Class: Numeric
Overview
Numeric is the class from which all higher-level numeric classes should inherit.
Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.
a = 1
puts 1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1
, for example. Ruby ensures this by preventing instantiation and duplication.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class
1.dup #=> TypeError: can't dup Fixnum
For this reason, Numeric should be used when defining other numeric classes.
Classes which inherit from Numeric must implement coerce
, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self
(see #coerce).
Inheriting classes should also implement arithmetic operator methods (+
, -
, *
and /
) and the <=>
operator (see Comparable). These methods may rely on coerce
to ensure interoperability with instances of other numeric classes.
class Tally < Numeric
def initialize(string)
@string = string
end
def to_s
@string
end
def to_i
@string.size
end
def coerce(other)
[self.class.new('|' * other.to_i), self]
end
def <=>(other)
to_i <=> other.to_i
end
def +(other)
self.class.new('|' * (to_i + other.to_i))
end
def -(other)
self.class.new('|' * (to_i - other.to_i))
end
def *(other)
self.class.new('|' * (to_i * other.to_i))
end
def /(other)
self.class.new('|' * (to_i / other.to_i))
end
end
tally = Tally.new('||')
puts tally * 2 #=> "||||"
puts tally > 1 #=> true
Instance Method Summary collapse
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#+ ⇒ Numeric
Unary Plus—Returns the receiver’s value.
-
#- ⇒ Numeric
Unary Minus—Returns the receiver’s value, negated.
-
#<=>(other) ⇒ 0?
Returns zero if
number
equalsother
, otherwisenil
is returned if the two values are incomparable. -
#abs ⇒ Object
Returns the absolute value of
num
. -
#abs2 ⇒ Object
Returns square of self.
-
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest possible Integer that is greater than or equal to
num
. -
#coerce(numeric) ⇒ Array
If a
numeric
is the same type asnum
, returns an array containingnumeric
andnum
. -
#conj ⇒ Object
Returns self.
-
#conjugate ⇒ Object
Returns self.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing
num
bynumeric
. -
#eql?(numeric) ⇒ Boolean
Returns
true
ifnum
andnumeric
are the same type and have equal values. -
#fdiv(numeric) ⇒ Float
Returns float division.
-
#floor ⇒ Integer
Returns the largest integer less than or equal to
num
. -
#i ⇒ Complex(0]
Returns the corresponding imaginary number.
-
#imag ⇒ Object
Returns zero.
-
#imaginary ⇒ Object
Returns zero.
-
#initialize_copy(y) ⇒ Object
Numerics are immutable values, which should not be copied.
-
#integer? ⇒ Boolean
Returns
true
ifnum
is an Integer (including Fixnum and Bignum). -
#magnitude ⇒ Object
Returns the absolute value of
num
. -
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#negative? ⇒ Boolean
Returns
true
ifnum
is less than 0. -
#nonzero? ⇒ self?
Returns
self
ifnum
is not zero,nil
otherwise. -
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#positive? ⇒ Boolean
Returns
true
ifnum
is greater than 0. -
#quo(y) ⇒ Object
Returns most exact division (rational for integers, float for floats).
-
#real ⇒ self
Returns self.
-
#real? ⇒ Boolean
Returns
true
ifnum
is a Real number. -
#rect ⇒ Object
Returns an array; [num, 0].
-
#rectangular ⇒ Object
Returns an array; [num, 0].
-
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate.
-
#round([ndigits]) ⇒ Integer, Float
Rounds
num
to a given precision in decimal digits (default 0 digits). -
#singleton_method_added(name) ⇒ Object
Trap attempts to add methods to Numeric objects.
-
#step(*args) ⇒ Object
Invokes the given block with the sequence of numbers starting at
num
, incremented bystep
(defaulted to1
) on each call. -
#to_c ⇒ Object
Returns the value as a complex.
-
#to_int ⇒ Integer
Invokes the child class’s
to_i
method to convertnum
to an integer. -
#truncate ⇒ Integer
Returns
num
truncated to an Integer. -
#zero? ⇒ Boolean
Returns
true
ifnum
has a zero value.
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(numeric)[1]
.
See Numeric#divmod.
463 464 465 466 467 468 469 |
# File 'numeric.c', line 463
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, id_div, 1, y)));
}
|
#+ ⇒ Numeric
Unary Plus—Returns the receiver’s value.
379 380 381 382 383 |
# File 'numeric.c', line 379
static VALUE
num_uplus(VALUE num)
{
return num;
}
|
#- ⇒ Numeric
Unary Minus—Returns the receiver’s value, negated.
407 408 409 410 411 412 413 414 415 416 |
# File 'numeric.c', line 407
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return rb_funcall(zero, '-', 1, num);
}
|
#<=>(other) ⇒ 0?
Returns zero if number
equals other
, otherwise nil
is returned if the two values are incomparable.
