Class: ASHRAE9012010

Inherits:
ASHRAE901 show all
Includes:
ASHRAE9012010CoolingTower
Defined in:
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanOnOff.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ThermalZone.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.BoilerHotWater.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.elevators.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanConstantVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.PumpVariableSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.CoolingTowerTwoSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.CoolingTowerSingleSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.CoolingTowerVariableSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb

Overview

This class holds methods that apply ASHRAE 90.1-2010 to a given model.

Constant Summary

Constants inherited from Standard

Standard::STANDARDS_LIST

Instance Attribute Summary collapse

Attributes inherited from Standard

#space_multiplier_map, #standards_data

Model collapse

Space collapse

FanOnOff collapse

AirLoopHVAC collapse

ThermalZone collapse

elevators collapse

FanVariableVolume collapse

FanConstantVolume collapse

Pump collapse

AirTerminalSingleDuctVAVReheat collapse

Instance Method Summary collapse

Methods included from ASHRAE9012010CoolingTower

#cooling_tower_apply_minimum_power_per_flow_gpm_limit

Methods inherited from ASHRAE901

#fan_variable_volume_part_load_fan_power_limitation_capacity_limit

Methods inherited from Standard

#adjust_sizing_system, #afue_to_thermal_eff, #air_loop_hvac_add_motorized_oa_damper, #air_loop_hvac_adjust_minimum_vav_damper_positions, #air_loop_hvac_adjust_minimum_vav_damper_positions_outpatient, #air_loop_hvac_allowable_system_brake_horsepower, #air_loop_hvac_apply_baseline_fan_pressure_rise, #air_loop_hvac_apply_economizer_integration, #air_loop_hvac_apply_economizer_limits, #air_loop_hvac_apply_energy_recovery_ventilator, #air_loop_hvac_apply_energy_recovery_ventilator_efficiency, #air_loop_hvac_apply_maximum_reheat_temperature, #air_loop_hvac_apply_minimum_vav_damper_positions, #air_loop_hvac_apply_multizone_vav_outdoor_air_sizing, #air_loop_hvac_apply_prm_baseline_controls, #air_loop_hvac_apply_prm_baseline_economizer, #air_loop_hvac_apply_prm_baseline_fan_power, #air_loop_hvac_apply_prm_sizing_temperatures, #air_loop_hvac_apply_single_zone_controls, #air_loop_hvac_apply_standard_controls, #air_loop_hvac_apply_vav_damper_action, #air_loop_hvac_data_center_area_served, #air_loop_hvac_dcv_required_when_erv, #air_loop_hvac_demand_control_ventilation_required?, #air_loop_hvac_disable_multizone_vav_optimization, #air_loop_hvac_dx_cooling?, #air_loop_hvac_economizer?, #air_loop_hvac_economizer_required?, #air_loop_hvac_enable_demand_control_ventilation, #air_loop_hvac_enable_multizone_vav_optimization, #air_loop_hvac_enable_optimum_start, #air_loop_hvac_enable_supply_air_temperature_reset_delta, #air_loop_hvac_enable_supply_air_temperature_reset_outdoor_temperature, #air_loop_hvac_enable_supply_air_temperature_reset_warmest_zone, #air_loop_hvac_enable_unoccupied_fan_shutoff, #air_loop_hvac_energy_recovery?, #air_loop_hvac_energy_recovery_ventilator_heat_exchanger_type, #air_loop_hvac_energy_recovery_ventilator_required?, #air_loop_hvac_energy_recovery_ventilator_type, #air_loop_hvac_fan_power_limitation_pressure_drop_adjustment_brake_horsepower, #air_loop_hvac_find_design_supply_air_flow_rate, #air_loop_hvac_floor_area_served, #air_loop_hvac_floor_area_served_exterior_zones, #air_loop_hvac_floor_area_served_interior_zones, #air_loop_hvac_get_occupancy_schedule, #air_loop_hvac_get_relief_fan_power, #air_loop_hvac_get_return_fan_power, #air_loop_hvac_get_supply_fan, #air_loop_hvac_get_supply_fan_power, #air_loop_hvac_has_parallel_piu_air_terminals?, #air_loop_hvac_has_simple_transfer_air?, #air_loop_hvac_humidifier_count, #air_loop_hvac_include_cooling_coil?, #air_loop_hvac_include_economizer?, #air_loop_hvac_include_evaporative_cooler?, #air_loop_hvac_include_hydronic_cooling_coil?, #air_loop_hvac_include_unitary_system?, #air_loop_hvac_include_wshp?, #air_loop_hvac_minimum_zone_ventilation_efficiency, #air_loop_hvac_motorized_oa_damper_required?, #air_loop_hvac_multi_stage_dx_cooling?, #air_loop_hvac_multizone_vav_system?, #air_loop_hvac_optimum_start_required?, #air_loop_hvac_prm_baseline_economizer_required?, #air_loop_hvac_prm_economizer_type_and_limits, #air_loop_hvac_remove_erv, #air_loop_hvac_remove_motorized_oa_damper, #air_loop_hvac_residential_area_served, #air_loop_hvac_return_air_plenum, #air_loop_hvac_set_minimum_damper_position, #air_loop_hvac_set_vsd_curve_type, #air_loop_hvac_standby_mode_occupancy_control, #air_loop_hvac_static_pressure_reset_required?, #air_loop_hvac_supply_return_exhaust_relief_fans, #air_loop_hvac_system_fan_brake_horsepower, #air_loop_hvac_system_multiplier, #air_loop_hvac_terminal_reheat?, #air_loop_hvac_total_cooling_capacity, #air_loop_hvac_unitary_system?, #air_loop_hvac_unoccupied_fan_shutoff_required?, #air_loop_hvac_unoccupied_threshold, #air_loop_hvac_vav_damper_action, #air_loop_hvac_vav_system?, #air_terminal_single_duct_parallel_piu_reheat_apply_minimum_primary_airflow_fraction, #air_terminal_single_duct_parallel_piu_reheat_apply_prm_baseline_fan_power, #air_terminal_single_duct_parallel_piu_reheat_fan_on_flow_fraction, #air_terminal_single_duct_parallel_reheat_piu_minimum_primary_airflow_fraction, #air_terminal_single_duct_vav_reheat_apply_minimum_damper_position, #air_terminal_single_duct_vav_reheat_reheat_type, #air_terminal_single_duct_vav_reheat_set_heating_cap, #apply_lighting_schedule, #apply_limit_to_subsurface_ratio, #boiler_hot_water_apply_efficiency_and_curves, #boiler_hot_water_find_capacity, #boiler_hot_water_find_design_water_flow_rate, #boiler_hot_water_find_search_criteria, #boiler_hot_water_standard_minimum_thermal_efficiency, build, #chiller_electric_eir_apply_efficiency_and_curves, #chiller_electric_eir_find_capacity, #chiller_electric_eir_find_search_criteria, #chiller_electric_eir_standard_minimum_full_load_efficiency, #chw_sizing_control, #coil_cooling_dx_multi_speed_apply_efficiency_and_curves, #coil_cooling_dx_multi_speed_find_capacity, #coil_cooling_dx_multi_speed_standard_minimum_cop, #coil_cooling_dx_single_speed_apply_efficiency_and_curves, #coil_cooling_dx_