Class: Complex
Overview
A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
Complex object can be created as literal, and also by using Kernel#Complex, Complex::rect, Complex::polar or to_c method.
2+1i #=> (2+1i)
Complex(1) #=> (1+0i)
Complex(2, 3) #=> (2+3i)
Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c #=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3) #=> (0.3+0i)
Complex('0.3-0.5i') #=> (0.3-0.5i)
Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
0.3.to_c #=> (0.3+0i)
'0.3-0.5i'.to_c #=> (0.3-0.5i)
'2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
'1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0 #=> (0.5+0.5i)
Defined Under Namespace
Classes: compatible
Constant Summary collapse
- I =
The imaginary unit.
f_complex_new_bang2(rb_cComplex, ZERO, ONE)
Class Method Summary collapse
-
.polar(abs[, arg]) ⇒ Object
Returns a complex object which denotes the given polar form.
-
.rect(*args) ⇒ Object
Returns a complex object which denotes the given rectangular form.
-
.rectangular(*args) ⇒ Object
Returns a complex object which denotes the given rectangular form.
Instance Method Summary collapse
- #* ⇒ Object
-
#**(numeric) ⇒ Object
Performs exponentiation.
- #+ ⇒ Object
-
#-(numeric) ⇒ Object
Performs subtraction.
-
#- ⇒ Object
Returns negation of the value.
-
#/(other) ⇒ Object
Performs division.
-
#==(object) ⇒ Boolean
Returns true if cmp equals object numerically.
-
#abs ⇒ Object
Returns the absolute part of its polar form.
-
#abs2 ⇒ Object
Returns square of the absolute value.
-
#angle ⇒ Object
Returns the angle part of its polar form.
-
#arg ⇒ Object
Returns the angle part of its polar form.
-
#coerce(other) ⇒ Object
:nodoc:.
-
#complex? ⇒ Boolean
:nodoc:.
-
#conj ⇒ Object
Returns the complex conjugate.
-
#conjugate ⇒ Object
Returns the complex conjugate.
-
#denominator ⇒ Integer
Returns the denominator (lcm of both denominator - real and imag).
-
#eql?(other) ⇒ Boolean
:nodoc:.
-
#exact? ⇒ Boolean
:nodoc:.
-
#fdiv(numeric) ⇒ Object
Performs division as each part is a float, never returns a float.
-
#hash ⇒ Object
:nodoc:.
-
#imag ⇒ Object
Returns the imaginary part.
-
#imaginary ⇒ Object
Returns the imaginary part.
-
#inexact? ⇒ Boolean
:nodoc:.
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Object
Returns the absolute part of its polar form.
-
#marshal_dump ⇒ Object
private
:nodoc:.
-
#numerator ⇒ Numeric
Returns the numerator.
-
#phase ⇒ Object
Returns the angle part of its polar form.
-
#polar ⇒ Array
Returns an array; [cmp.abs, cmp.arg].
- #quo ⇒ Object
-
#rationalize([eps]) ⇒ Object
Returns the value as a rational if possible (the imaginary part should be exactly zero).
-
#real ⇒ Object
Returns the real part.
-
#real? ⇒ false
Returns false.
-
#rect ⇒ Object
Returns an array; [cmp.real, cmp.imag].
-
#rectangular ⇒ Object
Returns an array; [cmp.real, cmp.imag].
-
#to_c ⇒ self
Returns self.
-
#to_f ⇒ Float
Returns the value as a float if possible (the imaginary part should be exactly zero).
-
#to_i ⇒ Integer
Returns the value as an integer if possible (the imaginary part should be exactly zero).
-
#to_r ⇒ Object
Returns the value as a rational if possible (the imaginary part should be exactly zero).
-
#to_s ⇒ String
Returns the value as a string.
-
#~ ⇒ Object
Returns the complex conjugate.
Methods inherited from Numeric
#%, #+@, #<=>, #ceil, #div, #divmod, #floor, #i, #initialize_copy, #integer?, #modulo, #negative?, #nonzero?, #positive?, #remainder, #round, #singleton_method_added, #step, #to_int, #truncate, #zero?