1125 1126 1127 1128 1129 1130 |
# File 'numeric.c', line 1125
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num
.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
Numeric#magnitude is an alias of Numeric#abs.
586 587 588 589 590 591 592 593 |
# File 'numeric.c', line 586
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, idUMinus, 0);
}
return num;
}
|
#abs2 ⇒ Object
Returns square of self.
2004 2005 2006 2007 2008 |
# File 'complex.c', line 2004
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2020 2021 2022 2023 2024 2025 2026 |
# File 'complex.c', line 2020
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2020 2021 2022 2023 2024 2025 2026 |
# File 'complex.c', line 2020
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil ⇒ Integer
Returns the smallest possible Integer that is greater than or equal to num
.
Numeric achieves this by converting itself to a Float then invoking Float#ceil.
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.0).ceil #=> -1
1933 1934 1935 1936 1937 |
# File 'numeric.c', line 1933
static VALUE
num_ceil(VALUE num)
{
return flo_ceil(rb_Float(num));
}
|
#coerce(numeric) ⇒ Array
If a numeric
is the same type as num
, returns an array containing numeric
and num
. Otherwise, returns an array with both a numeric
and num
represented as Float objects.
This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
231 232 233 234 235 236 237 238 239 |
# File 'numeric.c', line 231
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
2060 2061 2062 2063 2064 |
# File 'complex.c', line 2060
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
2060 2061 2062 2063 2064 |
# File 'complex.c', line 2060
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#denominator ⇒ Integer
Returns the denominator (always positive).
1819 1820 1821 1822 1823 |
# File 'rational.c', line 1819
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
|
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. numeric
does not define the /
operator; this is left to subclasses.
Equivalent to num.divmod(numeric)[0]
.
See Numeric#divmod.
444 445 446 447 448 449 |
# File 'numeric.c', line 444
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
|
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num
by numeric
.
If q, r = * x.divmod(y)
, then
q = floor(x/y)
x = q*y+r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------+-----+---------------+---------+-------------+---------------
13 | -4 | -4, -3 | -4 | -3 | 1
------+-----+---------------+---------+-------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------+-----+---------------+---------+-------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------+-----+---------------+---------+-------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------+-----+---------------+---------+-------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
(11.5).divmod(3.5) #=> [3, 1.0]
537 538 539 540 541 |
# File 'numeric.c', line 537
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
|
#eql?(numeric) ⇒ Boolean
Returns true
if num
and numeric
are the same type and have equal values.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
(1.0).eql?(1.0) #=> true
1109 1110 1111 1112 1113 1114 1115 |
# File 'numeric.c', line 1109
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
|
#fdiv(numeric) ⇒ Float
Returns float division.
425 426 427 428 429 |
# File 'numeric.c', line 425
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to num
.
Numeric implements this by converting an Integer to a Float and invoking Float#floor.
1.floor #=> 1
(-1).floor #=> -1
1910 1911 1912 1913 1914 |
# File 'numeric.c', line 1910
static VALUE
num_floor(VALUE num)
{
return flo_floor(rb_Float(num));
}
|
#i ⇒ Complex(0]
Returns the corresponding imaginary number. Not available for complex numbers.
393 394 395 396 397 |
# File 'numeric.c', line 393
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1992 1993 1994 1995 1996 |
# File 'complex.c', line 1992
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1992 1993 1994 1995 1996 |
# File 'complex.c', line 1992
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#initialize_copy(y) ⇒ Object
Numerics are immutable values, which should not be copied.
Any attempt to use this method on a Numeric will raise a TypeError.
364 365 366 367 368 369 370 |
# File 'numeric.c', line 364
static VALUE
num_init_copy(VALUE x, VALUE y)
{
rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x));
UNREACHABLE;
}
|
#integer? ⇒ Boolean
Returns true
if num
is an Integer (including Fixnum and Bignum).
(1.0).integer? #=> false
(1).integer? #=> true
566 567 568 569 570 |
# File 'numeric.c', line 566
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num
.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
Numeric#magnitude is an alias of Numeric#abs.
586 587 588 589 590 591 592 593 |
# File 'numeric.c', line 586
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, idUMinus, 0);
}
return num;
}
|
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(numeric)[1]
.
See Numeric#divmod.
463 464 465 466 467 468 469 |
# File 'numeric.c', line 463
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, id_div, 1, y)));
}
|
#negative? ⇒ Boolean
Returns true
if num
is less than 0.
682 683 684 685 686 |
# File 'numeric.c', line 682
static VALUE
num_negative_p(VALUE num)
{
return negative_int_p(num) ? Qtrue : Qfalse;
}
|
#nonzero? ⇒ self?
Returns self
if num
is not zero, nil
otherwise.
This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
626 627 628 629 630 631 632 633 |
# File 'numeric.c', line 626
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcallv(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
|
#numerator ⇒ Integer
Returns the numerator.
