Class: Bignum

Inherits:
Integer show all
Defined in:
bignum.c

Overview

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created automatically when integer calculations would otherwise overflow a Fixnum. When a calculation involving Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and parameter passing work with references to objects, not the objects themselves.

Constant Summary collapse

GMP_VERSION =

The version of loaded GMP.

rb_sprintf("GMP %s", gmp_version)

Instance Method Summary collapse

Methods inherited from Integer

#ceil, #chr, #denominator, #downto, #floor, #gcd, #gcdlcm, #integer?, #lcm, #next, #numerator, #ord, #pred, #rationalize, #round, #succ, #times, #to_i, #to_int, #to_r, #truncate, #upto

Methods inherited from Numeric

#+@, #abs2, #angle, #arg, #ceil, #conj, #conjugate, #denominator, #floor, #i, #imag, #imaginary, #initialize_copy, #integer?, #negative?, #nonzero?, #numerator, #phase, #polar, #positive?, #quo, #real, #real?, #rect, #rectangular, #round, #singleton_method_added, #step, #to_c, #to_int, #truncate, #zero?

Methods included from Comparable

#between?

Instance Method Details

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
# File 'bignum.c', line 6095

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#&(numeric) ⇒ Integer

Performs bitwise and between big and numeric.

Returns:



6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
# File 'bignum.c', line 6385

VALUE
rb_big_and(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '&');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigand_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (!hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] & ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 & ds2[i];
    }
    twocomp2abs_bang(z, hibits1 && hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#*(other) ⇒ Numeric

Multiplies big and other, returning the result.

Returns:



5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
# File 'bignum.c', line 5903

VALUE
rb_big_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }

    return bignorm(bigmul0(x, y));
}

#**(exponent) ⇒ Numeric

Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float

123456789 ** 2      #=> 15241578750190521
123456789 ** 1.2    #=> 5126464716.09932
123456789 ** -2     #=> 6.5610001194102e-17

Returns:



6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
# File 'bignum.c', line 6269

VALUE
rb_big_pow(VALUE x, VALUE y)
{
    double d;
    SIGNED_VALUE yy;

  again:
    if (y == INT2FIX(0)) return INT2FIX(1);
    if (RB_FLOAT_TYPE_P(y)) {
	d = RFLOAT_VALUE(y);
	if ((!BIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
	    return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	y = bignorm(y);
	if (FIXNUM_P(y))
	    goto again;
	rb_warn("in a**b, b may be too big");
	d = rb_big2dbl(y);
    }
    else if (FIXNUM_P(y)) {
	yy = FIX2LONG(y);

	if (yy < 0)
	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
	else {
	    VALUE z = 0;
	    SIGNED_VALUE mask;
            const size_t xbits = rb_absint_numwords(x, 1, NULL);
	    const size_t BIGLEN_LIMIT = 32*1024*1024;

	    if (xbits == (size_t)-1 ||
                (xbits > BIGLEN_LIMIT) ||
                (xbits * yy > BIGLEN_LIMIT)) {
		rb_warn("in a**b, b may be too big");
		d = (double)yy;
	    }
	    else {
		for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
		    if (z) z = bigsq(z);
		    if (yy & mask) {
			z = z ? bigtrunc(bigmul0(z, x)) : x;
		    }
		}
		return bignorm(z);
	    }
	}
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("**"));
    }
    return DBL2NUM(pow(rb_big2dbl(x), d));
}

#+(other) ⇒ Numeric

Adds big and other, returning the result.

Returns:



5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
# File 'bignum.c', line 5773

VALUE
rb_big_plus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != BIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigsub_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigadd_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 1));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Numeric

Subtracts other from big, returning the result.

Returns:



5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
# File 'bignum.c', line 5809

VALUE
rb_big_minus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != BIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigadd_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigsub_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 0));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Integer

Unary minus (returns an integer whose value is 0-big)

Returns:



5484
5485
5486
5487
5488
5489
5490
5491
5492
# File 'bignum.c', line 5484

VALUE
rb_big_uminus(VALUE x)
{
    VALUE z = rb_big_clone(x);

    BIGNUM_SET_SIGN(z, !BIGNUM_SIGN(x));

    return bignorm(z);
}

#/(other) ⇒ Numeric

Performs division: the class of the resulting object depends on the class of numeric and on the magnitude of the result.

Returns:



6067
6068
6069
6070
6071
# File 'bignum.c', line 6067

VALUE
rb_big_div(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, '/');
}

#<(real) ⇒ Boolean

Returns true if the value of big is less than that of real.

