:
- Object
- Defined in:
- object.c,
object.c
Overview
The Kernel module is included by class Object, so its methods are available in every Ruby object.
The Kernel instance methods are documented in class Object while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:
sprintf "%.1f", 1.234 #=> "1.2"
Instance Method Summary collapse
-
#__callee__ ⇒ Object
Returns the called name of the current method as a Symbol.
-
#__dir__ ⇒ String
Returns the canonicalized absolute path of the directory of the file from which this method is called.
-
#__method__ ⇒ Object
Returns the name at the definition of the current method as a Symbol.
-
#` ⇒ String
Returns the standard output of running cmd in a subshell.
-
#abort(*args) ⇒ Object
Terminate execution immediately, effectively by calling
Kernel.exit(false)
. -
#Array(arg) ⇒ Array
Returns
arg
as an Array. -
#at_exit { ... } ⇒ Proc
Converts block to a
Proc
object (and therefore binds it at the point of call) and registers it for execution when the program exits. -
#autoload ⇒ nil
Registers filename to be loaded (using
Kernel::require
) the first time that module (which may be aString
or a symbol) is accessed. -
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as
autoload
. -
#binding ⇒ Binding
Returns a
Binding
object, describing the variable and method bindings at the point of call. -
#block_given? ⇒ Boolean
Returns
true
ifyield
would execute a block in the current context. -
#callcc {|cont| ... } ⇒ Object
Generates a Continuation object, which it passes to the associated block.
-
#caller(*args) ⇒ Object
Returns the current execution stack—an array containing strings in the form
file:line
orfile:line: in `method'
. -
#caller_locations(*args) ⇒ Object
Returns the current execution stack—an array containing backtrace location objects.
-
#catch([tag]) {|tag| ... } ⇒ Object
catch
executes its block. -
#Complex(x[, y]) ⇒ Numeric
Returns x+i*y;.
-
#eval(string[, binding [, filename [,lineno]]]) ⇒ Object
Evaluates the Ruby expression(s) in string.
-
#exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:.
-
#exit(*args) ⇒ Object
Initiates the termination of the Ruby script by raising the
SystemExit
exception. -
#exit!(status = false) ⇒ Object
Exits the process immediately.
-
#fail(*args) ⇒ Object
With no arguments, raises the exception in
$!
or raises aRuntimeError
if$!
isnil
. -
#Float(arg) ⇒ Float
Returns arg converted to a float.
-
#fork ⇒ Object
Creates a subprocess.
-
#format(*args) ⇒ Object
Returns the string resulting from applying format_string to any additional arguments.
-
#gets(*args) ⇒ Object
Returns (and assigns to
$_
) the next line from the list of files inARGV
(or$*
), or from standard input if no files are present on the command line. -
#global_variables ⇒ Array
Returns an array of the names of global variables.
-
#Hash(arg) ⇒ Hash
Converts arg to a
Hash
by calling arg.to_hash
. -
#Integer(arg, base = 0) ⇒ Integer
Converts arg to a
Fixnum
orBignum
. -
#iterator? ⇒ Boolean
Returns
true
ifyield
would execute a block in the current context. -
#lambda {|...| ... } ⇒ Proc
Equivalent to
Proc.new
, except the resulting Proc objects check the number of parameters passed when called. -
#load(filename, wrap = false) ⇒ true
Loads and executes the Ruby program in the file filename.
-
#local_variables ⇒ Array
Returns the names of the current local variables.
-
#loop ⇒ Object
Repeatedly executes the block.
-
#open(*args) ⇒ Object
Creates an IO object connected to the given stream, file, or subprocess.
-
#p(*args) ⇒ Object
For each object, directly writes obj.
inspect
followed by a newline to the program’s standard output. -
#print(obj, ...) ⇒ nil
Prints each object in turn to
$stdout
. -
#printf(*args) ⇒ Object
Equivalent to: io.write(sprintf(string, obj, …)) or $stdout.write(sprintf(string, obj, …)).
-
#proc {|...| ... } ⇒ Proc
Equivalent to
Proc.new
. -
#putc(int) ⇒ Integer
Equivalent to:.
-
#puts(obj, ...) ⇒ nil
Equivalent to.
-
#raise(*args) ⇒ Object
With no arguments, raises the exception in
$!
or raises aRuntimeError
if$!
isnil
. -
#rand(max = 0) ⇒ Numeric
If called without an argument, or if
max.to_i.abs == 0
, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0. -
#Rational(x[, y]) ⇒ Numeric
Returns x/y;.
-
#readline(*args) ⇒ Object
Equivalent to
Kernel::gets
, exceptreadline
raisesEOFError
at end of file. -
#readlines(*args) ⇒ Object
Returns an array containing the lines returned by calling
Kernel.gets(sep)
until the end of file. -
#require(name) ⇒ Boolean
Loads the given
name
, returningtrue
if successful andfalse
if the feature is already loaded. -
#require_relative(string) ⇒ Boolean
Ruby tries to load the library named string relative to the requiring file’s path.
-
#select(read_array[, write_array [, error_array [, timeout]]]) ⇒ Array?
Calls select(2) system call.
-
#set_trace_func(trace) ⇒ Object
Establishes proc as the handler for tracing, or disables tracing if the parameter is
nil
. -
#sleep([duration]) ⇒ Fixnum
Suspends the current thread for duration seconds (which may be any number, including a
Float
with fractional seconds). -
#spawn(*args) ⇒ Object
spawn executes specified command and return its pid.
-
#sprintf(*args) ⇒ Object
Returns the string resulting from applying format_string to any additional arguments.
-
#srand(number = Random.new_seed) ⇒ Object
Seeds the system pseudo-random number generator, Random::DEFAULT, with
number
. -
#String(arg) ⇒ String
Returns arg as a
String
. -
#syscall(num[, args...]) ⇒ Integer
Calls the operating system function identified by num and returns the result of the function or raises SystemCallError if it failed.
-
#system([env,][,options]) ⇒ true, ...
Executes command… in a subshell.
-
#test(cmd, file1[, file2]) ⇒ Object
Uses the character
cmd
to perform various tests onfile1
(first table below) or onfile1
andfile2
(second table). -
#throw(tag[, obj]) ⇒ Object
Transfers control to the end of the active
catch
block waiting for tag. -
#trace_var(*args) ⇒ Object
Controls tracing of assignments to global variables.
-
#trap(*args) ⇒ Object
Specifies the handling of signals.
-
#untrace_var(symbol[, cmd]) ⇒ Array?
Removes tracing for the specified command on the given global variable and returns
nil
. -
#warn(msg, ...) ⇒ nil
Displays each of the given messages followed by a record separator on STDERR unless warnings have been disabled (for example with the
-W0
flag).
Instance Method Details
#__callee__ ⇒ Object
Returns the called name of the current method as a Symbol. If called outside of a method, it returns nil
.
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 |
# File 'eval.c', line 1577
static VALUE
rb_f_callee_name(void)
{
ID fname = prev_frame_callee(); /* need *callee* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
|
#__dir__ ⇒ String
Returns the canonicalized absolute path of the directory of the file from which this method is called. It means symlinks in the path is resolved. If __FILE__
is nil
, it returns nil
. The return value equals to File.dirname(File.realpath(__FILE__))
.
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 |
# File 'eval.c', line 1600
static VALUE
f_current_dirname(void)
{
VALUE base = rb_current_realfilepath();
if (NIL_P(base)) {
return Qnil;
}
base = rb_file_dirname(base);
return base;
}
|
#__method__ ⇒ Object
Returns the name at the definition of the current method as a Symbol. If called outside of a method, it returns nil
.
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 |
# File 'eval.c', line 1555
static VALUE
rb_f_method_name(void)
{
ID fname = prev_frame_func(); /* need *method* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
|
#` ⇒ String
Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}
uses this method. Sets $?
to the process status.
`date` #=> "Wed Apr 9 08:56:30 CDT 2003\n"
`ls testdir`.split[1] #=> "main.rb"
`echo oops && exit 99` #=> "oops\n"
$?.exitstatus #=> 99
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 |
# File 'io.c', line 8343
static VALUE
rb_f_backquote(VALUE obj, VALUE str)
{
VALUE port;
VALUE result;
rb_io_t *fptr;
SafeStringValue(str);
rb_last_status_clear();
port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL);
if (NIL_P(port)) return rb_str_new(0,0);
GetOpenFile(port, fptr);
result = read_all(fptr, remain_size(fptr), Qnil);
rb_io_close(port);
rb_io_fptr_finalize(fptr);
rb_gc_force_recycle(port); /* also guards from premature GC */
return result;
}
|
#abort ⇒ Object #Kernel::abort([msg]) ⇒ Object #Process::abort([msg]) ⇒ Object
Terminate execution immediately, effectively by calling Kernel.exit(false)
. If msg is given, it is written to STDERR prior to terminating.
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 |
# File 'process.c', line 3861
VALUE
rb_f_abort(int argc, const VALUE *argv)
{
rb_check_arity(argc, 0, 1);
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
args[1] = args[0] = argv[0];
StringValue(args[0]);
rb_io_puts(1, args, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
UNREACHABLE;
}
|
#Array(arg) ⇒ Array
Returns arg
as an Array.
First tries to call to_ary
on arg
, then to_a
.