single_speed_find_capacity, #coil_cooling_dx_single_speed_standard_minimum_cop, #coil_cooling_dx_two_speed_apply_efficiency_and_curves, #coil_cooling_dx_two_speed_find_capacity, #coil_cooling_dx_two_speed_standard_minimum_cop, #coil_cooling_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_cooling_water_to_air_heat_pump_find_capacity, #coil_cooling_water_to_air_heat_pump_standard_minimum_cop, #coil_heating_dx_multi_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_apply_defrost_eir_curve_limits, #coil_heating_dx_single_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_find_capacity, #coil_heating_dx_single_speed_standard_minimum_cop, #coil_heating_gas_additional_search_criteria, #coil_heating_gas_apply_efficiency_and_curves, #coil_heating_gas_apply_prototype_efficiency, #coil_heating_gas_find_capacity, #coil_heating_gas_multi_stage_apply_efficiency_and_curves, #coil_heating_gas_multi_stage_find_capacity, #coil_heating_gas_multi_stage_find_search_criteria, #coil_heating_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_heating_water_to_air_heat_pump_find_capacity, #coil_heating_water_to_air_heat_pump_standard_minimum_cop, #combustion_eff_to_thermal_eff, #controller_water_coil_set_convergence_limits, #convert_curve_biquadratic, #cooling_tower_single_speed_apply_efficiency_and_curves, #cooling_tower_two_speed_apply_efficiency_and_curves, #cooling_tower_variable_speed_apply_efficiency_and_curves, #cop_heating_to_cop_heating_no_fan, #cop_no_fan_to_eer, #cop_no_fan_to_seer, #cop_to_eer, #cop_to_kw_per_ton, #cop_to_seer, #create_air_conditioner_variable_refrigerant_flow, #create_boiler_hot_water, #create_central_air_source_heat_pump, #create_coil_cooling_dx_single_speed, #create_coil_cooling_dx_two_speed, #create_coil_cooling_water, #create_coil_cooling_water_to_air_heat_pump_equation_fit, #create_coil_heating_dx_single_speed, #create_coil_heating_electric, #create_coil_heating_gas, #create_coil_heating_water, #create_coil_heating_water_to_air_heat_pump_equation_fit, #create_curve_bicubic, #create_curve_biquadratic, #create_curve_cubic, #create_curve_exponent, #create_curve_quadratic, #create_fan_constant_volume, #create_fan_constant_volume_from_json, #create_fan_on_off, #create_fan_on_off_from_json, #create_fan_variable_volume, #create_fan_variable_volume_from_json, #create_fan_zone_exhaust, #create_fan_zone_exhaust_from_json, #define_space_multiplier, #eer_to_cop, #eer_to_cop_no_fan, #ems_friendly_name, #enthalpy_recovery_ratio_design_to_typical_adjustment, #fan_constant_volume_apply_prototype_fan_pressure_rise, #fan_on_off_apply_prototype_fan_pressure_rise, #fan_variable_volume_apply_prototype_fan_pressure_rise, #fan_variable_volume_cooling_system_type, #fan_variable_volume_part_load_fan_power_limitation?, #fan_variable_volume_part_load_fan_power_limitation_capacity_limit, #fan_variable_volume_set_control_type, #fan_zone_exhaust_apply_prototype_fan_pressure_rise, #find_exposed_conditioned_roof_surfaces, #find_exposed_conditioned_vertical_surfaces, #find_highest_roof_centre, #fluid_cooler_apply_minimum_power_per_flow, #get_avg_of_other_zones, #get_default_surface_cons_from_surface_type, #get_fan_object_for_airloop, #get_fan_schedule_for_each_zone, #get_group_heat_types, #get_outdoor_subsurface_ratio, #get_weekday_values_from_8760, #get_wtd_avg_of_other_zones, #headered_pumps_variable_speed_set_control_type, #heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency_enthalpy_recovery_ratio, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_nominal_electric_power, #heat_exchanger_air_to_air_sensible_and_latent_enthalpy_recovery_ratio_to_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_minimum_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_prototype_default_fan_efficiency, #hspf_to_cop, #hspf_to_cop_no_fan, #interior_lighting_get_prm_data, #kw_per_ton_to_cop, #load_hvac_map, #load_initial_osm, #make_ruleset_sched_from_8760, #make_week_ruleset_sched_from_168, #model_add_baseboard, #model_add_cav, #model_add_central_air_source_heat_pump, #model_add_chw_loop, #model_add_construction, #model_add_construction_set, #model_add_crac, #model_add_crah, #model_add_curve, #model_add_cw_loop, #model_add_data_center_hvac, #model_add_data_center_load, #model_add_daylighting_controls, #model_add_district_ambient_loop, #model_add_doas, #model_add_doas_cold_supply, #model_add_elevator, #model_add_elevators, #model_add_evap_cooler, #model_add_exhaust_fan, #model_add_four_pipe_fan_coil, #model_add_furnace_central_ac, #model_add_ground_hx_loop, #model_add_high_temp_radiant, #model_add_hp_loop, #model_add_hvac, #model_add_hvac_system, #model_add_hw_loop, #model_add_ideal_air_loads, #model_add_low_temp_radiant, #model_add_material, #model_add_minisplit_hp, #model_add_plant_supply_water_temperature_control, #model_add_prm_baseline_system, #model_add_prm_elevators, #model_add_psz_ac, #model_add_psz_vav, #model_add_ptac, #model_add_pthp, #model_add_pvav, #model_add_pvav_pfp_boxes, #model_add_radiant_basic_controls, #model_add_radiant_proportional_controls, #model_add_refrigeration_case, #model_add_refrigeration_compressor, #model_add_refrigeration_system, #model_add_refrigeration_walkin, #model_add_residential_erv, #model_add_residential_ventilator, #model_add_schedule, #model_add_split_ac, #model_add_swh, #model_add_swh_end_uses_by_space, #model_add_transformer, #model_add_typical_exterior_lights, #model_add_typical_refrigeration, #model_add_typical_swh, #model_add_unitheater, #model_add_vav_pfp_boxes, #model_add_vav_reheat, #model_add_vrf, #model_add_water_source_hp, #model_add_waterside_economizer, #model_add_window_ac, #model_add_zone_erv, #model_add_zone_heat_cool_request_count_program, #model_add_zone_ventilation, #model_apply_baseline_exterior_lighting, #model_apply_hvac_efficiency_standard, #model_apply_infiltration_standard, #model_apply_multizone_vav_outdoor_air_sizing, #model_apply_prm_baseline_sizing_schedule, #model_apply_prm_baseline_skylight_to_roof_ratio, #model_apply_prm_baseline_window_to_wall_ratio, #model_apply_prm_construction_types, #model_apply_prm_sizing_parameters, #model_apply_standard_constructions, #model_apply_standard_infiltration, #model_baseline_system_vav_fan_type, #model_create_exterior_lighting_area_length_count_hash, #model_create_multizone_fan_schedule, #model_create_prm_any_baseline_building, #model_create_