Returns:

  • (Boolean)


5404
5405
5406
5407
5408
# File 'bignum.c', line 5404

static VALUE
big_lt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_lt);
}

#<<(numeric) ⇒ Integer

Shifts big left numeric positions (right if numeric is negative).

Returns:



6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
# File 'bignum.c', line 6666

VALUE
rb_big_lshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
	    if (0 <= l) {
		lshift_p = 1;
                shift = l;
            }
            else {
		lshift_p = 0;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 1, y));
	}
	y = rb_to_int(y);
    }
}

#<=(real) ⇒ Boolean

Returns true if the value of big is less than or equal to that of real.

Returns:

  • (Boolean)


5418
5419
5420
5421
5422
# File 'bignum.c', line 5418

static VALUE
big_le(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_le);
}

#<=>(numeric) ⇒ -1, ...

Comparison—Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable.

nil is returned if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
# File 'bignum.c', line 5290

VALUE
rb_big_cmp(VALUE x, VALUE y)
{
    int cmp;

    if (FIXNUM_P(y)) {
        x = bignorm(x);
        if (FIXNUM_P(x)) {
            if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
            if (FIX2LONG(x) < FIX2LONG(y)) return INT2FIX(-1);
            return INT2FIX(0);
        }
        else {
            if (BIGNUM_NEGATIVE_P(x)) return INT2FIX(-1);
            return INT2FIX(1);
        }
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_cmp(x, y);
    }
    else {
	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
    }

    if (BIGNUM_SIGN(x) > BIGNUM_SIGN(y)) return INT2FIX(1);
    if (BIGNUM_SIGN(x) < BIGNUM_SIGN(y)) return INT2FIX(-1);

    cmp = bary_cmp(BDIGITS(x), BIGNUM_LEN(x), BDIGITS(y), BIGNUM_LEN(y));
    if (BIGNUM_SIGN(x))
        return INT2FIX(cmp);
    else
        return INT2FIX(-cmp);
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
# File 'bignum.c', line 5435

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
# File 'bignum.c', line 5435

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#>(real) ⇒ Boolean

Returns true if the value of big is greater than that of real.

Returns:

  • (Boolean)


5376
5377
5378
5379
5380
# File 'bignum.c', line 5376

static VALUE
big_gt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_gt);
}

#>=(real) ⇒ Boolean

Returns true if the value of big is greater than or equal to that of real.

Returns:

  • (Boolean)


5390
5391
5392
5393
5394
# File 'bignum.c', line 5390

static VALUE
big_ge(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_ge);
}

#>>(numeric) ⇒ Integer

Shifts big right numeric positions (left if numeric is negative).

Returns:



6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
# File 'bignum.c', line 6704

VALUE
rb_big_rshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
            if (0 <= l) {
                lshift_p = 0;
                shift = l;
            }
            else {
                lshift_p = 1;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 0, y));
	}
	y = rb_to_int(y);
    }
}

#[](n) ⇒ 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.

a = 9**15
50.downto(0) do |n|
  print a[n]
end

produces:

000101110110100000111000011110010100111100010111001

Returns:

  • (0, 1)


6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
# File 'bignum.c', line 6753

static VALUE
rb_big_aref(VALUE x, VALUE y)
{
    BDIGIT *xds;
    size_t shift;
    size_t i, s1, s2;
    long l;
    BDIGIT bit;

    if (RB_BIGNUM_TYPE_P(y)) {
	if (!BIGNUM_SIGN(y))
	    return INT2FIX(0);
	bigtrunc(y);
	if (BIGSIZE(y) > sizeof(size_t)) {
	  out_of_range:
	    return BIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
	}
#if SIZEOF_SIZE_T <= SIZEOF_LONG
	shift = big2ulong(y, "long");
#else
	shift = big2ull(y, "long long");
#endif
    }
    else {
	l = NUM2LONG(y);
	if (l < 0) return INT2FIX(0);
	shift = (size_t)l;
    }
    s1 = shift/BITSPERDIG;
    s2 = shift%BITSPERDIG;
    bit = (BDIGIT)1 << s2;

    if (s1 >= BIGNUM_LEN(x)) goto out_of_range;

    xds = BDIGITS(x);
    if (BIGNUM_POSITIVE_P(x))
        return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
    if (xds[s1] & (bit-1))
        return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    for (i = 0; i < s1; i++)
        if (xds[i])
            return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
}

#^(numeric) ⇒ Integer

Performs bitwise exclusive or between big and numeric.