Array(1..5) #=> [1, 2, 3, 4, 5]
3114 3115 3116 3117 3118 |
# File 'object.c', line 3114
static VALUE
rb_f_array(VALUE obj, VALUE arg)
{
return rb_Array(arg);
}
|
#at_exit { ... } ⇒ Proc
Converts block to a Proc
object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.
def do_at_exit(str1)
at_exit { print str1 }
end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit
produces:
goodbye cruel world
37 38 39 40 41 42 43 44 45 46 47 48 |
# File 'eval_jump.c', line 37
static VALUE
rb_f_at_exit(void)
{
VALUE proc;
if (!rb_block_given_p()) {
rb_raise(rb_eArgError, "called without a block");
}
proc = rb_block_proc();
rb_set_end_proc(rb_call_end_proc, proc);
return proc;
}
|
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require
) the first time that module (which may be a String
or a symbol) is accessed.
autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
1146 1147 1148 1149 1150 1151 1152 1153 1154 |
# File 'load.c', line 1146
static VALUE
rb_f_autoload(VALUE obj, VALUE sym, VALUE file)
{
VALUE klass = rb_class_real(rb_vm_cbase());
if (NIL_P(klass)) {
rb_raise(rb_eTypeError, "Can not set autoload on singleton class");
}
return rb_mod_autoload(klass, sym, file);
}
|
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as autoload
.
autoload(:B, "b")
autoload?(:B) #=> "b"
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
# File 'load.c', line 1167
static VALUE
rb_f_autoload_p(VALUE obj, VALUE sym)
{
/* use rb_vm_cbase() as same as rb_f_autoload. */
VALUE klass = rb_vm_cbase();
if (NIL_P(klass)) {
return Qnil;
}
return rb_mod_autoload_p(klass, sym);
}
|
#binding ⇒ Binding
Returns a Binding
object, describing the variable and method bindings at the point of call. This object can be used when calling eval
to execute the evaluated command in this environment. See also the description of class Binding
.
def get_binding(param)
return binding
end
b = get_binding("hello")
eval("param", b) #=> "hello"
340 341 342 343 344 |
# File 'proc.c', line 340
static VALUE
rb_f_binding(VALUE self)
{
return rb_binding_new();
}
|
#block_given? ⇒ Boolean #iterator? ⇒ Boolean
Returns true
if yield
would execute a block in the current context. The iterator?
form is mildly deprecated.
def try
if block_given?
yield
else
"no block"
end
end
try #=> "no block"
try { "hello" } #=> "hello"
try do "hello" end #=> "hello"
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 |
# File 'vm_eval.c', line 2139
VALUE
rb_f_block_given_p(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
return Qtrue;
}
else {
return Qfalse;
}
}
|
#callcc {|cont| ... } ⇒ Object
Generates a Continuation object, which it passes to the associated block. You need to require 'continuation'
before using this method. Performing a cont.call
will cause the #callcc to return (as will falling through the end of the block). The value returned by the #callcc is the value of the block, or the value passed to cont.call
. See class Continuation for more details. Also see Kernel#throw for an alternative mechanism for unwinding a call stack.
951 952 953 954 955 956 957 958 959 960 961 962 963 |
# File 'cont.c', line 951
static VALUE
rb_callcc(VALUE self)
{
volatile int called;
volatile VALUE val = cont_capture(&called);
if (called) {
return val;
}
else {
return rb_yield(val);
}
}
|
#caller(start = 1, length = nil) ⇒ Array? #caller(range) ⇒ Array?
Returns the current execution stack—an array containing strings in the form file:line
or file:line: in `method'
.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
def a(skip)
caller(skip)
end
def b(skip)
a(skip)
end
def c(skip)
b(skip)
end
c(0) #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10:in `<main>'"]
c(1) #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11:in `<main>'"]
c(2) #=> ["prog:8:in `c'", "prog:12:in `<main>'"]
c(3) #=> ["prog:13:in `<main>'"]
c(4) #=> []
c(5) #=> nil
950 951 952 953 954 |
# File 'vm_backtrace.c', line 950
static VALUE
rb_f_caller(int argc, VALUE *argv)
{
return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 1);
}
|
#caller_locations(start = 1, length = nil) ⇒ Object #caller_locations(range) ⇒ Object
Returns the current execution stack—an array containing backtrace location objects.
See Thread::Backtrace::Location for more information.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
978 979 980 981 982 |
# File 'vm_backtrace.c', line 978
static VALUE
rb_f_caller_locations(int argc, VALUE *argv)
{
return vm_backtrace_to_ary(GET_THREAD(), argc, argv, 1, 1, 0);
}
|
#catch([tag]) {|tag| ... } ⇒ Object
catch
executes its block. If throw
is not called, the block executes normally, and catch
returns the value of the last expression evaluated.
catch(1) { 123 } # => 123
If throw(tag2, val)
is called, Ruby searches up its stack for a catch
block whose tag
has the same object_id
as tag2. When found, the block stops executing and returns val (or nil
if no second argument was given to throw
).
catch(1) { throw(1, 456) } # => 456
catch(1) { throw(1) } # => nil
When tag
is passed as the first argument, catch
yields it as the parameter of the block.
catch(1) {|x| x + 2 } # => 3
When no tag
is given, catch
yields a new unique object (as from Object.new
) as the block parameter. This object can then be used as the argument to throw
, and will match the correct catch
block.
catch do |obj_A|
catch do |obj_B|
throw(obj_B, 123)
puts "This puts is not reached"
end
puts "This puts is displayed"
456
end
# => 456
catch do |obj_A|
catch do |obj_B|
throw(obj_A, 123)
puts "This puts is still not reached"
end
puts "Now this puts is also not reached"
456
end
# => 123
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 |
# File 'vm_eval.c', line 1970
static VALUE
rb_f_catch(int argc, VALUE *argv)
{
VALUE tag;
if (argc == 0) {
tag = rb_obj_alloc(rb_cObject);
}
else {
rb_scan_args(argc, argv, "01", &tag);
}
return rb_catch_obj(tag, catch_i, 0);
}
|
#Complex(x[, y]) ⇒ Numeric
Returns x+i*y;
Complex(1, 2) #=> (1+2i)
Complex('1+2i') #=> (1+2i)
Complex(nil) #=> TypeError
Complex(1, nil) #=> TypeError
Syntax of string form:
string form = extra spaces , complex , extra spaces ;
complex = real part | [ sign ] , imaginary part
| real part , sign , imaginary part
| rational , "@" , rational ;
real part = rational ;
imaginary part = imaginary unit | unsigned rational , imaginary unit ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
imaginary unit = "i" | "I" | "j" | "J" ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit };
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;
See String#to_c.
471 472 473 474 475 |
# File 'complex.c', line 471
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
return rb_funcall2(rb_cComplex, id_convert, argc, argv);
}
|
#eval(string[, binding [, filename [,lineno]]]) ⇒ Object
Evaluates the Ruby expression(s) in string. If binding is given, which must be a Binding
object, the evaluation is performed in its context. If the optional filename and lineno parameters are present, they will be used when reporting syntax errors.
def get_binding(str)
return binding
end
str = "hello"
eval "str + ' Fred'" #=> "hello Fred"
eval "str + ' Fred'", get_binding("bye") #=> "bye Fred"
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 |
# File 'vm_eval.c', line 1422
VALUE
rb_f_eval(int argc, const VALUE *argv, VALUE self)
{
VALUE src, scope, vfile, vline;
VALUE file = Qundef;
int line = 1;
rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
SafeStringValue(src);
if (argc >= 3) {
StringValue(vfile);
}
if (argc >= 4) {
line = NUM2INT(vline);
}
if (!NIL_P(vfile))
file = vfile;
return eval_string(self, src, scope, file, line);
}
|
#exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:
exec(commandline)
-
command line string which is passed to the standard shell
exec(cmdname, arg1, ...)
-
command name and one or more arguments (no shell)
exec([cmdname, argv0], arg1, ...)
-
command name, argv and zero or more arguments (no shell)
In the first form, the string is taken as a command line that is subject to shell expansion before being executed.
The standard shell always means
"/bin/sh"
on Unix-like systems, same asENV["RUBYSHELL"]
(orENV["COMSPEC"]
on Windows NT series), and similar.If the string from the first form (
exec("command")
) follows these simple rules:-
no meta characters
-
no shell reserved word and no special built-in
-
Ruby invokes the command directly without shell
You can force shell invocation by adding “;” to the string (because “;” is a meta character).
Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.
In the second form (
exec("command1", "arg1", ...)
), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.In the third form (
exec(["command", "argv0"], "arg1", ...)
), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as theargv[0]
value, which may show up in process listings.In order to execute the command, one of the
exec(2)
system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).This behavior is modified by the given
env
andoptions
parameters. See ::spawn for details.If the command fails to execute (typically
Errno::ENOENT
when it was not found) a SystemCallError exception is raised.This method modifies process attributes according to given
options
beforeexec(2)
system call. See ::spawn for more details about the givenoptions
.The modified attributes may be retained when
exec(2)
system call fails.For example, hard resource limits are not restorable.
Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
-
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 |
# File 'process.c', line 2553
VALUE
rb_f_exec(int argc, const VALUE *argv)
{
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
int err;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
before_exec(); /* stop timer thread before redirects */
rb_execarg_parent_start(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
err = errno;
after_exec(); /* restart timer thread */
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
return Qnil; /* dummy */
}
|
#exit(status = true) ⇒ Object #Kernel::exit(status = true) ⇒ Object #Process::exit(status = true) ⇒ Object
Initiates the termination of the Ruby script by raising the SystemExit
exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true
and FALSE
of status means success and failure respectively. The interpretation of other integer values are system dependent.
begin
exit
puts "never get here"
rescue SystemExit
puts "rescued a SystemExit exception"
end
puts "after begin block"
produces:
rescued a SystemExit exception
after begin block
Just prior to termination, Ruby executes any at_exit
functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).
at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
exit
produces:
at_exit function
in finalizer
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 |
# File 'process.c', line 3832
VALUE
rb_f_exit(int argc, const VALUE *argv)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
UNREACHABLE;
}
|
#exit!(status = false) ⇒ Object
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 |
# File 'process.c', line 3760
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
UNREACHABLE;
}
|
#raise ⇒ Object #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #fail ⇒ Object #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object
With no arguments, raises the exception in $!
or raises a RuntimeError
if $!
is nil
. With a single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be the name of an Exception
class (or an object that returns an Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue
clause of begin...end
blocks.
raise "Failed to create socket"
raise ArgumentError, "No parameters", caller
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# File 'eval.c', line 654
static VALUE
rb_f_raise(int argc, VALUE *argv)
{
VALUE err;
VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];
argc = extract_raise_opts(argc, argv, opts);
if (argc == 0) {
if (*cause != Qundef) {
rb_raise(rb_eArgError, "only cause is given with no arguments");
}
err = get_errinfo();
if (!NIL_P(err)) {
argc = 1;
argv = &err;
}
}
rb_raise_jump(rb_make_exception(argc, argv), *cause);
UNREACHABLE;
}
|
#Float(arg) ⇒ Float
Returns arg converted to a float. Numeric types are converted directly, the rest are converted using arg.to_f. Converting nil
generates a TypeError
.