prm_baseline_building, #model_create_prm_baseline_building_requires_proposed_model_sizing_run, #model_create_prm_proposed_building, #model_create_prm_stable_baseline_building, #model_create_space_type_hash, #model_create_story_hash, #model_cw_loop_cooling_tower_fan_type, #model_differentiate_primary_secondary_thermal_zones, #model_effective_num_stories, #model_elevator_fan_pwr, #model_elevator_lift_power, #model_eliminate_outlier_zones, #model_find_and_add_construction, #model_find_ashrae_hot_water_demand, #model_find_climate_zone_set, #model_find_icc_iecc_2015_hot_water_demand, #model_find_icc_iecc_2015_internal_loads, #model_find_object, #model_find_objects, #model_find_prototype_floor_area, #model_find_target_eui, #model_find_target_eui_by_end_use, #model_find_water_heater_capacity_volume_and_parasitic, #model_get_baseline_system_type_by_zone, #model_get_building_properties, #model_get_climate_zone_set_from_list, #model_get_construction_properties, #model_get_construction_set, #model_get_district_heating_zones, #model_get_lookup_name, #model_get_or_add_ambient_water_loop, #model_get_or_add_chilled_water_loop, #model_get_or_add_ground_hx_loop, #model_get_or_add_heat_pump_loop, #model_get_or_add_hot_water_loop, #model_is_hvac_autosized, #model_legacy_results_by_end_use_and_fuel_type, #model_make_name, #model_prm_baseline_system_change_fuel_type, #model_prm_baseline_system_groups, #model_prm_baseline_system_type, #model_prm_skylight_to_roof_ratio_limit, #model_process_results_for_datapoint, #model_remap_office, #model_remove_external_shading_devices, #model_remove_prm_ems_objects, #model_remove_prm_hvac, #model_remove_unused_resource_objects, #model_set_vav_terminals_to_control_for_outdoor_air, #model_system_outdoor_air_sizing_vrp_method, #model_two_pipe_loop, #model_typical_display_case_zone, #model_typical_hvac_system_type, #model_typical_walkin_zone, #model_validate_standards_spacetypes_in_model, #model_ventilation_method, #model_walkin_freezer_latent_case_credit_curve, #model_zones_with_occ_and_fuel_type, #planar_surface_apply_standard_construction, #plant_loop_adiabatic_pipes_only, #plant_loop_apply_prm_baseline_chilled_water_pumping_type, #plant_loop_apply_prm_baseline_chilled_water_temperatures, #plant_loop_apply_prm_baseline_condenser_water_pumping_type, #plant_loop_apply_prm_baseline_condenser_water_temperatures, #plant_loop_apply_prm_baseline_hot_water_pumping_type, #plant_loop_apply_prm_baseline_hot_water_temperatures, #plant_loop_apply_prm_baseline_pump_power, #plant_loop_apply_prm_baseline_pumping_type, #plant_loop_apply_prm_baseline_temperatures, #plant_loop_apply_prm_number_of_boilers, #plant_loop_apply_prm_number_of_chillers, #plant_loop_apply_prm_number_of_cooling_towers, #plant_loop_apply_standard_controls, #plant_loop_capacity_w_by_maxflow_and_delta_t_forwater, #plant_loop_enable_supply_water_temperature_reset, #plant_loop_find_maximum_loop_flow_rate, #plant_loop_prm_baseline_condenser_water_temperatures, #plant_loop_set_chw_pri_sec_configuration, #plant_loop_supply_water_temperature_reset_required?, #plant_loop_swh_loop?, #plant_loop_swh_system_type, #plant_loop_total_cooling_capacity, #plant_loop_total_floor_area_served, #plant_loop_total_heating_capacity, #plant_loop_total_rated_w_per_gpm, #plant_loop_variable_flow_system?, #prototype_apply_condenser_water_temperatures, #prototype_condenser_water_temperatures, #pump_variable_speed_control_type, #pump_variable_speed_set_control_type, register_standard, #remove_air_loops, #remove_all_hvac, #remove_all_plant_loops, #remove_all_zone_equipment, #remove_hvac, #remove_plant_loops, #remove_unused_curves, #remove_vrf, #remove_zone_equipment, #rename_air_loop_nodes, #rename_plant_loop_nodes, #safe_load_model, #seer_to_cop, #seer_to_cop_no_fan, #set_maximum_fraction_outdoor_air_schedule, #space_add_daylighting_controls, #space_apply_infiltration_rate, #space_conditioning_category, #space_daylighted_areas, #space_get_equip_annual_array, #space_get_loads_for_all_equips, #space_internal_load_annual_array, #space_occupancy_annual_array, #space_remove_daylighting_controls, #space_set_baseline_daylighting_controls, #space_sidelighting_effective_aperture, #space_skylight_effective_aperture, #space_type_apply_int_loads_prm, #space_type_apply_internal_load_schedules, #space_type_apply_internal_loads, #space_type_apply_rendering_color, #space_type_get_construction_properties, #space_type_get_standards_data, #space_type_light_sch_change, #standard_design_sizing_temperatures, #standards_lookup_table_first, #standards_lookup_table_many, #strip_model, #sub_surface_create_centered_subsurface_from_scaled_surface, #sub_surface_create_scaled_subsurfaces_from_surface, #surface_adjust_fenestration_in_a_surface, #surface_subsurface_ua, #thermal_eff_to_afue, #thermal_eff_to_comb_eff, #thermal_zone_add_exhaust, #thermal_zone_add_exhaust_fan_dcv, #thermal_zone_apply_prm_baseline_supply_temperatures, #thermal_zone_conditioning_category, #thermal_zone_demand_control_ventilation_required?, #thermal_zone_exhaust_fan_dcv_required?, #thermal_zone_fossil_or_electric_type, #thermal_zone_get_annual_operating_hours, #thermal_zone_get_zone_fuels_for_occ_and_fuel_type, #thermal_zone_infer_system_type, #thermal_zone_occupancy_eflh, #thermal_zone_occupancy_type, #thermal_zone_peak_internal_load, #thermal_zone_prm_baseline_cooling_design_supply_temperature, #thermal_zone_prm_baseline_heating_design_supply_temperature, #thermal_zone_prm_lab_delta_t, #thermal_zone_prm_unitheater_design_supply_temperature, #true?, #validate_initial_model, #water_heater_convert_energy_factor_to_thermal_efficiency_and_ua, #water_heater_convert_uniform_energy_factor_to_energy_factor, #water_heater_determine_sub_type, #water_heater_mixed_additional_search_criteria, #water_heater_mixed_apply_efficiency, #water_heater_mixed_apply_prm_baseline_fuel_type, #water_heater_mixed_find_capacity, #water_heater_mixed_get_efficiency_requirement, #zone_hvac_component_apply_prm_baseline_fan_power, #zone_hvac_component_apply_standard_controls, #zone_hvac_component_apply_vestibule_heating_control, #zone_hvac_component_occupancy_ventilation_control, #zone_hvac_component_prm_baseline_fan_efficacy, #zone_hvac_component_vestibule_heating_control_required?, #zone_hvac_get_fan_object, #zone_hvac_model_standby_mode_occupancy_control, #zone_hvac_unoccupied_threshold