Returns:



6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
# File 'bignum.c', line 6611

VALUE
rb_big_xor(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '^');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigxor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] ^ ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibitsx ^ ds2[i];
    }
    twocomp2abs_bang(z, (hibits1 ^ hibits2) != 0);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6853
6854
6855
6856
6857
6858
6859
6860
6861
# File 'bignum.c', line 6853

static VALUE
rb_big_abs(VALUE x)
{
    if (!BIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	BIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#bit_lengthInteger

Returns the number of bits of the value of int.

“the number of bits” means that the bit position of the highest bit which is different to the sign bit. (The bit position of the bit 2**n is n+1.) If there is no such bit (zero or minus one), zero is returned.

I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).

(-2**10000-1).bit_length  #=> 10001
(-2**10000).bit_length    #=> 10000
(-2**10000+1).bit_length  #=> 10000

(-2**1000-1).bit_length   #=> 1001
(-2**1000).bit_length     #=> 1000
(-2**1000+1).bit_length   #=> 1000

(2**1000-1).bit_length    #=> 1000
(2**1000).bit_length      #=> 1001
(2**1000+1).bit_length    #=> 1001

(2**10000-1).bit_length   #=> 10000
(2**10000).bit_length     #=> 10001
(2**10000+1).bit_length   #=> 10001

This method can be used to detect overflow in Array#pack as follows.

if n.bit_length < 32
  [n].pack("l") # no overflow
else
  raise "overflow"
end

Returns:



6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
# File 'bignum.c', line 6919

static VALUE
rb_big_bit_length(VALUE big)
{
    int nlz_bits;
    size_t numbytes;

    static const BDIGIT char_bit[1] = { CHAR_BIT };
    BDIGIT numbytes_bary[bdigit_roomof(sizeof(size_t))];
    BDIGIT nlz_bary[1];
    BDIGIT result_bary[bdigit_roomof(sizeof(size_t)+1)];

    numbytes = rb_absint_size(big, &nlz_bits);

    if (numbytes == 0)
        return LONG2FIX(0);

    if (BIGNUM_NEGATIVE_P(big) && rb_absint_singlebit_p(big)) {
        if (nlz_bits != CHAR_BIT-1) {
            nlz_bits++;
        }
        else {
            nlz_bits = 0;
            numbytes--;
        }
    }

    if (numbytes <= SIZE_MAX / CHAR_BIT) {
        return SIZET2NUM(numbytes * CHAR_BIT - nlz_bits);
    }

    nlz_bary[0] = nlz_bits;

    bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
            INTEGER_PACK_NATIVE_BYTE_ORDER);
    BARY_SHORT_MUL(result_bary, numbytes_bary, char_bit);
    BARY_SUB(result_bary, result_bary, nlz_bary);

    return rb_integer_unpack(result_bary, numberof(result_bary), sizeof(BDIGIT), 0,
            INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a big represented as Bignum objects.

This is achieved by converting numeric to a Bignum.

A TypeError is raised if the numeric is not a Fixnum or Bignum type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]

Returns:



6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
# File 'bignum.c', line 6830

static VALUE
rb_big_coerce(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	rb_raise(rb_eTypeError, "can't coerce %"PRIsVALUE" to Bignum",
		 rb_obj_class(y));
    }
    return rb_assoc_new(y, x);
}

#div(other) ⇒ Integer

Performs integer division: returns integer value.

Returns:



6080
6081
6082
6083
6084
# File 'bignum.c', line 6080

VALUE
rb_big_idiv(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, rb_intern("div"));
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

Returns:



6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
# File 'bignum.c', line 6143

VALUE
rb_big_divmod(VALUE x, VALUE y)
{
    VALUE div, mod;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
    }
    bigdivmod(x, y, &div, &mod);

    return rb_assoc_new(bignorm(div), bignorm(mod));
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Bignum with the same value as big. Contrast this with Bignum#==, which performs type conversions.

68719476736.eql?(68719476736.0)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5467
5468
5469
5470
5471
5472
5473
5474
5475
# File 'bignum.c', line 5467

VALUE
rb_big_eql(VALUE x, VALUE y)
{
    if (!RB_BIGNUM_TYPE_P(y)) return Qfalse;
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#even?Boolean

Returns true if big is an even number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


6983
6984
6985
6986
6987
6988
6989
6990
# File 'bignum.c', line 6983

static VALUE
rb_big_even_p(VALUE num)
{
    if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qfalse;
    }
    return Qtrue;
}

#fdiv(numeric) ⇒ Float

Returns the floating point result of dividing big by numeric.

