Class: Complex

Inherits:
Numeric show all
Defined in:
complex.c

Overview

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

Complex object can be created as literal, and also by using Kernel#Complex, Complex::rect, Complex::polar or to_c method.

2+1i                 #=> (2+1i)
Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Defined Under Namespace

Classes: compatible

Constant Summary collapse

I =

The imaginary unit.

f_complex_new_bang2(rb_cComplex, ZERO, ONE)

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #<=>, #ceil, #div, #divmod, #floor, #i, #initialize_copy, #integer?, #modulo, #negative?, #nonzero?, #positive?, #remainder, #round, #singleton_method_added, #step, #to_int, #truncate, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?

Class Method Details

.polar(abs[, arg]) ⇒ Object

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)


618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# File 'complex.c', line 618

static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
    VALUE abs, arg;

    switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
      case 1:
	nucomp_real_check(abs);
	if (canonicalization) return abs;
	return nucomp_s_new_internal(klass, abs, ZERO);
      default:
	nucomp_real_check(abs);
	nucomp_real_check(arg);
	break;
    }
    return f_complex_polar(klass, abs, arg);
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# File 'complex.c', line 412

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
	nucomp_real_check(real);
	imag = ZERO;
	break;
      default:
	nucomp_real_check(real);
	nucomp_real_check(imag);
	break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# File 'complex.c', line 412

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
	nucomp_real_check(real);
	imag = ZERO;
	break;
      default:
	nucomp_real_check(real);
	nucomp_real_check(imag);
	break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}

Instance Method Details

#*Object

#**(numeric) ⇒ Object

Performs exponentiation.

Complex('i') ** 2              #=> (-1+0i)
Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)


906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
# File 'complex.c', line 906

static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* c14n */

    if (k_complex_p(other)) {
	get_dat1(other);

	if (k_exact_zero_p(dat->imag))
	    other = dat->real; /* c14n */
    }

    if (k_complex_p(other)) {
	VALUE r, theta, nr, ntheta;

	get_dat1(other);

	r = f_abs(self);
	theta = f_arg(self);

	nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
			      f_mul(dat->imag, theta)));
	ntheta = f_add(f_mul(theta, dat->real),
		       f_mul(dat->imag, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_fixnum_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z;
	    long n;

	    x = self;
	    z = x;
	    n = FIX2LONG(other) - 1;

	    while (n) {
		long q, r;

		while (1) {
		    get_dat1(x);

		    q = n / 2;
		    r = n % 2;

		    if (r)
			break;

		    x = nucomp_s_new_internal(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = q;
		}
		z = f_mul(z, x);
		n--;
	    }
	    return z;
	}
	return f_expt(f_reciprocal(self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE r, theta;

	if (k_bignum_p(other))
	    rb_warn("in a**b, b may be too big");

	r = f_abs(self);
	theta = f_arg(self);

	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			       f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}

#+Object

#-(numeric) ⇒ Object

Performs subtraction.

Complex(2, 3)  - Complex(2, 3)   #=> (0+0i)
Complex(900)   - Complex(1)      #=> (899+0i)
Complex(-2, 9) - Complex(-9, 2)  #=> (7+7i)
Complex(9, 8)  - 4               #=> (5+8i)
Complex(20, 9) - 9.8             #=> (10.2+9i)


739
740
741
742
743
# File 'complex.c', line 739

static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    return f_addsub(self, other, f_sub, '-');
}

#-Object

Returns negation of the value.

-Complex(1, 2)  #=> (-1-2i)


677
678
679
680
681
682
683
# File 'complex.c', line 677

static VALUE
nucomp_negate(VALUE self)
{
  get_dat1(self);
  return f_complex_new2(CLASS_OF(self),
			f_negate(dat->real), f_negate(dat->imag));
}

#/(numeric) ⇒ Object #quo(numeric) ⇒ Object

Performs division.

Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)


869
870
871
872
873
# File 'complex.c', line 869

static VALUE
nucomp_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}

#==(object) ⇒ Boolean

Returns true if cmp equals object numerically.

