Class: Integer

Inherits:
Numeric show all
Defined in:
numeric.c,
numeric.c

Overview

This class is the basis for the two concrete classes that hold whole

numbers, Bignum and Fixnum.

Direct Known Subclasses

Bignum, Fixnum

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #-@, #<=>, #abs, #abs2, #angle, #arg, #coerce, #conj, #conjugate, #div, #divmod, #eql?, #fdiv, #i, #imag, #imaginary, #initialize_copy, #magnitude, #modulo, #negative?, #nonzero?, #phase, #polar, #positive?, #quo, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #zero?

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?

Instance Method Details

#to_iInteger

As int is already an Integer, all these methods simply return the receiver.

Synonyms are #to_int, #floor, #ceil, #truncate.

Returns:



2611
2612
2613
2614
2615
# File 'numeric.c', line 2611

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#chr([encoding]) ⇒ String

Returns a string containing the character represented by the int‘s value according to encoding.

65.chr    #=> "A"
230.chr   #=> "\346"
255.chr(Encoding::UTF_8)   #=> "\303\277"

Returns:



2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
# File 'numeric.c', line 2765

static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
    char c;
    unsigned int i;
    rb_encoding *enc;

    if (rb_num_to_uint(num, &i) == 0) {
    }
    else if (FIXNUM_P(num)) {
	rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
    }
    else {
	rb_raise(rb_eRangeError, "bignum out of char range");
    }

    switch (argc) {
      case 0:
	if (0xff < i) {
	    enc = rb_default_internal_encoding();
	    if (!enc) {
		rb_raise(rb_eRangeError, "%d out of char range", i);
	    }
	    goto decode;
	}
	c = (char)i;
	if (i < 0x80) {
	    return rb_usascii_str_new(&c, 1);
	}
	else {
	    return rb_str_new(&c, 1);
	}
      case 1:
	break;
      default:
	rb_check_arity(argc, 0, 1);
	break;
    }
    enc = rb_to_encoding(argv[0]);
    if (!enc) enc = rb_ascii8bit_encoding();
  decode:
    return rb_enc_uint_chr(i, enc);
}

#denominator1

Returns 1.

Returns:

  • (1)


1872
1873
1874
1875
1876
# File 'rational.c', line 1872

static VALUE
integer_denominator(VALUE self)
{
    return INT2FIX(1);
}

#downto(limit) {|i| ... } ⇒ self #downto(limit) ⇒ Object

Iterates the given block, passing decreasing values from int down to and including limit.

If no block is given, an Enumerator is returned instead.

5.downto(1) { |n| print n, ".. " }
print "  Liftoff!\n"
#=> "5.. 4.. 3.. 2.. 1..   Liftoff!"

Overloads:

  • #downto(limit) {|i| ... } ⇒ self

    Yields:

    • (i)

    Returns:

    • (self)


3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
# File 'numeric.c', line 3891

static VALUE
int_downto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
	long i, end;

	end = FIX2LONG(to);
	for (i=FIX2LONG(from); i >= end; i--) {
	    rb_yield(LONG2FIX(i));
	}
    }
    else {
	VALUE i = from, c;

	while (!(c = rb_funcall(i, '<', 1, to))) {
	    rb_yield(i);
	    i = rb_funcall(i, '-', 1, INT2FIX(1));
	}
	if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}

#even?Boolean

Returns true if int is an even number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2653
2654
2655
2656
2657
2658
2659
2660
# File 'numeric.c', line 2653

static VALUE
int_even_p(VALUE num)
{
    if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
	return Qtrue;
    }
    return Qfalse;
}

#to_iInteger

As int is already an Integer, all these methods simply return the receiver.

Synonyms are #to_int, #floor, #ceil, #truncate.

Returns:



2611
2612
2613
2614
2615
# File 'numeric.c', line 2611

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#gcd(int2) ⇒ Integer

Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).

2.gcd(2)                    #=> 2
3.gcd(-7)                   #=> 1
((1<<31)-1).gcd((1<<61)-1)  #=> 1

Returns:



1715
1716
1717
1718
1719
1720
# File 'rational.c', line 1715

VALUE
rb_gcd(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_gcd(self, other);
}

#gcdlcm(int2) ⇒ Array

Returns an array; [int.gcd(int2), int.lcm(int2)].

2.gcdlcm(2)                    #=> [2, 2]
3.gcdlcm(-7)                   #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1)  #=> [1, 4951760154835678088235319297]

Returns:



1750
1751
1752
1753
1754
1755
# File 'rational.c', line 1750

VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}

#integer?true

Since int is already an Integer, this always returns true.

Returns:

  • (true)

Returns:

  • (Boolean)


2624
2625
2626
2627
2628
# File 'numeric.c', line 2624

static VALUE
int_int_p(VALUE num)
{
    return Qtrue;
}

#lcm(int2) ⇒ Integer

Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.