Float(1) #=> 1.0
Float("123.456") #=> 123.456
2953 2954 2955 2956 2957 |
# File 'object.c', line 2953
static VALUE
rb_f_float(VALUE obj, VALUE arg)
{
return rb_Float(arg);
}
|
#fork { ... } ⇒ Fixnum? #fork { ... } ⇒ Fixnum?
Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork
call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit!
to avoid running any at_exit
functions. The parent process should use Process.wait
to collect the termination statuses of its children or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.
If fork is not usable, Process.respond_to?(:fork) returns false.
Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 |
# File 'process.c', line 3698
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
switch (pid = rb_fork_ruby(NULL)) {
case 0:
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
}
|
#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String
Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.
The syntax of a format sequence is follows.
%[flags][width][.precision]type
A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf
argument is to be interpreted, while the flags modify that interpretation.
The field type characters are:
Field | Integer Format
------+--------------------------------------------------------------
b | Convert argument as a binary number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..1'.
B | Equivalent to `b', but uses an uppercase 0B for prefix
| in the alternative format by #.
d | Convert argument as a decimal number.
i | Identical to `d'.
o | Convert argument as an octal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..7'.
u | Identical to `d'.
x | Convert argument as a hexadecimal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..f' (representing an infinite string of
| leading 'ff's).
X | Equivalent to `x', but uses uppercase letters.
Field | Float Format
------+--------------------------------------------------------------
e | Convert floating point argument into exponential notation
| with one digit before the decimal point as [-]d.dddddde[+-]dd.
| The precision specifies the number of digits after the decimal
| point (defaulting to six).
E | Equivalent to `e', but uses an uppercase E to indicate
| the exponent.
f | Convert floating point argument as [-]ddd.dddddd,
| where the precision specifies the number of digits after
| the decimal point.
g | Convert a floating point number using exponential form
| if the exponent is less than -4 or greater than or
| equal to the precision, or in dd.dddd form otherwise.
| The precision specifies the number of significant digits.
G | Equivalent to `g', but use an uppercase `E' in exponent form.
a | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
| which is consisted from optional sign, "0x", fraction part
| as hexadecimal, "p", and exponential part as decimal.
A | Equivalent to `a', but use uppercase `X' and `P'.
Field | Other Format
------+--------------------------------------------------------------
c | Argument is the numeric code for a single character or
| a single character string itself.
p | The valuing of argument.inspect.
s | Argument is a string to be substituted. If the format
| sequence contains a precision, at most that many characters
| will be copied.
% | A percent sign itself will be displayed. No argument taken.
The flags modifies the behavior of the formats. The flag characters are:
Flag | Applies to | Meaning
---------+---------------+-----------------------------------------
space | bBdiouxX | Leave a space at the start of
| aAeEfgG | non-negative numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all | Specifies the absolute argument number
| | for this field. Absolute and relative
| | argument numbers cannot be mixed in a
| | sprintf string.
---------+---------------+-----------------------------------------
# | bBoxX | Use an alternative format.
| aAeEfgG | For the conversions `o', increase the precision
| | until the first digit will be `0' if
| | it is not formatted as complements.
| | For the conversions `x', `X', `b' and `B'
| | on non-zero, prefix the result with ``0x'',
| | ``0X'', ``0b'' and ``0B'', respectively.
| | For `a', `A', `e', `E', `f', `g', and 'G',
| | force a decimal point to be added,
| | even if no digits follow.
| | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+ | bBdiouxX | Add a leading plus sign to non-negative
| aAeEfgG | numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
---------+---------------+-----------------------------------------
- | all | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX | Pad with zeros, not spaces.
| aAeEfgG | For `o', `x', `X', `b' and `B', radix-1
| (numeric fmt) | is used for negative numbers formatted as
| | complements.
---------+---------------+-----------------------------------------
* | all | Use the next argument as the field width.
| | If negative, left-justify the result. If the
| | asterisk is followed by a number and a dollar
| | sign, use the indicated argument as the width.
Examples of flags:
# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123) #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"
# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123) #=> "173"
sprintf("%#o", 123) #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123) #=> "..7605"
sprintf("%#o", -123) #=> "..7605"
# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123) #=> "7b"
sprintf("%#x", 123) #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123) #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0) #=> "0"
# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123) #=> "7B"
sprintf("%#X", 123) #=> "0X7B"
# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123) #=> "1111011"
sprintf("%#b", 123) #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123) #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0) #=> "0"
# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123) #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"
# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1) #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"
# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234) #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."
# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4) #=> "123.4"
sprintf("%#g", 123.4) #=> "123.400"
sprintf("%g", 123456) #=> "123456"
sprintf("%#g", 123456) #=> "123456."
The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.
Examples of width:
# padding is done by spaces, width=20
# 0 or radix-1. <------------------>
sprintf("%20d", 123) #=> " 123"
sprintf("%+20d", 123) #=> " +123"
sprintf("%020d", 123) #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123) #=> "123 "
sprintf("%-+20d", 123) #=> "+123 "
sprintf("%- 20d", 123) #=> " 123 "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"
For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s
will always contribute exactly ten characters to the result.)
Examples of precisions:
# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits <------>
sprintf("%20.8d", 123) #=> " 00000123"
sprintf("%20.8o", 123) #=> " 00000173"
sprintf("%20.8x", 123) #=> " 0000007b"
sprintf("%20.8b", 123) #=> " 01111011"
sprintf("%20.8d", -123) #=> " -00000123"
sprintf("%20.8o", -123) #=> " ..777605"
sprintf("%20.8x", -123) #=> " ..ffff85"
sprintf("%20.8b", -11) #=> " ..110101"
# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted. <------>
sprintf("%#20.8d", 123) #=> " 00000123"
sprintf("%#20.8o", 123) #=> " 00000173"
sprintf("%#20.8x", 123) #=> " 0x0000007b"
sprintf("%#20.8b", 123) #=> " 0b01111011"
sprintf("%#20.8d", -123) #=> " -00000123"
sprintf("%#20.8o", -123) #=> " ..777605"
sprintf("%#20.8x", -123) #=> " 0x..ffff85"
sprintf("%#20.8b", -11) #=> " 0b..110101"
# precision for `e' is number of
# digits after the decimal point <------>
sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03"
# precision for `f' is number of
# digits after the decimal point <------>
sprintf("%20.8f", 1234.56789) #=> " 1234.56789000"
# precision for `g' is number of
# significant digits <------->
sprintf("%20.8g", 1234.56789) #=> " 1234.5679"
# <------->
sprintf("%20.8g", 123456789) #=> " 1.2345679e+08"
# precision for `s' is
# maximum number of characters <------>
sprintf("%20.8s", "string test") #=> " string t"
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b"
sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23"
sprintf("%u", -123) #=> "-123"
For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.
Examples:
sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
#=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
# => "1f"
446 447 448 449 450 |
# File 'sprintf.c', line 446
VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}
|
#gets(sep = $/) ⇒ String? #gets(limit) ⇒ String? #gets(sep, limit) ⇒ String?
Returns (and assigns to $_
) the next line from the list of files in ARGV
(or $*
), or from standard input if no files are present on the command line. Returns nil
at end of file. The optional argument specifies the record separator. The separator is included with the contents of each record. A separator of nil
reads the entire contents, and a zero-length separator reads the input one paragraph at a time, where paragraphs are divided by two consecutive newlines. If the first argument is an integer, or optional second argument is given, the returning string would not be longer than the given value in bytes. If multiple filenames are present in ARGV
, gets(nil) will read the contents one file at a time.
ARGV << "testfile"
print while gets
produces:
This is line one
This is line two
This is line three
And so on...
The style of programming using $_
as an implicit parameter is gradually losing favor in the Ruby community.
8154 8155 8156 8157 8158 8159 8160 8161 |
# File 'io.c', line 8154
static VALUE
rb_f_gets(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_gets(argc, argv, argf);
}
return rb_funcall2(argf, idGets, argc, argv);
}
|
#global_variables ⇒ Array
Returns an array of the names of global variables.
global_variables.grep /std/ #=> [:$stdin, :$stdout, :$stderr]
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
# File 'variable.c', line 880
VALUE
rb_f_global_variables(void)
{
VALUE ary = rb_ary_new();
char buf[2];
int i;
rb_id_table_foreach(rb_global_tbl, gvar_i, (void *)ary);
buf[0] = '$';
for (i = 1; i <= 9; ++i) {
buf[1] = (char)(i + '0');
rb_ary_push(ary, ID2SYM(rb_intern2(buf, 2)));
}
return ary;
}
|
#Hash(arg) ⇒ Hash
Converts arg to a Hash
by calling arg.to_hash
. Returns an empty Hash
when arg is nil
or []
.