Methods included from Comparable
Class Method Details
.polar(abs[, arg]) ⇒ Object
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# File 'complex.c', line 618
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
VALUE abs, arg;
switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
case 1:
nucomp_real_check(abs);
if (canonicalization) return abs;
return nucomp_s_new_internal(klass, abs, ZERO);
default:
nucomp_real_check(abs);
nucomp_real_check(arg);
break;
}
return f_complex_polar(klass, abs, arg);
}
|
.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# File 'complex.c', line 412
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
nucomp_real_check(real);
imag = ZERO;
break;
default:
nucomp_real_check(real);
nucomp_real_check(imag);
break;
}
return nucomp_s_canonicalize_internal(klass, real, imag);
}
|
.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# File 'complex.c', line 412
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
nucomp_real_check(real);
imag = ZERO;
break;
default:
nucomp_real_check(real);
nucomp_real_check(imag);
break;
}
return nucomp_s_canonicalize_internal(klass, real, imag);
}
|
Instance Method Details
#* ⇒ Object
#**(numeric) ⇒ Object
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 |
# File 'complex.c', line 906
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_complex_new_bang1(CLASS_OF(self), ONE);
if (k_rational_p(other) && f_one_p(f_denominator(other)))
other = f_numerator(other); /* c14n */
if (k_complex_p(other)) {
get_dat1(other);
if (k_exact_zero_p(dat->imag))
other = dat->real; /* c14n */
}
if (k_complex_p(other)) {
VALUE r, theta, nr, ntheta;
get_dat1(other);
r = f_abs(self);
theta = f_arg(self);
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
f_mul(dat->imag, theta)));
ntheta = f_add(f_mul(theta, dat->real),
f_mul(dat->imag, m_log_bang(r)));
return f_complex_polar(CLASS_OF(self), nr, ntheta);
}
if (k_fixnum_p(other)) {
if (f_gt_p(other, ZERO)) {
VALUE x, z;
long n;
x = self;
z = x;
n = FIX2LONG(other) - 1;
while (n) {
long q, r;
while (1) {
get_dat1(x);
q = n / 2;
r = n % 2;
if (r)
break;
x = nucomp_s_new_internal(CLASS_OF(self),
f_sub(f_mul(dat->real, dat->real),
f_mul(dat->imag, dat->imag)),
f_mul(f_mul(TWO, dat->real), dat->imag));
n = q;
}
z = f_mul(z, x);
n--;
}
return z;
}
return f_expt(f_reciprocal(self), f_negate(other));
}
if (k_numeric_p(other) && f_real_p(other)) {
VALUE r, theta;
if (k_bignum_p(other))
rb_warn("in a**b, b may be too big");
r = f_abs(self);
theta = f_arg(self);
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
f_mul(theta, other));
}
return rb_num_coerce_bin(self, other, id_expt);
}
|
#+ ⇒ Object
#-(numeric) ⇒ Object
739 740 741 742 743 |
# File 'complex.c', line 739
static VALUE
nucomp_sub(VALUE self, VALUE other)
{
return f_addsub(self, other, f_sub, '-');
}
|
#- ⇒ Object
Returns negation of the value.
-Complex(1, 2) #=> (-1-2i)
677 678 679 680 681 682 683 |
# File 'complex.c', line 677
static VALUE
nucomp_negate(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_negate(dat->real), f_negate(dat->imag));
}
|
#/(numeric) ⇒ Object #quo(numeric) ⇒ Object
869 870 871 872 873 |
# File 'complex.c', line 869
static VALUE
nucomp_div(VALUE self, VALUE other)
{
return f_divide(self, other, f_quo, id_quo);
}
|
#==(object) ⇒ Boolean
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
# File 'complex.c', line 997
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
if (k_complex_p(other)) {
get_dat2(self, other);
return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
f_eqeq_p(adat->imag, bdat->imag));
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
}
return f_eqeq_p(other, self);
}
|
#abs ⇒ Object #magnitude ⇒ Object
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# File 'complex.c', line 1038
static VALUE
nucomp_abs(VALUE self)
{
get_dat1(self);
if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (k_float_p(dat->real) && !k_float_p(dat->imag))
a = f_to_f(a);
return a;
}
if (f_zero_p(dat->imag)) {
VALUE a = f_abs(dat->real);
if (!k_float_p(dat->real) && k_float_p(dat->imag))
a = f_to_f(a);
return a;
}
return m_hypot(dat->real, dat->imag);
}
|
#abs2 ⇒ Object
1067 1068 1069 1070 1071 1072 1073 |
# File 'complex.c', line 1067
static VALUE
nucomp_abs2(VALUE self)
{
get_dat1(self);
return f_add(f_mul(dat->real, dat->real),
f_mul(dat->imag, dat->imag));
}
|
#arg ⇒ Float #angle ⇒ Float #phase ⇒ Float