Methods included from PrototypeFan

apply_base_fan_variables, #create_fan_by_name, #get_fan_from_standards, #lookup_fan_curve_coefficients_from_json, #prototype_fan_apply_prototype_fan_efficiency

Methods included from CoilDX

#coil_dx_find_search_criteria, #coil_dx_heat_pump?, #coil_dx_heating_type, #coil_dx_subcategory

Methods included from CoolingTower

#cooling_tower_apply_minimum_power_per_flow, #cooling_tower_apply_minimum_power_per_flow_gpm_limit

Methods included from Pump

#pump_apply_prm_pressure_rise_and_motor_efficiency, #pump_apply_standard_minimum_motor_efficiency, #pump_brake_horsepower, #pump_motor_horsepower, #pump_pumppower, #pump_rated_w_per_gpm, #pump_standard_minimum_motor_efficiency_and_size

Methods included from Fan

#fan_adjust_pressure_rise_to_meet_fan_power, #fan_apply_standard_minimum_motor_efficiency, #fan_baseline_impeller_efficiency, #fan_brake_horsepower, #fan_change_impeller_efficiency, #fan_change_motor_efficiency, #fan_design_air_flow, #fan_fanpower, #fan_motor_horsepower, #fan_rated_w_per_cfm, #fan_small_fan?, #fan_standard_minimum_motor_efficiency_and_size

Constructor Details

#initializeASHRAE9012010

Returns a new instance of ASHRAE9012010.



8
9
10
11
12
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb', line 8

def initialize
  super()
  @template = '90.1-2010'
  load_standards_database
end

Instance Attribute Details

#templateObject (readonly)

Returns the value of attribute template.



6
7
8
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb', line 6

def template
  @template
end

Instance Method Details

#air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) ⇒ Array<Double>

Determines the OA flow rates above which an economizer is required. Two separate rates, one for systems with an economizer and another for systems without.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

Returns:

  • (Array<Double>)
    min_oa_without_economizer_cfm, min_oa_with_economizer_cfm


233
234
235
236
237
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 233

def air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac)
  min_oa_without_economizer_cfm = 3000
  min_oa_with_economizer_cfm = 1200
  return [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm]
end

#air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>

Determine the limits for the type of economizer present on the AirLoopHVAC, if any.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Array<Double>)
    drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f


9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 9

def air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone)
  drybulb_limit_f = nil
  enthalpy_limit_btu_per_lb = nil
  dewpoint_limit_f = nil

  # Get the OA system and OA controller
  oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem
  return [nil, nil, nil] unless oa_sys.is_initialized # No OA system

  oa_sys = oa_sys.get
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  case economizer_type
  when 'NoEconomizer'
    return [nil, nil, nil]
  when 'FixedDryBulb'
    search_criteria = {
      'template' => template,
      'climate_zone' => climate_zone
    }
    econ_limits = model_find_object(standards_data['economizers'], search_criteria)
    drybulb_limit_f = econ_limits['fixed_dry_bulb_high_limit_shutoff_temp']
  when 'FixedEnthalpy'
    enthalpy_limit_btu_per_lb = 28
  when 'FixedDewPointAndDryBulb'
    drybulb_limit_f = 75
    dewpoint_limit_f = 55
  end

  return [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f]
end

#air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) ⇒ Boolean

Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    Returns true if allowable, if the system has no economizer or no OA system. Returns false if the economizer type is not allowable.



59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 59

def air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone)
  # EnergyPlus economizer types
  # 'NoEconomizer'
  # 'FixedDryBulb'
  # 'FixedEnthalpy'
  # 'DifferentialDryBulb'
  # 'DifferentialEnthalpy'
  # 'FixedDewPointAndDryBulb'
  # 'ElectronicEnthalpy'
  # 'DifferentialDryBulbAndEnthalpy'

  # Get the OA system and OA controller
  oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem
  return true unless oa_sys.is_initialized

  oa_sys = oa_sys.get
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  # Return true if no economizer is present
  if economizer_type == 'NoEconomizer'
    return true
  end

  # Determine the prohibited types
  prohibited_types = []
  case climate_zone
  when 'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2006-4B',
       'ASHRAE 169-2006-4C',
       'ASHRAE 169-2006-5B',
       'ASHRAE 169-2006-6B',
       'ASHRAE 169-2006-7A',
       'ASHRAE 169-2006-7B',
       'ASHRAE 169-2006-8A',
       'ASHRAE 169-2006-8B',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C',
       'ASHRAE 169-2013-4B',
       'ASHRAE 169-2013-4C',
       'ASHRAE 169-2013-5B',
       'ASHRAE 169-2013-6B',
       'ASHRAE 169-2013-7A',
       'ASHRAE 169-2013-7B',
       'ASHRAE 169-2013-8A',
       'ASHRAE 169-2013-8B'
    prohibited_types = ['FixedEnthalpy']
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2006-4A',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-3A',
       'ASHRAE 169-2013-4A'
    prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb']
  when 'ASHRAE 169-2006-5A',
       'ASHRAE 169-2006-6A',
       'ASHRAE 169-2013-5A',
       'ASHRAE 169-2013-6A'
    prohibited_types = []
  end

  # Check if the specified type is allowed
  economizer_type_allowed = true
  if prohibited_types.include?(economizer_type)
    economizer_type_allowed = false
  end

  return economizer_type_allowed
end

#air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa) ⇒ Double

Determine the airflow limits that govern whether or not an ERV is required. Based on climate zone and % OA.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

  • pct_oa (Double)

    percentage of outdoor air

Returns:

  • (Double)

    the flow rate above which an ERV is required. if nil, ERV is never required.