-1234567890987654321.fdiv(13731)      #=> -89910996357705.5
-1234567890987654321.fdiv(13731.24)   #=> -89909424858035.7

Returns:



6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
# File 'bignum.c', line 6227

VALUE
rb_big_fdiv(VALUE x, VALUE y)
{
    double dx, dy;

    dx = big2dbl(x);
    if (FIXNUM_P(y)) {
	dy = (double)FIX2LONG(y);
	if (isinf(dx))
	    return big_fdiv_int(x, rb_int2big(FIX2LONG(y)));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	dy = rb_big2dbl(y);
	if (isinf(dx) || isinf(dy))
	    return big_fdiv_int(x, y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	dy = RFLOAT_VALUE(y);
	if (isnan(dy))
	    return y;
	if (isinf(dx))
	    return big_fdiv_float(x, y);
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
    }
    return DBL2NUM(dx / dy);
}

#hashFixnum

Compute a hash based on the value of big.

See also Object#hash.

Returns:



6807
6808
6809
6810
6811
6812
6813
6814
# File 'bignum.c', line 6807

static VALUE
rb_big_hash(VALUE x)
{
    st_index_t hash;

    hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*BIGNUM_LEN(x)) ^ BIGNUM_SIGN(x);
    return INT2FIX(hash);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6853
6854
6855
6856
6857
6858
6859
6860
6861
# File 'bignum.c', line 6853

static VALUE
rb_big_abs(VALUE x)
{
    if (!BIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	BIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
# File 'bignum.c', line 6095

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#odd?Boolean

Returns true if big is an odd number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


6967
6968
6969
6970
6971
6972
6973
6974
# File 'bignum.c', line 6967

static VALUE
rb_big_odd_p(VALUE num)
{
    if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qtrue;
    }
    return Qfalse;
}

#remainder(numeric) ⇒ Numeric

Returns the remainder after dividing big by numeric.

-1234567890987654321.remainder(13731)      #=> -6966
-1234567890987654321.remainder(13731.24)   #=> -9906.22531493148

Returns:



6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
# File 'bignum.c', line 6120

static VALUE
rb_big_remainder(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("remainder"));
    }
    bigdivrem(x, y, 0, &z);

    return bignorm(z);
}

#sizeInteger

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size   #=> 12
(256**20 - 1).size   #=> 20
(256**40 - 1).size   #=> 40

Returns:



6875
6876
6877
6878
6879
# File 'bignum.c', line 6875

static VALUE
rb_big_size(VALUE big)
{
    return SIZET2NUM(BIGSIZE(big));
}

#to_fFloat

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

Returns:



5190
5191
5192
5193
5194
# File 'bignum.c', line 5190

static VALUE
rb_big_to_f(VALUE x)
{
    return DBL2NUM(rb_big2dbl(x));
}

#to_s(base = 10) ⇒ String Also known as: inspect

Returns a string containing the representation of big radix base (2 through 36).

12345654321.to_s         #=> "12345654321"
12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
12345654321.to_s(8)      #=> "133766736061"
12345654321.to_s(16)     #=> "2dfdbbc31"
78546939656932.to_s(36)  #=> "rubyrules"

Returns:



4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
# File 'bignum.c', line 4941

static VALUE
rb_big_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;

    if (argc == 0) base = 10;
    else {
	VALUE b;

	rb_scan_args(argc, argv, "01", &b);
	base = NUM2INT(b);
    }
    return rb_big2str(x, base);
}

#|(numeric) ⇒ Integer

Performs bitwise or between big and numeric.

Returns:



6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
# File 'bignum.c', line 6511

VALUE
rb_big_or(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '|');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] | ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 | ds2[i];
    }
    twocomp2abs_bang(z, hibits1 || hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#~Integer

Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.

sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"

Returns:



5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
# File 'bignum.c', line 5506

static VALUE
rb_big_neg(VALUE x)
{
    VALUE z = rb_big_clone(x);
    BDIGIT *ds = BDIGITS(z);
    long n = BIGNUM_LEN(z);

    if (!n) return INT2FIX(-1);

    if (BIGNUM_POSITIVE_P(z)) {
        if (bary_add_one(ds, n)) {
            big_extend_carry(z);
        }
        BIGNUM_SET_NEGATIVE_SIGN(z);
    }
    else {
        bary_neg(ds, n);
        if (bary_add_one(ds, n))
            return INT2FIX(-1);
        bary_neg(ds, n);
        BIGNUM_SET_POSITIVE_SIGN(z);
    }

    return bignorm(z);
}