Hash([]) #=> {}
Hash(nil) #=> {}
Hash(key: :value) #=> {:key => :value}
Hash([1, 2, 3]) #=> TypeError
3149 3150 3151 3152 3153 |
# File 'object.c', line 3149
static VALUE
rb_f_hash(VALUE obj, VALUE arg)
{
return rb_Hash(arg);
}
|
#Integer(arg, base = 0) ⇒ Integer
Converts arg to a Fixnum
or Bignum
. Numeric types are converted directly (with floating point numbers being truncated). base (0, or between 2 and 36) is a base for integer string representation. If arg is a String
, when base is omitted or equals zero, radix indicators (0
, 0b
, and 0x
) are honored. In any case, strings should be strictly conformed to numeric representation. This behavior is different from that of String#to_i
. Non string values will be converted by first trying to_int
, then to_i
. Passing nil
raises a TypeError.
Integer(123.999) #=> 123
Integer("0x1a") #=> 26
Integer(Time.new) #=> 1204973019
Integer("0930", 10) #=> 930
Integer("111", 2) #=> 7
Integer(nil) #=> TypeError
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 |
# File 'object.c', line 2732
static VALUE
rb_f_integer(int argc, VALUE *argv, VALUE obj)
{
VALUE arg = Qnil;
int base = 0;
switch (argc) {
case 2:
base = NUM2INT(argv[1]);
case 1:
arg = argv[0];
break;
default:
/* should cause ArgumentError */
rb_scan_args(argc, argv, "11", NULL, NULL);
}
return rb_convert_to_integer(arg, base);
}
|
#block_given? ⇒ Boolean #iterator? ⇒ Boolean
Returns true
if yield
would execute a block in the current context. The iterator?
form is mildly deprecated.
def try
if block_given?
yield
else
"no block"
end
end
try #=> "no block"
try { "hello" } #=> "hello"
try do "hello" end #=> "hello"
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 |
# File 'vm_eval.c', line 2139
VALUE
rb_f_block_given_p(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
return Qtrue;
}
else {
return Qfalse;
}
}
|
#lambda {|...| ... } ⇒ Proc
Equivalent to Proc.new
, except the resulting Proc objects check the number of parameters passed when called.
711 712 713 714 715 |
# File 'proc.c', line 711
VALUE
rb_block_lambda(void)
{
return proc_new(rb_cProc, TRUE);
}
|
#load(filename, wrap = false) ⇒ true
Loads and executes the Ruby program in the file filename. If the filename does not resolve to an absolute path, the file is searched for in the library directories listed in $:
. If the optional wrap parameter is true
, the loaded script will be executed under an anonymous module, protecting the calling program’s global namespace. In no circumstance will any local variables in the loaded file be propagated to the loading environment.
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
# File 'load.c', line 700
static VALUE
rb_f_load(int argc, VALUE *argv)
{
VALUE fname, wrap, path, orig_fname;
rb_scan_args(argc, argv, "11", &fname, &wrap);
RUBY_DTRACE_HOOK(LOAD_ENTRY, StringValuePtr(fname));
orig_fname = FilePathValue(fname);
fname = rb_str_encode_ospath(orig_fname);
path = rb_find_file(fname);
if (!path) {
if (!rb_file_load_ok(RSTRING_PTR(fname)))
load_failed(orig_fname);
path = fname;
}
rb_load_internal(path, RTEST(wrap));
RUBY_DTRACE_HOOK(LOAD_RETURN, StringValuePtr(fname));
return Qtrue;
}
|
#local_variables ⇒ Array
Returns the names of the current local variables.
fred = 1
for i in 1..10
# ...
end
local_variables #=> [:fred, :i]
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 |
# File 'vm_eval.c', line 2081
static VALUE
rb_f_local_variables(void)
{
struct local_var_list vars;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp =
vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp));
unsigned int i;
local_var_list_init(&vars);
while (cfp) {
if (cfp->iseq) {
for (i = 0; i < cfp->iseq->body->local_table_size; i++) {
local_var_list_add(&vars, cfp->iseq->body->local_table[i]);
}
}
if (!VM_EP_LEP_P(cfp->ep)) {
/* block */
VALUE *ep = VM_CF_PREV_EP(cfp);
if (vm_collect_local_variables_in_heap(th, ep, &vars)) {
break;
}
else {
while (cfp->ep != ep) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
}
else {
break;
}
}
return local_var_list_finish(&vars);
}
|
#loop { ... } ⇒ Object #loop ⇒ Object
Repeatedly executes the block.
If no block is given, an enumerator is returned instead.
loop do
print "Input: "
line = gets
break if !line or line =~ /^qQ/
# ...
end
StopIteration raised in the block breaks the loop. In this case, loop returns the “result” value stored in the exception.
enum = Enumerator.new { |y|
y << "one"
y << "two"
:ok
}
result = loop {
puts enum.next
} #=> :ok
1134 1135 1136 1137 1138 1139 |
# File 'vm_eval.c', line 1134
static VALUE
rb_f_loop(VALUE self)
{
RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
return rb_rescue2(loop_i, (VALUE)0, loop_stop, (VALUE)0, rb_eStopIteration, (VALUE)0);
}
|
#open(path[, mode [, perm]][, opt]) ⇒ IO? #open(path[, mode [, perm]][, opt]) {|io| ... } ⇒ Object
Creates an IO object connected to the given stream, file, or subprocess.
If path
does not start with a pipe character (|
), treat it as the name of a file to open using the specified mode (defaulting to “r”).
The mode
is either a string or an integer. If it is an integer, it must be bitwise-or of open(2) flags, such as File::RDWR or File::EXCL. If it is a string, it is either “fmode”, “fmode:ext_enc”, or “fmode:ext_enc:int_enc”.
See the documentation of IO.new for full documentation of the mode
string directives.
If a file is being created, its initial permissions may be set using the perm
parameter. See File.new and the open(2) and chmod(2) man pages for a description of permissions.
If a block is specified, it will be invoked with the IO object as a parameter, and the IO will be automatically closed when the block terminates. The call returns the value of the block.
If path
starts with a pipe character ("|"
), a subprocess is created, connected to the caller by a pair of pipes. The returned IO object may be used to write to the standard input and read from the standard output of this subprocess.
If the command following the pipe is a single minus sign ("|-"
), Ruby forks, and this subprocess is connected to the parent. If the command is not "-"
, the subprocess runs the command.
When the subprocess is ruby (opened via "|-"
), the open
call returns nil
. If a block is associated with the open call, that block will run twice — once in the parent and once in the child.
The block parameter will be an IO object in the parent and nil
in the child. The parent’s IO
object will be connected to the child’s $stdin and $stdout. The subprocess will be terminated at the end of the block.
Examples
Reading from “testfile”:
open("testfile") do |f|
print f.gets
end
Produces:
This is line one
Open a subprocess and read its output:
cmd = open("|date")
print cmd.gets
cmd.close
Produces:
Wed Apr 9 08:56:31 CDT 2003
Open a subprocess running the same Ruby program:
f = open("|-", "w+")
if f == nil
puts "in Child"
exit
else
puts "Got: #{f.gets}"
end
Produces:
Got: in Child
Open a subprocess using a block to receive the IO object:
open "|-" do |f|
if f then
# parent process
puts "Got: #{f.gets}"
else
# child process
puts "in Child"
end
end
Produces:
Got: in Child
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 |
# File 'io.c', line 6541
static VALUE
rb_f_open(int argc, VALUE *argv)
{
ID to_open = 0;
int redirect = FALSE;
if (argc >= 1) {
CONST_ID(to_open, "to_open");
if (rb_respond_to(argv[0], to_open)) {
redirect = TRUE;
}
else {
VALUE tmp = argv[0];
FilePathValue(tmp);
if (NIL_P(tmp)) {
redirect = TRUE;
}
else {
VALUE cmd = check_pipe_command(tmp);
if (!NIL_P(cmd)) {
argv[0] = cmd;
return rb_io_s_popen(argc, argv, rb_cIO);
}
}
}
}
if (redirect) {
VALUE io = rb_funcall2(argv[0], to_open, argc-1, argv+1);
if (rb_block_given_p()) {
return rb_ensure(rb_yield, io, io_close, io);
}
return io;
}
return rb_io_s_open(argc, argv, rb_cFile);
}
|
#p(obj) ⇒ Object #p(obj1, obj2, ...) ⇒ Array #p ⇒ nil
7203 7204 7205 7206 7207 7208 7209 7210 7211 |
# File 'io.c', line 7203
static VALUE
rb_f_p(int argc, VALUE *argv, VALUE self)
{
struct rb_f_p_arg arg;
arg.argc = argc;
arg.argv = argv;
return rb_uninterruptible(rb_f_p_internal, (VALUE)&arg);
}
|
#print(obj, ...) ⇒ nil
Prints each object in turn to $stdout
. If the output field separator ($,
) is not nil
, its contents will appear between each field. If the output record separator ($\
) is not nil
, it will be appended to the output. If no arguments are given, prints $_
. Objects that aren’t strings will be converted by calling their to_s
method.
print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99
produces:
cat12399
cat, 1, 2, 3, 99
6975 6976 6977 6978 6979 6980 |
# File 'io.c', line 6975
static VALUE
rb_f_print(int argc, const VALUE *argv)
{
rb_io_print(argc, argv, rb_stdout);
return Qnil;
}
|
#printf(io, string[, obj ... ]) ⇒ nil #printf(string[, obj ... ]) ⇒ nil
Equivalent to:
io.write(sprintf(string, obj, ...))
or
$stdout.write(sprintf(string, obj, ...))
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 |
# File 'io.c', line 6886
static VALUE
rb_f_printf(int argc, VALUE *argv)
{
VALUE out;
if (argc == 0) return Qnil;
if (RB_TYPE_P(argv[0], T_STRING)) {
out = rb_stdout;
}
else {
out = argv[0];
argv++;
argc--;
}
rb_io_write(out, rb_f_sprintf(argc, argv));
return Qnil;
}
|
#proc {|...| ... } ⇒ Proc
Equivalent to Proc.new
.