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 366

def air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa)
  # Table 6.5.6.1
  search_criteria = {
    'template' => template,
    'climate_zone' => climate_zone
  }
  energy_recovery_limits = model_find_object(standards_data['energy_recovery'], search_criteria)
  if energy_recovery_limits.nil?
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2010.AirLoopHVAC', "Cannot find energy recovery limits for template '#{template}', climate zone '#{climate_zone}', assuming no energy recovery required.")
    return nil
  end

  if pct_oa < 0.2
    erv_cfm = nil
  elsif pct_oa >= 0.2 && pct_oa < 0.3
    erv_cfm = energy_recovery_limits['20_to_30_percent_oa']
  elsif pct_oa >= 0.3 && pct_oa < 0.4
    erv_cfm = energy_recovery_limits['30_to_40_percent_oa']
  elsif pct_oa >= 0.4 && pct_oa < 0.5
    erv_cfm = energy_recovery_limits['40_to_50_percent_oa']
  elsif pct_oa >= 0.5 && pct_oa < 0.6
    erv_cfm = energy_recovery_limits['50_to_60_percent_oa']
  elsif pct_oa >= 0.6 && pct_oa < 0.7
    erv_cfm = energy_recovery_limits['60_to_70_percent_oa']
  elsif pct_oa >= 0.7 && pct_oa < 0.8
    erv_cfm = energy_recovery_limits['70_to_80_percent_oa']
  elsif pct_oa >= 0.8
    erv_cfm = energy_recovery_limits['greater_than_80_percent_oa']
  end

  return erv_cfm
end

#air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) ⇒ Boolean

Determine if the system economizer must be integrated or not. All economizers must be integrated in 90.1-2010

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



48
49
50
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 48

def air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone)
  return true
end

#air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>

Determine the air flow and number of story limits for whether motorized OA damper is required.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Array<Double>)

    [minimum_oa_flow_cfm, maximum_stories]. If both nil, never required



244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 244

def air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone)
  case climate_zone
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3A',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C'
    minimum_oa_flow_cfm = 0
    maximum_stories = 999 # Any number of stories
  else
    minimum_oa_flow_cfm = 0
    maximum_stories = 0
  end

  return [minimum_oa_flow_cfm, maximum_stories]
end

#air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) ⇒ Boolean

TODO:

Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems

Note:

code_sections [90.1-2010_6.5.3.3]

Determine if multizone vav optimization is required.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 147

def air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone)
  multizone_opt_required = false

  # Not required for systems with fan-powered terminals
  num_fan_powered_terminals = 0
  air_loop_hvac.demandComponents.each do |comp|
    if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized
      num_fan_powered_terminals += 1
    end
  end
  if num_fan_powered_terminals > 0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.")
    return multizone_opt_required
  end

  # Not required for systems that require an ERV
  # Exception 2 to Section 6.5.3.3
  if air_loop_hvac_energy_recovery?(air_loop_hvac)
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: multizone vav optimization is not required because the system has Energy Recovery.")
    return multizone_opt_required
  end

  # Get the OA intake
  controller_oa = nil
  controller_mv = nil
  oa_system = nil
  if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone optimization is not applicable because system has no OA intake.")
    return multizone_opt_required
  end

  # Get the AHU design supply air flow rate
  dsn_flow_m3_per_s = nil
  if air_loop_hvac.designSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get
  elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.")
    return multizone_opt_required
  end
  dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Get the minimum OA flow rate
  min_oa_flow_m3_per_s = nil
  if controller_oa.minimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
  elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.")
    return multizone_opt_required
  end
  min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Calculate the percent OA at design airflow
  pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s

  # Not required for systems where
  # exhaust is more than 70% of the total OA intake.
  if pct_oa > 0.7
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.")
    return multizone_opt_required
  end

  # @todo Not required for dual-duct systems
  # if self.isDualDuct
  # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system")
  # return multizone_opt_required
  # end

  # If here, multizone vav optimization is required
  multizone_opt_required = true

  return multizone_opt_required
end

#air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) ⇒ Integer

Determine the number of stages that should be used as controls for single zone DX systems. 90.1-2010 depends on the cooling capacity of the system.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Integer)

    the number of stages: 0, 1, 2



280
281
282
283
284
285
286
287
288
289
290
291
292
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 280

def air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone)
  min_clg_cap_btu_per_hr = 65_000
  clg_cap_btu_per_hr = OpenStudio.convert(air_loop_hvac_total_cooling_capacity(air_loop_hvac), 'W', 'Btu/hr').get
  if clg_cap_btu_per_hr >= min_clg_cap_btu_per_hr
    num_stages = 2
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr exceeds the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .")
  else
    num_stages = 1
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is not required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr is less than the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .")
  end

  return num_stages
end

#air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) ⇒ Boolean

Determine if the system required supply air temperature (SAT) reset. For 90.1-2010, SAT reset requirements are based on climate zone.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirLoopHVAC.rb', line 300

def air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone)
  is_sat_reset_required = false

  # Only required for multizone VAV systems
  unless air_loop_hvac_multizone_vav_system?(air_loop_hvac)
    return is_sat_reset_required
  end

  case climate_zone
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-3A'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.")
    return is_sat_reset_required
  when 'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2006-4A',
       'ASHRAE 169-2006-4B',
       'ASHRAE 169-2006-4C',
       'ASHRAE 169-2006-5A',
       'ASHRAE 169-2006-5B',
       'ASHRAE 169-2006-5C',
       'ASHRAE 169-2006-6A',
       'ASHRAE 169-2006-6B',
       'ASHRAE 169-2006-7A',
       'ASHRAE 169-2006-7B',
       'ASHRAE 169-2006-8A',
       'ASHRAE 169-2006-8B',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C',
       'ASHRAE 169-2013-4A',
       'ASHRAE 169-2013-4B',
       'ASHRAE 169-2013-4C',
       'ASHRAE 169-2013-5A',
       'ASHRAE 169-2013-5B',
       'ASHRAE 169-2013-5C',
       'ASHRAE 169-2013-6A',
       'ASHRAE 169-2013-6B',
       'ASHRAE 169-2013-7A',
       'ASHRAE 169-2013-7B',
       'ASHRAE 169-2013-8A',
       'ASHRAE 169-2013-8B'
    is_sat_reset_required = true
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is required.")
    return is_sat_reset_required
  end
end

#air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area) ⇒ Boolean

Set the initial minimum damper position based on OA rate of the space and the template. Zones with low OA per area get lower initial guesses. Final position will be adjusted upward as necessary by Standards.AirLoopHVAC.apply_minimum_vav_damper_positions

Parameters:

  • air_terminal_single_duct_vav_reheat (OpenStudio::Model::AirTerminalSingleDuctVAVReheat)

    the air terminal object

  • zone_oa_per_area (Double)

    the zone outdoor air per area in m^3/s*m^2

Returns:

  • (Boolean)

    returns true if successful, false if not



10
11
12
13
14
15
16
17
18
19
20
21
22
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb', line 10

def air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area)
  min_damper_position = case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat)
                        when 'Electricity', 'NaturalGas'
                          0.3
                        else # 'HotWater', other
                          0.2
                        end

  # Set the minimum flow fraction
  air_terminal_single_duct_vav_reheat.setConstantMinimumAirFlowFraction(min_damper_position)

  return true
end

#air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) ⇒ Double

Specifies the minimum damper position for VAV dampers. For terminals with hot water heat and DDC, the minimum is 20%, otherwise the minimum is 30%.