Complex(2, 3)  == Complex(2, 3)   #=> true
Complex(5)     == 5               #=> true
Complex(0)     == 0.0             #=> true
Complex('1/3') == 0.33            #=> false
Complex('1/2') == '1/2'           #=> false

Returns:

  • (Boolean)


997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
# File 'complex.c', line 997

static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
			  f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return f_eqeq_p(other, self);
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0


1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
# File 'complex.c', line 1038

static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
	VALUE a = f_abs(dat->imag);
	if (k_float_p(dat->real) && !k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    if (f_zero_p(dat->imag)) {
	VALUE a = f_abs(dat->real);
	if (!k_float_p(dat->real) && k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    return m_hypot(dat->real, dat->imag);
}

#abs2Object

Returns square of the absolute value.

Complex(-1).abs2         #=> 1
Complex(3.0, -4.0).abs2  #=> 25.0


1067
1068
1069
1070
1071
1072
1073
# File 'complex.c', line 1067

static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
		 f_mul(dat->imag, dat->imag));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:



1085
1086
1087
1088
1089
1090
# File 'complex.c', line 1085

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:



1085
1086
1087
1088
1089
1090
# File 'complex.c', line 1085

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#coerce(other) ⇒ Object

:nodoc:



1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
# File 'complex.c', line 1015

static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && f_real_p(other))
	return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
    if (RB_TYPE_P(other, T_COMPLEX))
	return rb_assoc_new(other, self);

    rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
	     rb_obj_class(other), rb_obj_class(self));
    return Qnil;
}

#complex?Boolean

:nodoc:

Returns:

  • (Boolean)


1140
1141
1142
1143
1144
# File 'complex.c', line 1140

static VALUE
nucomp_true(VALUE self)
{
    return Qtrue;
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)


1131
1132
1133
1134
1135
1136
# File 'complex.c', line 1131

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)


1131
1132
1133
1134
1135
1136
# File 'complex.c', line 1131

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#denominatorInteger

Returns the denominator (lcm of both denominator - real and imag).

See numerator.

Returns:



1184
1185
1186
1187
1188
1189
# File 'complex.c', line 1184

static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}

#eql?(other) ⇒ Boolean

:nodoc:

Returns:

  • (Boolean)


1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
# File 'complex.c', line 1241

static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
			  (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
			  f_eqeq_p(self, other));

    }
    return Qfalse;
}

#exact?Boolean

:nodoc:

Returns:

  • (Boolean)


1161
1162
1163
1164
1165
1166
# File 'complex.c', line 1161

static VALUE
nucomp_exact_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
}

#fdiv(numeric) ⇒ Object

Performs division as each part is a float, never returns a float.

Complex(11, 22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)


885
886
887
888
889
# File 'complex.c', line 885

static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}

#hashObject

:nodoc:



1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
# File 'complex.c', line 1225

static VALUE
nucomp_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->real);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->imag);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#imagObject #imaginaryObject

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4


662
663
664
665
666
667
# File 'complex.c', line 662

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#imagObject #imaginaryObject

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4


662
663
664
665
666
667
# File 'complex.c', line 662

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#inexact?Boolean

:nodoc:

Returns:

  • (Boolean)


1169
1170
1171
1172
1173
# File 'complex.c', line 1169

static VALUE
nucomp_inexact_p(VALUE self)
{
    return f_boolcast(!nucomp_exact_p(self));
}

#inspectString

Returns the value as a string for inspection.