697 698 699 700 701 |
# File 'proc.c', line 697
VALUE
rb_block_proc(void)
{
return proc_new(rb_cProc, FALSE);
}
|
#putc(int) ⇒ Integer
Equivalent to:
$stdout.putc(int)
Refer to the documentation for IO#putc for important information regarding multi-byte characters.
7027 7028 7029 7030 7031 7032 7033 7034 |
# File 'io.c', line 7027
static VALUE
rb_f_putc(VALUE recv, VALUE ch)
{
if (recv == rb_stdout) {
return rb_io_putc(recv, ch);
}
return rb_funcall2(rb_stdout, rb_intern("putc"), 1, &ch);
}
|
#puts(obj, ...) ⇒ nil
Equivalent to
$stdout.puts(obj, ...)
7132 7133 7134 7135 7136 7137 7138 7139 |
# File 'io.c', line 7132
static VALUE
rb_f_puts(int argc, VALUE *argv, VALUE recv)
{
if (recv == rb_stdout) {
return rb_io_puts(argc, argv, recv);
}
return rb_funcall2(rb_stdout, rb_intern("puts"), argc, argv);
}
|
#raise ⇒ Object #raise(string) ⇒ Object #raise(exception[, string [, array]]) ⇒ Object #fail ⇒ Object #fail(string) ⇒ Object #fail(exception[, string [, array]]) ⇒ Object
With no arguments, raises the exception in $!
or raises a RuntimeError
if $!
is nil
. With a single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be the name of an Exception
class (or an object that returns an Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue
clause of begin...end
blocks.
raise "Failed to create socket"
raise ArgumentError, "No parameters", caller
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# File 'eval.c', line 654
static VALUE
rb_f_raise(int argc, VALUE *argv)
{
VALUE err;
VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];
argc = extract_raise_opts(argc, argv, opts);
if (argc == 0) {
if (*cause != Qundef) {
rb_raise(rb_eArgError, "only cause is given with no arguments");
}
err = get_errinfo();
if (!NIL_P(err)) {
argc = 1;
argv = &err;
}
}
rb_raise_jump(rb_make_exception(argc, argv), *cause);
UNREACHABLE;
}
|
#rand(max = 0) ⇒ Numeric
If called without an argument, or if max.to_i.abs == 0
, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.
rand #=> 0.2725926052826416
When max.abs
is greater than or equal to 1, rand
returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs
.
rand(100) #=> 12
When max
is a Range, rand
returns a random number where range.member?(number) == true.
Negative or floating point values for max
are allowed, but may give surprising results.
rand(-100) # => 87
rand(-0.5) # => 0.8130921818028143
rand(1.9) # equivalent to rand(1), which is always 0
Kernel.srand may be used to ensure that sequences of random numbers are reproducible between different runs of a program.
See also Random.rand.
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 |
# File 'random.c', line 1397
static VALUE
rb_f_rand(int argc, VALUE *argv, VALUE obj)
{
VALUE v, vmax, r;
rb_random_t *rnd = rand_start(&default_rand);
if (argc == 0) goto zero_arg;
rb_scan_args(argc, argv, "01", &vmax);
if (NIL_P(vmax)) goto zero_arg;
if ((v = rand_range(Qnil, rnd, vmax)) != Qfalse) {
return v;
}
vmax = rb_to_int(vmax);
if (vmax == INT2FIX(0) || NIL_P(r = rand_int(Qnil, rnd, vmax, 0))) {
zero_arg:
return DBL2NUM(genrand_real(&rnd->mt));
}
return r;
}
|
#Rational(x[, y]) ⇒ Numeric
Returns x/y;
Rational(1, 2) #=> (1/2)
Rational('1/2') #=> (1/2)
Rational(nil) #=> TypeError
Rational(1, nil) #=> TypeError
Syntax of string form:
string form = extra spaces , rational , extra spaces ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;
See String#to_r.
608 609 610 611 612 |
# File 'rational.c', line 608
static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
return rb_funcall2(rb_cRational, id_convert, argc, argv);
}
|
#readline(sep = $/) ⇒ String #readline(limit) ⇒ String #readline(sep, limit) ⇒ String
Equivalent to Kernel::gets
, except readline
raises EOFError
at end of file.
8227 8228 8229 8230 8231 8232 8233 8234 |
# File 'io.c', line 8227
static VALUE
rb_f_readline(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_readline(argc, argv, argf);
}
return rb_funcall2(argf, rb_intern("readline"), argc, argv);
}
|
#readlines(sep = $/) ⇒ Array #readlines(limit) ⇒ Array #readlines(sep, limit) ⇒ Array
Returns an array containing the lines returned by calling Kernel.gets(sep)
until the end of file.
8280 8281 8282 8283 8284 8285 8286 8287 |
# File 'io.c', line 8280
static VALUE
rb_f_readlines(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_readlines(argc, argv, argf);
}
return rb_funcall2(argf, rb_intern("readlines"), argc, argv);
}
|
#require(name) ⇒ Boolean
Loads the given name
, returning true
if successful and false
if the feature is already loaded.
If the filename does not resolve to an absolute path, it will be searched for in the directories listed in $LOAD_PATH
($:
).
If the filename has the extension “.rb”, it is loaded as a source file; if the extension is “.so”, “.o”, or “.dll”, or the default shared library extension on the current platform, Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries adding “.rb”, “.so”, and so on to the name until found. If the file named cannot be found, a LoadError will be raised.
For Ruby extensions the filename given may use any shared library extension. For example, on Linux the socket extension is “socket.so” and require 'socket.dll'
will load the socket extension.
The absolute path of the loaded file is added to $LOADED_FEATURES
($"
). A file will not be loaded again if its path already appears in $"
. For example, require 'a'; require './a'
will not load a.rb
again.
require "my-library.rb"
require "db-driver"
Any constants or globals within the loaded source file will be available in the calling program’s global namespace. However, local variables will not be propagated to the loading environment.
821 822 823 824 825 |
# File 'load.c', line 821
VALUE
rb_f_require(VALUE obj, VALUE fname)
{
return rb_require_safe(fname, rb_safe_level());
}
|
#require_relative(string) ⇒ Boolean
Ruby tries to load the library named string relative to the requiring file’s path. If the file’s path cannot be determined a LoadError is raised. If a file is loaded true
is returned and false otherwise.
835 836 837 838 839 840 841 842 843 844 |
# File 'load.c', line 835
VALUE
rb_f_require_relative(VALUE obj, VALUE fname)
{
VALUE base = rb_current_realfilepath();
if (NIL_P(base)) {
rb_loaderror("cannot infer basepath");
}
base = rb_file_dirname(base);
return rb_require_safe(rb_file_absolute_path(fname, base), rb_safe_level());
}
|
#select(read_array[, write_array [, error_array [, timeout]]]) ⇒ Array?
Calls select(2) system call. It monitors given arrays of IO
objects, waits until one or more of IO
objects are ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those IO objects. It will return nil
if optional timeout value is given and no IO
object is ready in timeout seconds.
IO.select
peeks the buffer of IO
objects for testing readability. If the IO
buffer is not empty, IO.select
immediately notifies readability. This “peek” only happens for IO
objects. It does not happen for IO-like objects such as OpenSSL::SSL::SSLSocket.
The best way to use IO.select
is invoking it after nonblocking methods such as read_nonblock
, write_nonblock
, etc. The methods raise an exception which is extended by IO::WaitReadable
or IO::WaitWritable
. The modules notify how the caller should wait with IO.select
. If IO::WaitReadable
is raised, the caller should wait for reading. If IO::WaitWritable
is raised, the caller should wait for writing.
So, blocking read (readpartial
) can be emulated using read_nonblock
and IO.select
as follows:
begin
result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
Especially, the combination of nonblocking methods and IO.select
is preferred for IO
like objects such as OpenSSL::SSL::SSLSocket
. It has to_io
method to return underlying IO
object. IO.select
calls to_io
to obtain the file descriptor to wait.
This means that readability notified by IO.select
doesn’t mean readability from OpenSSL::SSL::SSLSocket
object.
The most likely situation is that OpenSSL::SSL::SSLSocket
buffers some data. IO.select
doesn’t see the buffer. So IO.select
can block when OpenSSL::SSL::SSLSocket#readpartial
doesn’t block.
However, several more complicated situations exist.
SSL is a protocol which is sequence of records. The record consists of multiple bytes. So, the remote side of SSL sends a partial record, IO.select
notifies readability but OpenSSL::SSL::SSLSocket
cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial
will blocks.
Also, the remote side can request SSL renegotiation which forces the local SSL engine to write some data. This means OpenSSL::SSL::SSLSocket#readpartial
may invoke write
system call and it can block. In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock
raises IO::WaitWritable instead of blocking. So, the caller should wait for ready for writability as above example.
The combination of nonblocking methods and IO.select
is also useful for streams such as tty, pipe socket socket when multiple processes read from a stream.
Finally, Linux kernel developers don’t guarantee that readability of select(2) means readability of following read(2) even for a single process. See select(2) manual on GNU/Linux system.
Invoking IO.select
before IO#readpartial
works well as usual. However it is not the best way to use IO.select
.
The writability notified by select(2) doesn’t show how many bytes writable. IO#write
method blocks until given whole string is written. So, IO#write(two or more bytes)
can block after writability is notified by IO.select
. IO#write_nonblock
is required to avoid the blocking.