Parameters:

  • air_terminal_single_duct_vav_reheat (OpenStudio::Model::AirTerminalSingleDuctVAVReheat)

    the air terminal object

  • has_ddc (Boolean) (defaults to: false)

    whether or not there is DDC control of the VAV terminal in question

Returns:

  • (Double)

    minimum damper position



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.AirTerminalSingleDuctVAVReheat.rb', line 10

def air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false)
  min_damper_position = nil
  case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat)
  when 'HotWater'
    min_damper_position = if has_ddc
                            0.2
                          else
                            0.3
                          end
  when 'Electricity', 'NaturalGas'
    min_damper_position = 0.3
  end

  return min_damper_position
end

#boiler_get_eff_fplr(boiler_hot_water) ⇒ String

Determine what part load efficiency degredation curve should be used for a boiler

Parameters:

  • boiler_hot_water (OpenStudio::Model::BoilerHotWater)

    hot water boiler object

Returns:

  • (String)

    returns name of the boiler curve to be used, or nil if not applicable



6
7
8
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.BoilerHotWater.rb', line 6

def boiler_get_eff_fplr(boiler_hot_water)
  return 'Boiler with No Minimum Turndown'
end

#chiller_electric_eir_get_cap_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for capacity as a function of temperature

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb', line 10

def chiller_electric_eir_get_cap_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_2010_PathA_CAPFT'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      return 'WaterCooled_Centrifugal_Chiller_GT150_2004_CAPFT' if chiller_tonnage >= 150

      return 'WaterCooled_Centrifugal_Chiller_LT150_2004_CAPFT'
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      # 2010 reference might suggest that this is the wrong curve
      return 'WaterCooled_PositiveDisplacement_Chiller_GT150_2010_PathA_CAPFT' if chiller_tonnage >= 150

      # 2010 reference might suggest that this is the wrong curve
      return 'WaterCooled_PositiveDisplacement_Chiller_LT150_2010_PathA_CAPFT'
    else
      return nil
    end
  else
    return nil
  end
end

#chiller_electric_eir_get_eir_f_plr_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for EIR as a function of part load ratio

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb', line 74

def chiller_electric_eir_get_eir_f_plr_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_AllCapacities_2004_2010_EIRFPLR'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      return 'ChlrWtrCentPathAAllEIRRatio_fQRatio'
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      return 'ChlrWtrPosDispPathAAllEIRRatio_fQRatio'
    else
      return nil
    end
  else
    return nil
  end
end

#chiller_electric_eir_get_eir_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for EIR as a function of temperature

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ChillerElectricEIR.rb', line 42

def chiller_electric_eir_get_eir_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_2010_PathA_EIRFT'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      return 'WaterCooled_Centrifugal_Chiller_GT150_2004_EIRFT' if chiller_tonnage >= 150

      return 'WaterCooled_Centrifugal_Chiller_LT150_2004_EIRFT'
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      # 2010 reference might suggest that this is the wrong curve
      return 'WaterCooled_PositiveDisplacement_Chiller_GT150_2010_PathA_EIRFT' if chiller_tonnage >= 150

      # 2010 reference might suggest that this is the wrong curve
      return 'WaterCooled_PositiveDisplacement_Chiller_LT150_2010_PathA_EIRFT'
    else
      return nil
    end
  else
    return nil
  end
end

#fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) ⇒ Double

Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_constant_volume (OpenStudio::Model::FanConstantVolume)

    constant volume fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanConstantVolume.rb', line 9

def fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_constant_volume.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_constant_volume.maximumFlowRate.get
  elsif fan_constant_volume.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_constant_volume.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanConstantVolume', "For #{fan_constant_volume.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437
                           2.5
                         else # Over 7,437 cfm
                           4.09
                         end

  return pressure_rise_in_h2o
end

#fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) ⇒ Double

Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_on_off (OpenStudio::Model::FanOnOff)

    on off fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanOnOff.rb', line 9

def fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_on_off.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_on_off.maximumFlowRate.get
  elsif fan_on_off.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_on_off.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanOnOff', "For #{fan_on_off.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437
                           2.5
                         else # Over 7,437 cfm
                           4.09
                         end

  return pressure_rise_in_h2o
end

#fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) ⇒ Double

Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_variable_volume (OpenStudio::Model::FanVariableVolume)

    variable volume fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb', line 9

def fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_variable_volume.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_variable_volume.maximumFlowRate.get
  elsif fan_variable_volume.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_variable_volume.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanVariableVolume', "For #{fan_variable_volume.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 4648
                           4.0
                         else # Over 7,437 cfm
                           5.58
                         end

  return pressure_rise_in_h2o
end

#fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) ⇒ Double

TODO:

AddRef

The threhold horsepower below which part load control is not required. 10 nameplate HP threshold is equivalent to motors with input powers of 7.54 HP per TSD

Parameters:

  • fan_variable_volume (OpenStudio::Model::FanVariableVolume)

    variable volume fan object

Returns:

  • (Double)

    the limit, in horsepower. Return nil for no limit by default.



10
11
12
13
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.FanVariableVolume.rb', line 10

def fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume)
  hp_limit = 7.54
  return hp_limit
end

#load_standards_database(data_directories = []) ⇒ Hash

Loads the openstudio standards dataset for this standard.

Parameters:

  • data_directories (Array<String>) (defaults to: [])

    array of file paths that contain standards data

Returns:

  • (Hash)

    a hash of standards data



18
19
20
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.rb', line 18

def load_standards_database(data_directories = [])
  super([__dir__] + data_directories)
end

#model_create_prm_baseline_building_requires_vlt_sizing_run(model) ⇒ Object

Determine if there needs to be a sizing run after constructions are added so that EnergyPlus can calculate the VLTs of layer-by-layer glazing constructions. These VLT values are needed for the daylighting controls logic for 90.1-2010.



8
9
10
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb', line 8

def model_create_prm_baseline_building_requires_vlt_sizing_run(model)
  return true # Required for 90.1-2010
end

#model_economizer_type(model, climate_zone) ⇒ String

Determine the prototypical economizer type for the model.