2.lcm(2)                    #=> 2
3.lcm(-7)                   #=> 21
((1<<31)-1).lcm((1<<61)-1)  #=> 4951760154835678088235319297

Returns:



1733
1734
1735
1736
1737
1738
# File 'rational.c', line 1733

VALUE
rb_lcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_lcm(self, other);
}

#nextObject

#numeratorself

Returns self.

Returns:

  • (self)


1860
1861
1862
1863
1864
# File 'rational.c', line 1860

static VALUE
integer_numerator(VALUE self)
{
    return self;
}

#odd?Boolean

Returns true if int is an odd number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2637
2638
2639
2640
2641
2642
2643
2644
# File 'numeric.c', line 2637

static VALUE
int_odd_p(VALUE num)
{
    if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
	return Qtrue;
    }
    return Qfalse;
}

#ordself

Returns the int itself.

?a.ord    #=> 97

This method is intended for compatibility to character constant in Ruby 1.9.

For example, ?a.ord returns 97 both in 1.8 and 1.9.

Returns:

  • (self)


2823
2824
2825
2826
2827
# File 'numeric.c', line 2823

static VALUE
int_ord(VALUE num)
{
    return num;
}

#predObject

#rationalize([eps]) ⇒ Object

Returns the value as a rational. The optional argument eps is always ignored.



1963
1964
1965
1966
1967
1968
# File 'rational.c', line 1963

static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
    rb_scan_args(argc, argv, "01", NULL);
    return integer_to_r(self);
}

#round([ndigits]) ⇒ Integer, Float

Rounds int to a given precision in decimal digits (default 0 digits).

Precision may be negative. Returns a floating point number when ndigits is positive, self for zero, and round down for negative.

1.round        #=> 1
1.round(2)     #=> 1.0
15.round(-1)   #=> 20

Returns:



3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
# File 'numeric.c', line 3982

static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
    VALUE n;
    int ndigits;

    if (argc == 0) return num;
    rb_scan_args(argc, argv, "1", &n);
    ndigits = NUM2INT(n);
    if (ndigits > 0) {
	return rb_Float(num);
    }
    if (ndigits == 0) {
	return num;
    }
    return int_round_0(num, ndigits);
}

#succObject

#times {|i| ... } ⇒ self #timesObject

Iterates the given block int times, passing in values from zero to int - 1.

If no block is given, an Enumerator is returned instead.

5.times do |i|
  print i, " "
end
#=> 0 1 2 3 4

Overloads:

  • #times {|i| ... } ⇒ self

    Yields:

    • (i)

    Returns:

    • (self)


3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
# File 'numeric.c', line 3943

static VALUE
int_dotimes(VALUE num)
{
    RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);

    if (FIXNUM_P(num)) {
	long i, end;

	end = FIX2LONG(num);
	for (i=0; i<end; i++) {
	    rb_yield_1(LONG2FIX(i));
	}
    }
    else {
	VALUE i = INT2FIX(0);

	for (;;) {
	    if (!RTEST(rb_funcall(i, '<', 1, num))) break;
	    rb_yield(i);
	    i = rb_funcall(i, '+', 1, INT2FIX(1));
	}
    }
    return num;
}

#to_iInteger

As int is already an Integer, all these methods simply return the receiver.

Synonyms are #to_int, #floor, #ceil, #truncate.

Returns:



2611
2612
2613
2614
2615
# File 'numeric.c', line 2611

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#to_iInteger

As int is already an Integer, all these methods simply return the receiver.

Synonyms are #to_int, #floor, #ceil, #truncate.

Returns:



2611
2612
2613
2614
2615
# File 'numeric.c', line 2611

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#to_rObject

Returns the value as a rational.

1.to_r        #=> (1/1)
(1<<64).to_r  #=> (18446744073709551616/1)


1950
1951
1952
1953
1954
# File 'rational.c', line 1950

static VALUE
integer_to_r(VALUE self)
{
    return rb_rational_new1(self);
}

#to_iInteger

As int is already an Integer, all these methods simply return the receiver.

Synonyms are #to_int, #floor, #ceil, #truncate.

Returns:



2611
2612
2613
2614
2615
# File 'numeric.c', line 2611

static VALUE
int_to_i(VALUE num)
{
    return num;
}

#upto(limit) {|i| ... } ⇒ self #upto(limit) ⇒ Object

Iterates the given block, passing in integer values from int up to and including limit.

If no block is given, an Enumerator is returned instead.

For example:

5.upto(10) { |i| print i, " " }
#=> 5 6 7 8 9 10

Overloads:

  • #upto(limit) {|i| ... } ⇒ self

    Yields:

    • (i)

    Returns:

    • (self)


3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
# File 'numeric.c', line 3846

static VALUE
int_upto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
	long i, end;

	end = FIX2LONG(to);
	for (i = FIX2LONG(from); i <= end; i++) {
	    rb_yield(LONG2FIX(i));
	}
    }
    else {
	VALUE i = from, c;

	while (!(c = rb_funcall(i, '>', 1, to))) {
	    rb_yield(i);
	    i = rb_funcall(i, '+', 1, INT2FIX(1));
	}
	if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}