1085 1086 1087 1088 1089 1090 |
# File 'complex.c', line 1085
static VALUE
nucomp_arg(VALUE self)
{
get_dat1(self);
return m_atan2_bang(dat->imag, dat->real);
}
|
#arg ⇒ Float #angle ⇒ Float #phase ⇒ Float
1085 1086 1087 1088 1089 1090 |
# File 'complex.c', line 1085
static VALUE
nucomp_arg(VALUE self)
{
get_dat1(self);
return m_atan2_bang(dat->imag, dat->real);
}
|
#coerce(other) ⇒ Object
:nodoc:
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
# File 'complex.c', line 1015
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
if (k_numeric_p(other) && f_real_p(other))
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
if (RB_TYPE_P(other, T_COMPLEX))
return rb_assoc_new(other, self);
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
rb_obj_class(other), rb_obj_class(self));
return Qnil;
}
|
#complex? ⇒ Boolean
:nodoc:
1140 1141 1142 1143 1144 |
# File 'complex.c', line 1140
static VALUE
nucomp_true(VALUE self)
{
return Qtrue;
}
|
#conj ⇒ Object #conjugate ⇒ Object
1131 1132 1133 1134 1135 1136 |
# File 'complex.c', line 1131
static VALUE
nucomp_conj(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
|
#conj ⇒ Object #conjugate ⇒ Object
Returns the complex conjugate.
Complex(1, 2).conjugate #=> (1-2i)
1131 1132 1133 1134 1135 1136 |
# File 'complex.c', line 1131
static VALUE
nucomp_conj(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
|
#denominator ⇒ Integer
Returns the denominator (lcm of both denominator - real and imag).
See numerator.
1184 1185 1186 1187 1188 1189 |
# File 'complex.c', line 1184
static VALUE
nucomp_denominator(VALUE self)
{
get_dat1(self);
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
|
#eql?(other) ⇒ Boolean
:nodoc:
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 |
# File 'complex.c', line 1241
static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
if (k_complex_p(other)) {
get_dat2(self, other);
return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
f_eqeq_p(self, other));
}
return Qfalse;
}
|
#exact? ⇒ Boolean
:nodoc:
1161 1162 1163 1164 1165 1166 |
# File 'complex.c', line 1161
static VALUE
nucomp_exact_p(VALUE self)
{
get_dat1(self);
return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
}
|
#fdiv(numeric) ⇒ Object
Performs division as each part is a float, never returns a float.
Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
885 886 887 888 889 |
# File 'complex.c', line 885
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
return f_divide(self, other, f_fdiv, id_fdiv);
}
|
#hash ⇒ Object
:nodoc:
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 |
# File 'complex.c', line 1225
static VALUE
nucomp_hash(VALUE self)
{
st_index_t v, h[2];
VALUE n;
get_dat1(self);
n = rb_hash(dat->real);
h[0] = NUM2LONG(n);
n = rb_hash(dat->imag);
h[1] = NUM2LONG(n);
v = rb_memhash(h, sizeof(h));
return LONG2FIX(v);
}
|
#imag ⇒ Object #imaginary ⇒ Object
662 663 664 665 666 667 |
# File 'complex.c', line 662
static VALUE
nucomp_imag(VALUE self)
{
get_dat1(self);
return dat->imag;
}
|
#imag ⇒ Object #imaginary ⇒ Object
662 663 664 665 666 667 |
# File 'complex.c', line 662
static VALUE
nucomp_imag(VALUE self)
{
get_dat1(self);
return dat->imag;
}
|
#inexact? ⇒ Boolean
:nodoc:
1169 1170 1171 1172 1173 |
# File 'complex.c', line 1169
static VALUE
nucomp_inexact_p(VALUE self)
{
return f_boolcast(!nucomp_exact_p(self));
}
|
#inspect ⇒ String
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 |
# File 'complex.c', line 1321
static VALUE
nucomp_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, rb_inspect));
rb_str_cat2(s, ")");
return s;
}
|
#abs ⇒ Object #magnitude ⇒ Object
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# File 'complex.c', line 1038
static VALUE
nucomp_abs(VALUE self)
{
get_dat1(self);
if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (k_float_p(dat->real) && !k_float_p(dat->imag))
a = f_to_f(a);
return a;
}
if (f_zero_p(dat->imag)) {
VALUE a = f_abs(dat->real);
if (!k_float_p(dat->real) && k_float_p(dat->imag))
a = f_to_f(a);
return a;
}
return m_hypot(dat->real, dat->imag);
}
|
#marshal_dump ⇒ Object (private)
:nodoc:
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 |
# File 'complex.c', line 1353
static VALUE
nucomp_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->real, dat->imag);
rb_copy_generic_ivar(a, self);
return a;
}
|
#numerator ⇒ Numeric
Returns the numerator.