‘NoEconomizer’ ‘FixedDryBulb’ ‘FixedEnthalpy’ ‘DifferentialDryBulb’ ‘DifferentialEnthalpy’ ‘FixedDewPointAndDryBulb’ ‘ElectronicEnthalpy’ ‘DifferentialDryBulbAndEnthalpy’

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (String)

    the economizer type. Possible values are:



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb', line 17

def model_economizer_type(model, climate_zone)
  economizer_type = case climate_zone
                    when 'ASHRAE 169-2006-0A',
                        'ASHRAE 169-2006-1A',
                        'ASHRAE 169-2006-2A',
                        'ASHRAE 169-2006-3A',
                        'ASHRAE 169-2006-4A',
                        'ASHRAE 169-2013-0A',
                        'ASHRAE 169-2013-1A',
                        'ASHRAE 169-2013-2A',
                        'ASHRAE 169-2013-3A',
                        'ASHRAE 169-2013-4A'
                      'DifferentialEnthalpy'
                    else
                      'DifferentialDryBulb'
                    end
  return economizer_type
end

#model_elevator_lighting_pct_incandescent(model) ⇒ Double

Determines the percentage of the elevator cab lighting that is incandescent. The remainder is assumed to be LED. Defaults to 0% incandescent (100% LED), representing newer elevators.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

Returns:

  • (Double)

    incandescent lighting percentage



10
11
12
13
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.elevators.rb', line 10

def model_elevator_lighting_pct_incandescent(model)
  pct_incandescent = 0.0 # 100% LED
  return pct_incandescent
end

#model_fenestration_orientation(model, climate_zone) ⇒ Boolean

Note:

code_sections [90.1-2010_5.5.4.5]

Adjust model to comply with fenestration orientation requirements

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    Returns true if successful, false otherwise



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb', line 42

def model_fenestration_orientation(model, climate_zone)
  wwr = false

  win_area_w = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['west_window']
  win_area_e = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['east_window']
  win_area_s = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['south_window']

  # Make prototype specific adjustment to meet the code requirement
  if !((win_area_s > win_area_w) && (win_area_s > win_area_e))
    if model.getBuilding.standardsBuildingType.is_initialized
      building_type = model.getBuilding.standardsBuildingType.get

      case building_type
        # @todo Implementatation for other building types not meeting the requirement
        #   The offices, schools, warehouse (exempted), large hotel, outpatient,
        #   retails, apartments should meet the requirement according to Section
        #   5.2.1.7 in Thornton et al. 2011
        when 'Hospital'
          # Rotate the building counter-clockwise
          OpenstudioStandards::Geometry.model_set_building_north_axis(model, 270.0)
        when 'SmallHotel'
          # Rotate the building clockwise
          OpenstudioStandards::Geometry.model_set_building_north_axis(model, 180.0)
        else
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.ashrae_90_1_2010', "The prototype model doesn't meet the requirement from Section 5.5.4.5 in ASHRAE Standard 90.1-2010.")
      end
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.ashrae_90_1_2010', "The prototype model doesn't meet the requirement from Section 5.5.4.5 in ASHRAE Standard 90.1-2010, its standards building type shall be specified.")
    end
  end

  return true
end

#model_prm_baseline_system_number(model, climate_zone, area_type, fuel_type, area_ft2, num_stories, custom) ⇒ String

Determines which system number is used for the baseline system. 5_or_6, 7_or_8, 9_or_10

Returns:

  • (String)

    the system number: 1_or_2, 3_or_4,



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb', line 16

def model_prm_baseline_system_number(model, climate_zone, area_type, fuel_type, area_ft2, num_stories, custom)
  sys_num = nil

  # Set the area limit
  limit_ft2 = 25_000

  # Customization for Xcel EDA.
  # No special retail category
  # for regular 90.1-2010.
  if (custom != 'Xcel Energy CO EDA') && (area_type == 'retail')
    area_type = 'nonresidential'
  end

  case area_type
  when 'residential'
    sys_num = '1_or_2'
  when 'nonresidential'
    # nonresidential and 3 floors or less and <25,000 ft2
    if num_stories <= 3 && area_ft2 < limit_ft2
      sys_num = '3_or_4'
    # nonresidential and 4 or 5 floors or 5 floors or less and 25,000 ft2 to 150,000 ft2
    elsif ((num_stories == 4 || num_stories == 5) && area_ft2 < limit_ft2) || (num_stories <= 5 && (area_ft2 >= limit_ft2 && area_ft2 <= 150_000))
      sys_num = '5_or_6'
    # nonresidential and more than 5 floors or >150,000 ft2
    elsif num_stories >= 5 || area_ft2 > 150_000
      sys_num = '7_or_8'
    end
  when 'heatedonly'
    sys_num = '9_or_10'
  when 'retail'
    # Should only be hit by Xcel EDA
    sys_num = '3_or_4'
  end

  return sys_num
end

#model_transfer_air_required?(model) ⇒ Boolean

Note:

code_sections [90.1-2010_6.5.7.1.2]

Is transfer air required?

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

Returns:

  • (Boolean)

    true if transfer air is required, false otherwise



81
82
83
84
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Model.rb', line 81

def model_transfer_air_required?(model)
  # @todo It actually is for kitchen but not implemented yet
  return false
end

#pump_variable_speed_get_control_type(pump, plant_loop_type, pump_nominal_hp) ⇒ String

Note:

code_sections [90.1-2010_6.5.4.1]

Determine type of pump part load control type

Parameters:

  • pump (OpenStudio::Model::PumpVariableSpeed)

    OpenStudio pump object

  • plant_loop_type (String)

    Type of plant loop

  • pump_nominal_hp (Float)

    Pump nominal horsepower

Returns:

  • (String)

    Pump part load control type



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.PumpVariableSpeed.rb', line 11

def pump_variable_speed_get_control_type(pump, plant_loop_type, pump_nominal_hp)
  threshold = 5 # hp

  # Sizing factor to take into account that pumps
  # are typically sized to handle a ~10% pressure
  # increase and ~10% flow increase.
  design_sizing_factor = 1.25

  return 'Riding Curve' if plant_loop_type == 'Heating'

  # Requirement only applies to CHW pumps
  return 'VSD DP Reset' if pump_nominal_hp * design_sizing_factor > threshold

  # else
  return 'Riding Curve'
end

#space_daylighted_area_window_width(space) ⇒ String

Determines the method used to extend the daylighted area horizontally next to a window. If the method is ‘fixed’, 2 ft is added to the width of each window. If the method is ‘proportional’, a distance equal to half of the head height of the window is added. If the method is ‘none’, no additional width is added.

Returns:

  • (String)

    returns ‘fixed’ or ‘proportional’



11
12
13
14
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb', line 11

def space_daylighted_area_window_width(space)
  method = 'fixed'
  return method
end

#space_daylighting_control_required?(space, areas) ⇒ Array<Bool>

Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting. Defaults to false for all types.