Complex(2).inspect                       #=> "(2+0i)"
Complex('-8/6').inspect                  #=> "((-4/3)+0i)"
Complex('1/2i').inspect                  #=> "(0+(1/2)*i)"
Complex(0, Float::INFINITY).inspect      #=> "(0+Infinity*i)"
Complex(Float::NAN, Float::NAN).inspect  #=> "(NaN+NaN*i)"

Returns:



1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
# File 'complex.c', line 1321

static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, rb_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0


1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
# File 'complex.c', line 1038

static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
	VALUE a = f_abs(dat->imag);
	if (k_float_p(dat->real) && !k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    if (f_zero_p(dat->imag)) {
	VALUE a = f_abs(dat->real);
	if (!k_float_p(dat->real) && k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    return m_hypot(dat->real, dat->imag);
}

#marshal_dumpObject (private)

:nodoc:



1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
# File 'complex.c', line 1353

static VALUE
nucomp_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->real, dat->imag);
    rb_copy_generic_ivar(a, self);
    return a;
}

#numeratorNumeric

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns:



1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
# File 'complex.c', line 1209

static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = f_denominator(self);
    return f_complex_new2(CLASS_OF(self),
			  f_mul(f_numerator(dat->real),
				f_div(cd, f_denominator(dat->real))),
			  f_mul(f_numerator(dat->imag),
				f_div(cd, f_denominator(dat->imag))));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:



1085
1086
1087
1088
1089
1090
# File 'complex.c', line 1085

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#polarArray

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

Returns:



1116
1117
1118
1119
1120
# File 'complex.c', line 1116

static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}

#quoObject

#rationalize([eps]) ⇒ Object

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1.0/3, 0).rationalize  #=> (1/3)
Complex(1, 0.0).rationalize    # RangeError
Complex(1, 2).rationalize      # RangeError

See to_r.



1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
# File 'complex.c', line 1505

static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
    get_dat1(self);

    rb_scan_args(argc, argv, "01", NULL);

    if (!k_exact_zero_p(dat->imag)) {
       rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                self);
    }
    return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
}

#realObject

Returns the real part.

Complex(7).real      #=> 7
Complex(9, -4).real  #=> 9


645
646
647
648
649
650
# File 'complex.c', line 645

static VALUE
nucomp_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}

#real?false

Returns false.

Returns:

  • (false)

Returns:

  • (Boolean)


1153
1154
1155
1156
1157
# File 'complex.c', line 1153

static VALUE
nucomp_false(VALUE self)
{
    return Qfalse;
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Overloads:



1101
1102
1103
1104
1105
1106
# File 'complex.c', line 1101

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Overloads:



1101
1102
1103
1104
1105
1106
# File 'complex.c', line 1101

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#to_cself

Returns self.

Complex(2).to_c      #=> (2+0i)
Complex(-8, 6).to_c  #=> (-8+6i)

Returns:

  • (self)


1528
1529
1530
1531
1532
# File 'complex.c', line 1528

static VALUE
nucomp_to_c(VALUE self)
{
    return self;
}

#to_fFloat

Returns the value as a float if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_f    #=> 1.0
Complex(1, 0.0).to_f  # RangeError
Complex(1, 2).to_f    # RangeError

Returns:



1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
# File 'complex.c', line 1455

static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
	rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
		 self);
    }
    return f_to_f(dat->real);
}

#to_iInteger

Returns the value as an integer if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_i    #=> 1
Complex(1, 0.0).to_i  # RangeError
Complex(1, 2).to_i    # RangeError

Returns:



1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
# File 'complex.c', line 1432

static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
	rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
		 self);
    }
    return f_to_i(dat->real);
}

#to_rObject

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_r    #=> (1/1)
Complex(1, 0.0).to_r  # RangeError
Complex(1, 2).to_r    # RangeError

See rationalize.



1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
# File 'complex.c', line 1480

static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
	rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
		 self);
    }
    return f_to_r(dat->real);
}

#to_sString

Returns the value as a string.

Complex(2).to_s                       #=> "2+0i"
Complex('-8/6').to_s                  #=> "-4/3+0i"
Complex('1/2i').to_s                  #=> "0+1/2i"
Complex(0, Float::INFINITY).to_s      #=> "0+Infinity*i"
Complex(Float::NAN, Float::NAN).to_s  #=> "NaN+NaN*i"

Returns:



1303
1304
1305
1306
1307
# File 'complex.c', line 1303

static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, rb_String);
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)


1131
1132
1133
1134
1135
1136
# File 'complex.c', line 1131

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}