Blocking write (write
) can be emulated using write_nonblock
and IO.select
as follows: IO::WaitReadable should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket
.
while 0 < string.bytesize
begin
written = io_like.write_nonblock(string)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
string = string.byteslice(written..-1)
end
Parameters
- read_array
-
an array of
IO
objects that wait until ready for read - write_array
-
an array of
IO
objects that wait until ready for write - error_array
-
an array of
IO
objects that wait for exceptions - timeout
-
a numeric value in second
Example
rp, wp = IO.pipe
mesg = "ping "
100.times {
# IO.select follows IO#read. Not the best way to use IO.select.
rs, ws, = IO.select([rp], [wp])
if r = rs[0]
ret = r.read(5)
print ret
case ret
when /ping/
mesg = "pong\n"
when /pong/
mesg = "ping "
end
end
if w = ws[0]
w.write(mesg)
end
}
produces:
ping pong
ping pong
ping pong
(snipped)
ping
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 |
# File 'io.c', line 8833
static VALUE
rb_f_select(int argc, VALUE *argv, VALUE obj)
{
VALUE timeout;
struct select_args args;
struct timeval timerec;
int i;
rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout);
if (NIL_P(timeout)) {
args.timeout = 0;
}
else {
timerec = rb_time_interval(timeout);
args.timeout = &timerec;
}
for (i = 0; i < numberof(args.fdsets); ++i)
rb_fd_init(&args.fdsets[i]);
return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args);
}
|
#set_trace_func(proc) ⇒ Proc #set_trace_func(nil) ⇒ nil
Establishes proc as the handler for tracing, or disables tracing if the parameter is nil
.
Note: this method is obsolete, please use TracePoint instead.
proc takes up to six parameters:
* an event name * a filename * a line number * an object id * a binding * the name of a class
proc is invoked whenever an event occurs.
Events are:
c-call
-
call a C-language routine
c-return
-
return from a C-language routine
call
-
call a Ruby method
class
-
start a class or module definition),
end
-
finish a class or module definition),
line
-
execute code on a new line
raise
-
raise an exception
return
-
return from a Ruby method
Tracing is disabled within the context of proc.
class Test
def test
a = 1
b = 2
end
end
set_trace_func proc { |event, file, line, id, binding, classname|
printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
}
t = Test.new
t.test
line prog.rb:11 false
c-call prog.rb:11 new Class
c-call prog.rb:11 initialize Object
c-return prog.rb:11 initialize Object
c-return prog.rb:11 new Class
line prog.rb:12 false
call prog.rb:2 test Test
line prog.rb:3 test Test
line prog.rb:4 test Test
return prog.rb:4 test Test
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
# File 'vm_trace.c', line 489
static VALUE
set_trace_func(VALUE obj, VALUE trace)
{
rb_remove_event_hook(call_trace_func);
if (NIL_P(trace)) {
return Qnil;
}
if (!rb_obj_is_proc(trace)) {
rb_raise(rb_eTypeError, "trace_func needs to be Proc");
}
rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace);
return trace;
}
|
#sleep([duration]) ⇒ Fixnum
Suspends the current thread for duration seconds (which may be any number, including a Float
with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run
. Called without an argument, sleep() will sleep forever.
Time.new #=> 2008-03-08 19:56:19 +0900
sleep 1.2 #=> 1
Time.new #=> 2008-03-08 19:56:20 +0900
sleep 1.9 #=> 2
Time.new #=> 2008-03-08 19:56:22 +0900
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 |
# File 'process.c', line 4371
static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
time_t beg, end;
beg = time(0);
if (argc == 0) {
rb_thread_sleep_forever();
}
else {
rb_check_arity(argc, 0, 1);
rb_thread_wait_for(rb_time_interval(argv[0]));
}
end = time(0) - beg;
return INT2FIX(end);
}
|
#spawn([env,][,options]) ⇒ Object #spawn([env,][,options]) ⇒ Object
spawn executes specified command and return its pid.
pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid
pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid
This method is similar to Kernel#system but it doesn’t wait for the command to finish.
The parent process should use Process.wait
to collect the termination status of its child or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
spawn has bunch of options to specify process attributes:
env: hash
name => val : set the environment variable
name => nil : unset the environment variable
the keys and the values except for +nil+ must be strings.
command...:
commandline : command line string which is passed to the standard shell
cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
clearing environment variables:
:unsetenv_others => true : clear environment variables except specified by env
:unsetenv_others => false : don't clear (default)
process group:
:pgroup => true or 0 : make a new process group
:pgroup => pgid : join the specified process group
:pgroup => nil : don't change the process group (default)
create new process group: Windows only
:new_pgroup => true : the new process is the root process of a new process group
:new_pgroup => false : don't create a new process group (default)
resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
:rlimit_resourcename => limit
:rlimit_resourcename => [cur_limit, max_limit]
umask:
:umask => int
redirection:
key:
FD : single file descriptor in child process
[FD, FD, ...] : multiple file descriptor in child process
value:
FD : redirect to the file descriptor in parent process
string : redirect to file with open(string, "r" or "w")
[string] : redirect to file with open(string, File::RDONLY)
[string, open_mode] : redirect to file with open(string, open_mode, 0644)
[string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
[:child, FD] : redirect to the redirected file descriptor
:close : close the file descriptor in child process
FD is one of follows
:in : the file descriptor 0 which is the standard input
:out : the file descriptor 1 which is the standard output
:err : the file descriptor 2 which is the standard error
integer : the file descriptor of specified the integer
io : the file descriptor specified as io.fileno
file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
:close_others => true : don't inherit
current directory:
:chdir => str
The 'cmdname, arg1, ...' form does not use the shell. However,
on different OSes, different things are provided as built-in
commands. An example of this is 'echo', which is a built-in
on Windows, but is a normal program on Linux and Mac OS X.
This means that `Process.spawn 'echo', '%Path%'` will display
the contents of the `%Path%` environment variable on Windows,
but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.
If a hash is given as env
, the environment is updated by env
before exec(2)
in the child process. If a pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.
The :unsetenv_others
key in options
specifies to clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process group. The corresponding value should be true, zero, a positive integer, or nil. true and zero cause the process to be a process leader of a new process group. A non-zero positive integer causes the process to join the provided process group. The default value, nil, causes the process to remain in the same process group.
pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid)
on the subprocess. :new_pgroup is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group
pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit. foo should be one of resource types such as core
. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.
cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by spawn
. :err, 2 and STDERR specifies the standard error stream (stderr).
The hash values specifies a file descriptor in the parent process which invokes spawn
. :out, 1 and STDOUT specifies the standard output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is true by default for spawn and IO.popen.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w) # r, w is closed in the child process.
w.close
:close is specified as a hash value to close a fd individually.
f = open(foo)
system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn
uses an extra file descriptor to resolve such cyclic file descriptor mapping.
See Kernel.exec
for the standard shell.
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 |
# File 'process.c', line 4327
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg));
if (pid == -1) {
int err = errno;
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
}
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
|
#format(format_string[, arguments...]) ⇒ String #sprintf(format_string[, arguments...]) ⇒ String
Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.
The syntax of a format sequence is follows.
%[flags][width][.precision]type
A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf
argument is to be interpreted, while the flags modify that interpretation.
The field type characters are:
Field | Integer Format
------+--------------------------------------------------------------
b | Convert argument as a binary number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..1'.
B | Equivalent to `b', but uses an uppercase 0B for prefix
| in the alternative format by #.
d | Convert argument as a decimal number.
i | Identical to `d'.
o | Convert argument as an octal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..7'.
u | Identical to `d'.
x | Convert argument as a hexadecimal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..f' (representing an infinite string of
| leading 'ff's).
X | Equivalent to `x', but uses uppercase letters.
Field | Float Format
------+--------------------------------------------------------------
e | Convert floating point argument into exponential notation
| with one digit before the decimal point as [-]d.dddddde[+-]dd.
| The precision specifies the number of digits after the decimal
| point (defaulting to six).
E | Equivalent to `e', but uses an uppercase E to indicate
| the exponent.
f | Convert floating point argument as [-]ddd.dddddd,
| where the precision specifies the number of digits after
| the decimal point.
g | Convert a floating point number using exponential form
| if the exponent is less than -4 or greater than or
| equal to the precision, or in dd.dddd form otherwise.
| The precision specifies the number of significant digits.
G | Equivalent to `g', but use an uppercase `E' in exponent form.
a | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
| which is consisted from optional sign, "0x", fraction part
| as hexadecimal, "p", and exponential part as decimal.
A | Equivalent to `a', but use uppercase `X' and `P'.
Field | Other Format
------+--------------------------------------------------------------
c | Argument is the numeric code for a single character or
| a single character string itself.
p | The valuing of argument.inspect.
s | Argument is a string to be substituted. If the format
| sequence contains a precision, at most that many characters
| will be copied.
% | A percent sign itself will be displayed. No argument taken.
The flags modifies the behavior of the formats. The flag characters are:
Flag | Applies to | Meaning
---------+---------------+-----------------------------------------
space | bBdiouxX | Leave a space at the start of
| aAeEfgG | non-negative numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all | Specifies the absolute argument number
| | for this field. Absolute and relative
| | argument numbers cannot be mixed in a
| | sprintf string.
---------+---------------+-----------------------------------------
# | bBoxX | Use an alternative format.
| aAeEfgG | For the conversions `o', increase the precision
| | until the first digit will be `0' if
| | it is not formatted as complements.
| | For the conversions `x', `X', `b' and `B'
| | on non-zero, prefix the result with ``0x'',
| | ``0X'', ``0b'' and ``0B'', respectively.
| | For `a', `A', `e', `E', `f', `g', and 'G',
| | force a decimal point to be added,
| | even if no digits follow.
| | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+ | bBdiouxX | Add a leading plus sign to non-negative
| aAeEfgG | numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
---------+---------------+-----------------------------------------
- | all | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX | Pad with zeros, not spaces.
| aAeEfgG | For `o', `x', `X', `b' and `B', radix-1
| (numeric fmt) | is used for negative numbers formatted as
| | complements.