Parameters:

  • space (OpenStudio::Model::Space)

    the space in question

  • areas (Hash)

    a hash of daylighted areas

Returns:

  • (Array<Bool>)

    req_top_ctrl, req_pri_ctrl, req_sec_ctrl



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb', line 23

def space_daylighting_control_required?(space, areas)
  req_top_ctrl = true
  req_pri_ctrl = true
  req_sec_ctrl = false

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "primary_sidelighted_area = #{areas['primary_sidelighted_area']}")

  # Sidelighting
  # Check if the primary sidelit area < 250 ft2
  if areas['primary_sidelighted_area'] < 0.01
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.4.")
    req_pri_ctrl = false
  elsif areas['primary_sidelighted_area'] < OpenStudio.convert(250, 'ft^2', 'm^2').get
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area less than 250ft2 per 9.4.1.4.")
    req_pri_ctrl = false
  else
    # Check effective sidelighted aperture
    sidelighted_effective_aperture = space_sidelighting_effective_aperture(space, areas['primary_sidelighted_area'])
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_pri = #{sidelighted_effective_aperture}")
    if sidelighted_effective_aperture < 0.1 && @instvarbuilding_type.nil?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because sidelighted effective aperture less than 0.1 per 9.4.1.4 Exception b.")
      req_pri_ctrl = false
    end
  end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "toplighted_area = #{areas['toplighted_area']}")

  # Toplighting
  # Check if the toplit area < 900 ft2
  if areas['toplighted_area'] < 0.01
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.5.")
    req_top_ctrl = false
  elsif areas['toplighted_area'] < OpenStudio.convert(900, 'ft^2', 'm^2').get
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area less than 900ft2 per 9.4.1.5.")
    req_top_ctrl = false
  else
    # Check effective sidelighted aperture
    sidelighted_effective_aperture = space_skylight_effective_aperture(space, areas['toplighted_area'])
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_top = #{sidelighted_effective_aperture}")
    if sidelighted_effective_aperture < 0.006
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because skylight effective aperture less than 0.006 per 9.4.1.5 Exception b.")
      req_top_ctrl = false
    end
  end

  # Exceptions
  if space.spaceType.is_initialized
    case space.spaceType.get.standardsSpaceType.to_s
    when 'Core_Retail'
      # Retail spaces exception (c) to Section 9.4.1.4
      # req_sec_ctrl set to true to create a second reference point
      req_pri_ctrl = false
      req_sec_ctrl = true
    when 'Entry', 'Front_Retail', 'Point_of_Sale', 'Strip mall - type 1', 'Strip mall - type 2', 'Strip mall - type 3'
      # Retail, Strip mall
      req_pri_ctrl = false
      req_sec_ctrl = false
    when 'Apartment', 'Apartment_topfloor_NS', 'Apartment_topfloor_WE'
      # Residential apartments
      req_top_ctrl = false
      req_pri_ctrl = false
      req_sec_ctrl = false
    end
  end

  return [req_top_ctrl, req_pri_ctrl, req_sec_ctrl]
end

#space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) ⇒ Array

Determine the fraction controlled by each sensor and which window each sensor should go near.

Parameters:

  • space (OpenStudio::Model::Space)

    space object

  • areas (Hash)

    a hash of daylighted areas

  • sorted_windows (Hash)

    a hash of windows, sorted by priority

  • sorted_skylights (Hash)

    a hash of skylights, sorted by priority

  • req_top_ctrl (Boolean)

    if toplighting controls are required

  • req_pri_ctrl (Boolean)

    if primary sidelighting controls are required

  • req_sec_ctrl (Boolean)

    if secondary sidelighting controls are required

Returns:

  • (Array)

    array of 4 items

    sensor 1 fraction, sensor 2 fraction, sensor 1 window, sensor 2 window


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb', line 102

def space_daylighting_fractions_and_windows(space,
                                            areas,
                                            sorted_windows,
                                            sorted_skylights,
                                            req_top_ctrl,
                                            req_pri_ctrl,
                                            req_sec_ctrl)
  sensor_1_frac = 0.0
  sensor_2_frac = 0.0
  sensor_1_window = nil
  sensor_2_window = nil

  # Get the area of the space
  space_area_m2 = space.floorArea

  # get the climate zone
  climate_zone = OpenstudioStandards::Weather.model_get_climate_zone(space.model)

  if req_top_ctrl && req_pri_ctrl
    # Sensor 1 controls toplighted area
    sensor_1_frac = areas['toplighted_area'] / space_area_m2
    sensor_1_window = sorted_skylights[0]
    # Sensor 2 controls primary area
    sensor_2_frac = areas['primary_sidelighted_area'] / space_area_m2
    sensor_2_window = sorted_windows[0]
  elsif req_top_ctrl && !req_pri_ctrl
    # Sensor 1 controls toplighted area
    sensor_1_frac = areas['toplighted_area'] / space_area_m2
    sensor_1_window = sorted_skylights[0]
  elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl
    # Sensor 1 controls toplighted area
    sensor_1_frac = areas['toplighted_area'] / space_area_m2
    sensor_1_window = sorted_skylights[0]
    # Sensor 2 controls secondary area
    sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2)
    # sorted_skylights[0] assigned to sensor_2_window so a second reference point is added for top daylighting
    sensor_2_window = sorted_skylights[0]
  elsif !req_top_ctrl && req_pri_ctrl
    if sorted_windows.size == 1
      # Sensor 1 controls the whole primary area
      sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
      sensor_1_window = sorted_windows[0]
    else
      # Sensor 1 controls half the primary area
      sensor_1_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2
      sensor_1_window = sorted_windows[0]
      # Sensor 2 controls the other half of primary area
      sensor_2_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2
      sensor_2_window = sorted_windows[1]
    end
  end

  return [sensor_1_frac, sensor_2_frac, sensor_1_window, sensor_2_window]
end

#space_infiltration_rate_75_pa(space = nil) ⇒ Double

Determine the base infiltration rate at 75 Pa.

defaults to no infiltration.

Returns:

  • (Double)

    the baseline infiltration rate, in cfm/ft^2



161
162
163
164
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.Space.rb', line 161

def space_infiltration_rate_75_pa(space = nil)
  basic_infil_rate_cfm_per_ft2 = 1.0
  return basic_infil_rate_cfm_per_ft2
end

#thermal_zone_demand_control_ventilation_limits(thermal_zone) ⇒ Array<Double>

Determine the area and occupancy level limits for demand control ventilation.

and the minimum occupancy density in m^2/person. Returns nil if there is no requirement.

Parameters:

  • thermal_zone (OpenStudio::Model::ThermalZone)

    the thermal zone

Returns:

  • (Array<Double>)

    the minimum area, in m^2



11
12
13
14
15
16
17
18
19
20
21
22
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2010/ashrae_90_1_2010.ThermalZone.rb', line 11

def thermal_zone_demand_control_ventilation_limits(thermal_zone)
  min_area_ft2 = 500
  min_occ_per_1000_ft2 = 40

  # Convert to SI
  min_area_m2 = OpenStudio.convert(min_area_ft2, 'ft^2', 'm^2').get
  min_occ_per_ft2 = min_occ_per_1000_ft2 / 1000.0
  min_ft2_per_occ = 1.0 / min_occ_per_ft2
  min_m2_per_occ = OpenStudio.convert(min_ft2_per_occ, 'ft^2', 'm^2').get

  return [min_area_m2, min_m2_per_occ]
end