1 2 3+4i <- numerator
- + -i -> ----
2 3 6 <- denominator
c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
n = c.numerator #=> (3+4i)
d = c.denominator #=> 6
n / d #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
#=> ((1/2)+(2/3)*i)
See denominator.
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 |
# File 'complex.c', line 1209
static VALUE
nucomp_numerator(VALUE self)
{
VALUE cd;
get_dat1(self);
cd = f_denominator(self);
return f_complex_new2(CLASS_OF(self),
f_mul(f_numerator(dat->real),
f_div(cd, f_denominator(dat->real))),
f_mul(f_numerator(dat->imag),
f_div(cd, f_denominator(dat->imag))));
}
|
#arg ⇒ Float #angle ⇒ Float #phase ⇒ Float
1085 1086 1087 1088 1089 1090 |
# File 'complex.c', line 1085
static VALUE
nucomp_arg(VALUE self)
{
get_dat1(self);
return m_atan2_bang(dat->imag, dat->real);
}
|
#polar ⇒ Array
1116 1117 1118 1119 1120 |
# File 'complex.c', line 1116
static VALUE
nucomp_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
|
#quo ⇒ Object
#rationalize([eps]) ⇒ Object
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 |
# File 'complex.c', line 1505
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
get_dat1(self);
rb_scan_args(argc, argv, "01", NULL);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
}
|
#real ⇒ Object
645 646 647 648 649 650 |
# File 'complex.c', line 645
static VALUE
nucomp_real(VALUE self)
{
get_dat1(self);
return dat->real;
}
|
#real? ⇒ false
Returns false.
1153 1154 1155 1156 1157 |
# File 'complex.c', line 1153
static VALUE
nucomp_false(VALUE self)
{
return Qfalse;
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [cmp.real, cmp.imag].
Complex(1, 2).rectangular #=> [1, 2]
1101 1102 1103 1104 1105 1106 |
# File 'complex.c', line 1101
static VALUE
nucomp_rect(VALUE self)
{
get_dat1(self);
return rb_assoc_new(dat->real, dat->imag);
}
|
#rect ⇒ Array #rectangular ⇒ Array
Returns an array; [cmp.real, cmp.imag].
Complex(1, 2).rectangular #=> [1, 2]
1101 1102 1103 1104 1105 1106 |
# File 'complex.c', line 1101
static VALUE
nucomp_rect(VALUE self)
{
get_dat1(self);
return rb_assoc_new(dat->real, dat->imag);
}
|
#to_c ⇒ self
1528 1529 1530 1531 1532 |
# File 'complex.c', line 1528
static VALUE
nucomp_to_c(VALUE self)
{
return self;
}
|
#to_f ⇒ Float
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 |
# File 'complex.c', line 1455
static VALUE
nucomp_to_f(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
self);
}
return f_to_f(dat->real);
}
|
#to_i ⇒ Integer
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
# File 'complex.c', line 1432
static VALUE
nucomp_to_i(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
self);
}
return f_to_i(dat->real);
}
|
#to_r ⇒ Object
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 |
# File 'complex.c', line 1480
static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return f_to_r(dat->real);
}
|
#to_s ⇒ String
1303 1304 1305 1306 1307 |
# File 'complex.c', line 1303
static VALUE
nucomp_to_s(VALUE self)
{
return f_format(self, rb_String);
}
|