---------+---------------+-----------------------------------------
* | all | Use the next argument as the field width.
| | If negative, left-justify the result. If the
| | asterisk is followed by a number and a dollar
| | sign, use the indicated argument as the width.
Examples of flags:
# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123) #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"
# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123) #=> "173"
sprintf("%#o", 123) #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123) #=> "..7605"
sprintf("%#o", -123) #=> "..7605"
# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123) #=> "7b"
sprintf("%#x", 123) #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123) #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0) #=> "0"
# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123) #=> "7B"
sprintf("%#X", 123) #=> "0X7B"
# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123) #=> "1111011"
sprintf("%#b", 123) #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123) #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0) #=> "0"
# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123) #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"
# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1) #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"
# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234) #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."
# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4) #=> "123.4"
sprintf("%#g", 123.4) #=> "123.400"
sprintf("%g", 123456) #=> "123456"
sprintf("%#g", 123456) #=> "123456."
The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.
Examples of width:
# padding is done by spaces, width=20
# 0 or radix-1. <------------------>
sprintf("%20d", 123) #=> " 123"
sprintf("%+20d", 123) #=> " +123"
sprintf("%020d", 123) #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123) #=> "123 "
sprintf("%-+20d", 123) #=> "+123 "
sprintf("%- 20d", 123) #=> " 123 "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"
For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s
will always contribute exactly ten characters to the result.)
Examples of precisions:
# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits <------>
sprintf("%20.8d", 123) #=> " 00000123"
sprintf("%20.8o", 123) #=> " 00000173"
sprintf("%20.8x", 123) #=> " 0000007b"
sprintf("%20.8b", 123) #=> " 01111011"
sprintf("%20.8d", -123) #=> " -00000123"
sprintf("%20.8o", -123) #=> " ..777605"
sprintf("%20.8x", -123) #=> " ..ffff85"
sprintf("%20.8b", -11) #=> " ..110101"
# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted. <------>
sprintf("%#20.8d", 123) #=> " 00000123"
sprintf("%#20.8o", 123) #=> " 00000173"
sprintf("%#20.8x", 123) #=> " 0x0000007b"
sprintf("%#20.8b", 123) #=> " 0b01111011"
sprintf("%#20.8d", -123) #=> " -00000123"
sprintf("%#20.8o", -123) #=> " ..777605"
sprintf("%#20.8x", -123) #=> " 0x..ffff85"
sprintf("%#20.8b", -11) #=> " 0b..110101"
# precision for `e' is number of
# digits after the decimal point <------>
sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03"
# precision for `f' is number of
# digits after the decimal point <------>
sprintf("%20.8f", 1234.56789) #=> " 1234.56789000"
# precision for `g' is number of
# significant digits <------->
sprintf("%20.8g", 1234.56789) #=> " 1234.5679"
# <------->
sprintf("%20.8g", 123456789) #=> " 1.2345679e+08"
# precision for `s' is
# maximum number of characters <------>
sprintf("%20.8s", "string test") #=> " string t"
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b"
sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23"
sprintf("%u", -123) #=> "-123"
For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name style doesn’t.
Examples:
sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
#=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
# => "1f"
446 447 448 449 450 |
# File 'sprintf.c', line 446
VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}
|
#srand(number = Random.new_seed) ⇒ Object
Seeds the system pseudo-random number generator, Random::DEFAULT, with number
. The previous seed value is returned.
If number
is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.
srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.
srand 1234 # => 268519324636777531569100071560086917274
[ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234 # => 1234
[ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
# File 'random.c', line 793
static VALUE
rb_f_srand(int argc, VALUE *argv, VALUE obj)
{
VALUE seed, old;
rb_random_t *r = &default_rand;
if (argc == 0) {
seed = random_seed();
}
else {
rb_scan_args(argc, argv, "01", &seed);
}
old = r->seed;
r->seed = rand_init(&r->mt, seed);
return old;
}
|
#String(arg) ⇒ String
Returns arg as a String
.
First tries to call its to_str
method, then its to_s
method.
String(self) #=> "main"
String(self.class) #=> "Object"
String(123456) #=> "123456"
3083 3084 3085 3086 3087 |
# File 'object.c', line 3083
static VALUE
rb_f_string(VALUE obj, VALUE arg)
{
return rb_String(arg);
}
|
#syscall(num[, args...]) ⇒ Integer
Calls the operating system function identified by num and returns the result of the function or raises SystemCallError if it failed.
Arguments for the function can follow num. They must be either String
objects or Integer
objects. A String
object is passed as a pointer to the byte sequence. An Integer
object is passed as an integer whose bit size is same as a pointer. Up to nine parameters may be passed (14 on the Atari-ST).
The function identified by num is system dependent. On some Unix systems, the numbers may be obtained from a header file called syscall.h
.
syscall 4, 1, "hello\n", 6 # '4' is write(2) on our box
produces:
hello
Calling syscall
on a platform which does not have any way to an arbitrary system function just fails with NotImplementedError.
- Note
-
syscall
is essentially unsafe and unportable. Feel free to shoot your foot. DL (Fiddle) library is preferred for safer and a bit more portable programming.
9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 |
# File 'io.c', line 9303
static VALUE
rb_f_syscall(int argc, VALUE *argv)
{
#ifdef atarist
VALUE arg[13]; /* yes, we really need that many ! */
#else
VALUE arg[8];
#endif
#if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */
# define SYSCALL __syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
# if SIZEOF_LONG == 8
long num, retval = -1;
# elif SIZEOF_LONG_LONG == 8
long long num, retval = -1;
# else
# error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<----
# endif
#elif defined(__linux__)
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
/*
* Linux man page says, syscall(2) function prototype is below.
*
* int syscall(int number, ...);
*
* But, it's incorrect. Actual one takes and returned long. (see unistd.h)
*/
long num, retval = -1;
#else
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2INT(x)
# define RETVAL2NUM(x) INT2NUM(x)
int num, retval = -1;
#endif
int i;
if (RTEST(ruby_verbose)) {
rb_warning("We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative.");
}
if (argc == 0)
rb_raise(rb_eArgError, "too few arguments for syscall");
if (argc > numberof(arg))
rb_raise(rb_eArgError, "too many arguments for syscall");
num = NUM2SYSCALLID(argv[0]); ++argv;
for (i = argc - 1; i--; ) {
VALUE v = rb_check_string_type(argv[i]);
if (!NIL_P(v)) {
SafeStringValue(v);
rb_str_modify(v);
arg[i] = (VALUE)StringValueCStr(v);
}
else {
arg[i] = (VALUE)NUM2LONG(argv[i]);
}
}
switch (argc) {
case 1:
retval = SYSCALL(num);
break;
case 2:
retval = SYSCALL(num, arg[0]);
break;
case 3:
retval = SYSCALL(num, arg[0],arg[1]);
break;
case 4:
retval = SYSCALL(num, arg[0],arg[1],arg[2]);
break;
case 5:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]);
break;
case 6:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]);
break;
case 7:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]);
break;
case 8:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]);
break;
#ifdef atarist
case 9:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7]);
break;
case 10:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7], arg[8]);
break;
case 11:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7], arg[8], arg[9]);
break;
case 12:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7], arg[8], arg[9], arg[10]);
break;
case 13:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7], arg[8], arg[9], arg[10], arg[11]);
break;
case 14:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6],
arg[7], arg[8], arg[9], arg[10], arg[11], arg[12]);
break;
#endif
}
if (retval == -1)
rb_sys_fail(0);
return RETVAL2NUM(retval);
#undef SYSCALL
#undef NUM2SYSCALLID
#undef RETVAL2NUM
}
|
#system([env,][,options]) ⇒ true, ...
Executes command… in a subshell. command… is one of following forms.
commandline : command line string which is passed to the standard shell
cmdname, arg1, ... : command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
system returns true
if the command gives zero exit status, false
for non zero exit status. Returns nil
if command execution fails. An error status is available in $?
. The arguments are processed in the same way as for Kernel.spawn
.
The hash arguments, env and options, are same as exec
and spawn
. See Kernel.spawn
for details.
system("echo *")
system("echo", "*")
produces:
config.h main.rb
*
See Kernel.exec
for the standard shell.
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 |
# File 'process.c', line 4023
static VALUE
rb_f_system(int argc, VALUE *argv)
{
rb_pid_t pid;
int status;
#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif
#ifdef SIGCHLD
RETSIGTYPE (*chfunc)(int);
rb_last_status_clear();
chfunc = signal(SIGCHLD, SIG_DFL);
#endif
pid = rb_spawn_internal(argc, argv, NULL, 0);
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
if (pid > 0) {
int ret, status;
ret = rb_waitpid(pid, &status, 0);
if (ret == (rb_pid_t)-1)
rb_sys_fail("Another thread waited the process started by system().");
}
#endif
#ifdef SIGCHLD
signal(SIGCHLD, chfunc);
#endif
if (pid < 0) {
return Qnil;
}
status = PST2INT(rb_last_status_get());
if (status == EXIT_SUCCESS) return Qtrue;
return Qfalse;
}
|
#test(cmd, file1[, file2]) ⇒ Object
Uses the character cmd
to perform various tests on file1
(first table below) or on file1
and file2
(second table).