1807 1808 1809 1810 1811 |
# File 'rational.c', line 1807
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2020 2021 2022 2023 2024 2025 2026 |
# File 'complex.c', line 2020
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
2047 2048 2049 2050 2051 |
# File 'complex.c', line 2047
static VALUE
numeric_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
|
#positive? ⇒ Boolean
Returns true
if num
is greater than 0.
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# File 'numeric.c', line 659
static VALUE
num_positive_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cFixnum))
return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse;
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (method_basic_p(rb_cBignum))
return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse;
}
return compare_with_zero(num, mid);
}
|
#quo(int_or_rat) ⇒ Object #quo(flo) ⇒ Object
Returns most exact division (rational for integers, float for floats).
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 |
# File 'rational.c', line 1834
static VALUE
numeric_quo(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FLOAT)) {
return f_fdiv(x, y);
}
#ifdef CANON
if (canonicalization) {
x = rb_rational_raw1(x);
}
else
#endif
{
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
}
return rb_funcall(x, '/', 1, y);
}
|
#real ⇒ self
Returns self.
1979 1980 1981 1982 1983 |
# File 'complex.c', line 1979
static VALUE
numeric_real(VALUE self)
{
return self;
}
|
#real? ⇒ Boolean
Returns true
if num
is a Real number. (i.e. not Complex).
550 551 552 553 554 |
# File 'numeric.c', line 550
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [num, 0].
2035 2036 2037 2038 2039 |
# File 'complex.c', line 2035
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [num, 0].
2035 2036 2037 2038 2039 |
# File 'complex.c', line 2035
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate
See Numeric#divmod.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# File 'numeric.c', line 480
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((negative_int_p(x) &&
positive_int_p(y)) ||
(positive_int_p(x) &&
negative_int_p(y)))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds num
to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits
is more than zero.
Numeric implements this by converting itself to a Float and invoking Float#round.
1952 1953 1954 1955 1956 |
# File 'numeric.c', line 1952
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
|
#singleton_method_added(name) ⇒ Object
Trap attempts to add methods to Numeric objects. Always raises a TypeError.
Numerics should be values; singleton_methods should not be added to them.
345 346 347 348 349 350 351 352 353 354 355 356 357 |
# File 'numeric.c', line 345
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
rb_id2str(mid),
rb_obj_class(x));
UNREACHABLE;
}
|
#step(by: step, to: limit) {|i| ... } ⇒ self #step(by: step, to: limit) ⇒ Object #step(limit = nil, step = 1) {|i| ... } ⇒ self #step(limit = nil, step = 1) ⇒ Object
Invokes the given block with the sequence of numbers starting at num
, incremented by step
(defaulted to 1
) on each call.
The loop finishes when the value to be passed to the block is greater than limit
(if step
is positive) or less than limit
(if step
is negative), where limit is defaulted to infinity.
In the recommended keyword argument style, either or both of step
and limit
(default infinity) can be omitted. In the fixed position argument style, zero as a step (i.e. num.step(limit, 0)) is not allowed for historical compatibility reasons.
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed the following expression:
floor(n + n*epsilon)+ 1
Where the n
is the following:
n = (limit - num)/step
Otherwise, the loop starts at num
, uses either the less-than (<) or greater-than (>) operator to compare the counter against limit
, and increments itself using the +
operator.
If no block is given, an Enumerator is returned instead.
For example:
p 1.step.take(4)
p 10.step(by: -1).take(4)
3.step(to: 5) { |i| print i, " " }
1.step(10, 2) { |i| print i, " " }
Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " }
Will produce:
[1, 2, 3, 4]
[10, 9, 8, 7]
3 4 5
1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 |
# File 'numeric.c', line 2185
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
desc = num_step_scan_args(argc, argv, &to, &step);
if (RTEST(rb_num_coerce_cmp(step, INT2FIX(0), id_eq))) {
inf = 1;
}
else if (RB_TYPE_P(to, T_FLOAT)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
|
#to_c ⇒ Object
Returns the value as a complex.
1552 1553 1554 1555 1556 |
# File 'complex.c', line 1552
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
|
#to_int ⇒ Integer
646 647 648 649 650 |
# File 'numeric.c', line 646
static VALUE
num_to_int(VALUE num)
{
return rb_funcallv(num, id_to_i, 0, 0);
}
|
#truncate ⇒ Integer
Returns num
truncated to an Integer.
Numeric implements this by converting its value to a Float and invoking Float#truncate.
1968 1969 1970 1971 1972 |
# File 'numeric.c', line 1968
static VALUE
num_truncate(VALUE num)
{
return flo_truncate(rb_Float(num));
}
|
#zero? ⇒ Boolean
Returns true
if num
has a zero value.
603 604 605 606 607 608 609 610 |
# File 'numeric.c', line 603
static VALUE
num_zero_p(VALUE num)
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
|