File tests on a single file:
Cmd Returns Meaning
"A" | Time | Last access time for file1
"b" | boolean | True if file1 is a block device
"c" | boolean | True if file1 is a character device
"C" | Time | Last change time for file1
"d" | boolean | True if file1 exists and is a directory
"e" | boolean | True if file1 exists
"f" | boolean | True if file1 exists and is a regular file
"g" | boolean | True if file1 has the \CF{setgid} bit
| | set (false under NT)
"G" | boolean | True if file1 exists and has a group
| | ownership equal to the caller's group
"k" | boolean | True if file1 exists and has the sticky bit set
"l" | boolean | True if file1 exists and is a symbolic link
"M" | Time | Last modification time for file1
"o" | boolean | True if file1 exists and is owned by
| | the caller's effective uid
"O" | boolean | True if file1 exists and is owned by
| | the caller's real uid
"p" | boolean | True if file1 exists and is a fifo
"r" | boolean | True if file1 is readable by the effective
| | uid/gid of the caller
"R" | boolean | True if file is readable by the real
| | uid/gid of the caller
"s" | int/nil | If file1 has nonzero size, return the size,
| | otherwise return nil
"S" | boolean | True if file1 exists and is a socket
"u" | boolean | True if file1 has the setuid bit set
"w" | boolean | True if file1 exists and is writable by
| | the effective uid/gid
"W" | boolean | True if file1 exists and is writable by
| | the real uid/gid
"x" | boolean | True if file1 exists and is executable by
| | the effective uid/gid
"X" | boolean | True if file1 exists and is executable by
| | the real uid/gid
"z" | boolean | True if file1 exists and has a zero length
Tests that take two files:
"-" | boolean | True if file1 and file2 are identical
"=" | boolean | True if the modification times of file1
| | and file2 are equal
"<" | boolean | True if the modification time of file1
| | is prior to that of file2
">" | boolean | True if the modification time of file1
| | is after that of file2
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 |
# File 'file.c', line 4704
static VALUE
rb_f_test(int argc, VALUE *argv)
{
int cmd;
if (argc == 0) rb_check_arity(argc, 2, 3);
cmd = NUM2CHR(argv[0]);
if (cmd == 0) {
unknown:
/* unknown command */
if (ISPRINT(cmd)) {
rb_raise(rb_eArgError, "unknown command '%s%c'", cmd == '\'' || cmd == '\\' ? "\\" : "", cmd);
}
else {
rb_raise(rb_eArgError, "unknown command \"\\x%02X\"", cmd);
}
}
if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) {
CHECK(1);
switch (cmd) {
case 'b':
return rb_file_blockdev_p(0, argv[1]);
case 'c':
return rb_file_chardev_p(0, argv[1]);
case 'd':
return rb_file_directory_p(0, argv[1]);
case 'e':
return rb_file_exist_p(0, argv[1]);
case 'f':
return rb_file_file_p(0, argv[1]);
case 'g':
return rb_file_sgid_p(0, argv[1]);
case 'G':
return rb_file_grpowned_p(0, argv[1]);
case 'k':
return rb_file_sticky_p(0, argv[1]);
case 'l':
return rb_file_symlink_p(0, argv[1]);
case 'o':
return rb_file_owned_p(0, argv[1]);
case 'O':
return rb_file_rowned_p(0, argv[1]);
case 'p':
return rb_file_pipe_p(0, argv[1]);
case 'r':
return rb_file_readable_p(0, argv[1]);
case 'R':
return rb_file_readable_real_p(0, argv[1]);
case 's':
return rb_file_size_p(0, argv[1]);
case 'S':
return rb_file_socket_p(0, argv[1]);
case 'u':
return rb_file_suid_p(0, argv[1]);
case 'w':
return rb_file_writable_p(0, argv[1]);
case 'W':
return rb_file_writable_real_p(0, argv[1]);
case 'x':
return rb_file_executable_p(0, argv[1]);
case 'X':
return rb_file_executable_real_p(0, argv[1]);
case 'z':
return rb_file_zero_p(0, argv[1]);
}
}
if (strchr("MAC", cmd)) {
struct stat st;
VALUE fname = argv[1];
CHECK(1);
if (rb_stat(fname, &st) == -1) {
int e = errno;
FilePathValue(fname);
rb_syserr_fail_path(e, fname);
}
switch (cmd) {
case 'A':
return stat_atime(&st);
case 'M':
return stat_mtime(&st);
case 'C':
return stat_ctime(&st);
}
}
if (cmd == '-') {
CHECK(2);
return rb_file_identical_p(0, argv[1], argv[2]);
}
if (strchr("=<>", cmd)) {
struct stat st1, st2;
struct timespec t1, t2;
CHECK(2);
if (rb_stat(argv[1], &st1) < 0) return Qfalse;
if (rb_stat(argv[2], &st2) < 0) return Qfalse;
t1 = stat_mtimespec(&st1);
t2 = stat_mtimespec(&st2);
switch (cmd) {
case '=':
if (t1.tv_sec == t2.tv_sec && t1.tv_nsec == t2.tv_nsec) return Qtrue;
return Qfalse;
case '>':
if (t1.tv_sec > t2.tv_sec) return Qtrue;
if (t1.tv_sec == t2.tv_sec && t1.tv_nsec > t2.tv_nsec) return Qtrue;
return Qfalse;
case '<':
if (t1.tv_sec < t2.tv_sec) return Qtrue;
if (t1.tv_sec == t2.tv_sec && t1.tv_nsec < t2.tv_nsec) return Qtrue;
return Qfalse;
}
}
goto unknown;
}
|
#throw(tag[, obj]) ⇒ Object
Transfers control to the end of the active catch
block waiting for tag. Raises UncaughtThrowError
if there is no catch
block for the tag. The optional second parameter supplies a return value for the catch
block, which otherwise defaults to nil
. For examples, see Kernel::catch
.
1872 1873 1874 1875 1876 1877 1878 1879 1880 |
# File 'vm_eval.c', line 1872
static VALUE
rb_f_throw(int argc, VALUE *argv)
{
VALUE tag, value;
rb_scan_args(argc, argv, "11", &tag, &value);
rb_throw_obj(tag, value);
UNREACHABLE;
}
|
#trace_var(symbol, cmd) ⇒ nil #trace_var(symbol) {|val| ... } ⇒ nil
Controls tracing of assignments to global variables. The parameter symbol
identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc
object) or block is executed whenever the variable is assigned. The block or Proc
object receives the variable’s new value as a parameter. Also see Kernel::untrace_var
.
trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
$_ = ' there'
produces:
$_ is now 'hello'
$_ is now ' there'
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
# File 'variable.c', line 684
VALUE
rb_f_trace_var(int argc, const VALUE *argv)
{
VALUE var, cmd;
struct rb_global_entry *entry;
struct trace_var *trace;
if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) {
cmd = rb_block_proc();
}
if (NIL_P(cmd)) {
return rb_f_untrace_var(argc, argv);
}
entry = rb_global_entry(rb_to_id(var));
if (OBJ_TAINTED(cmd)) {
rb_raise(rb_eSecurityError, "Insecure: tainted variable trace");
}
trace = ALLOC(struct trace_var);
trace->next = entry->var->trace;
trace->func = rb_trace_eval;
trace->data = cmd;
trace->removed = 0;
entry->var->trace = trace;
return Qnil;
}
|
#trap(signal, command) ⇒ Object #trap(signal) {|| ... } ⇒ Object
Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.
Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD") { puts "Child died" }
fork && Process.wait
produces:
Terminating: 27461
Child died
Terminating: 27460
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 |
# File 'signal.c', line 1294
static VALUE
sig_trap(int argc, VALUE *argv)
{
int sig;
sighandler_t func;
VALUE cmd;
rb_check_arity(argc, 1, 2);
sig = trap_signm(argv[0]);
if (reserved_signal_p(sig)) {
const char *name = signo2signm(sig);
if (name)
rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name);
else
rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig);
}
if (argc == 1) {
cmd = rb_block_proc();
func = sighandler;
}
else {
cmd = argv[1];
func = trap_handler(&cmd, sig);
}
if (OBJ_TAINTED(cmd)) {
rb_raise(rb_eSecurityError, "Insecure: tainted signal trap");
}
return trap(sig, func, cmd);
}
|
#untrace_var(symbol[, cmd]) ⇒ Array?
Removes tracing for the specified command on the given global variable and returns nil
. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
# File 'variable.c', line 743
VALUE
rb_f_untrace_var(int argc, const VALUE *argv)
{
VALUE var, cmd;
ID id;
struct rb_global_entry *entry;
struct trace_var *trace;
VALUE data;
rb_scan_args(argc, argv, "11", &var, &cmd);
id = rb_check_id(&var);
if (!id) {
rb_name_error_str(var, "undefined global variable %"PRIsVALUE"", QUOTE(var));
}
if (!rb_id_table_lookup(rb_global_tbl, id, &data)) {
rb_name_error(id, "undefined global variable %"PRIsVALUE"", QUOTE_ID(id));
}
trace = (entry = (struct rb_global_entry *)data)->var->trace;
if (NIL_P(cmd)) {
VALUE ary = rb_ary_new();
while (trace) {
struct trace_var *next = trace->next;
rb_ary_push(ary, (VALUE)trace->data);
trace->removed = 1;
trace = next;
}
if (!entry->var->block_trace) remove_trace(entry->var);
return ary;
}
else {
while (trace) {
if (trace->data == cmd) {
trace->removed = 1;
if (!entry->var->block_trace) remove_trace(entry->var);
return rb_ary_new3(1, cmd);
}
trace = trace->next;
}
}
return Qnil;
}
|
#warn(msg, ...) ⇒ nil
Displays each of the given messages followed by a record separator on STDERR unless warnings have been disabled (for example with the -W0
flag).
warn("warning 1", "warning 2")
<em>produces:</em>
warning 1
warning 2
309 310 311 312 313 314 315 316 |
# File 'error.c', line 309
static VALUE
rb_warn_m(int argc, VALUE *argv, VALUE exc)
{
if (!NIL_P(ruby_verbose) && argc > 0) {
rb_io_puts(argc, argv, rb_stderr);
}
return Qnil;
}
|