Class: ECMS
- Defined in:
- lib/openstudio-standards/standards/necb/ECMS/nv.rb,
lib/openstudio-standards/standards/necb/ECMS/erv.rb,
lib/openstudio-standards/standards/necb/ECMS/ecms.rb,
lib/openstudio-standards/standards/necb/ECMS/loads.rb,
lib/openstudio-standards/standards/necb/ECMS/pv_ground.rb,
lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb
Constant Summary
Constants inherited from Standard
Instance Attribute Summary
Attributes inherited from NECB2011
#fuel_type_set, #qaqc_data, #space_multiplier_map, #space_type_map, #standards_data, #tbd, #template
Attributes inherited from Standard
#space_multiplier_map, #standards_data, #template
Instance Method Summary collapse
-
#add_air_system(model:, zones:, sys_abbr:, sys_vent_type:, sys_heat_rec_type:, sys_htg_eqpt_type:, sys_supp_htg_eqpt_type:, sys_clg_eqpt_type:, sys_supp_fan_type:, sys_ret_fan_type:, sys_setpoint_mgr_type:) ⇒ Object
add air system with all its components.
-
#add_airloop_economizer(model:, airloop_economizer_type:) ⇒ Object
Add air side economizer for each airloop.
-
#add_ecm_hs08_ccashp_vrf(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:, air_sys_eqpt_type: 'ccashp') ⇒ Object
Add equipment for ECM ‘hs08_ccashp_vrf’: -Constant-volume DOAS with air-source heat pump for heating and cooling and electric backup -Zonal terminal VRF units connected to an outdoor VRF condenser unit -Zonal electric or hot-water backup.
-
#add_ecm_hs09_ccashp_baseboard(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs09_ccashp_baseboard”: -Constant-volume reheat system for single zone systems -VAV system with reheat for non DOAS multi-zone systems -Cold-climate air-source heat pump for heating and cooling with electric backup -Electric or hot-water baseboards.
-
#add_ecm_hs11_ashp_pthp(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ECM “hs11_ashp_pthp” -Constant volume DOAS with air-source heat pump for heating and cooling and electric backup -Packaged-Terminal air-source heat pumps with electric backup.
-
#add_ecm_hs12_ashp_baseboard(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs12_ashp_baseboard”: -Constant-volume reheat system for single zone systems -VAV system with reheat for non DOAS multi-zone systems -Air-source heat pump for heating and cooling with electric backup -Electric or hot-water baseboards.
-
#add_ecm_hs13_ashp_vrf(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs13_ashp_vrf”: -Constant-volume dedicated-outside air system -Air-source heat pump for heating and cooling with electric backup -Zonal VRF terminal units for heating and cooling with electric baseboards.
-
#add_ecm_hs14_cgshp_fancoils(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ECM “hs14_cgshp_fancoils” -Constant volume DOAS with hydronic htg and clg coils.
-
#add_ecm_remove_airloops_add_zone_baseboards(model:, system_zones_map:, system_doas_flags: nil, ecm_system_zones_map_option:, standard:) ⇒ Object
Despite the name, this method does not actually remove any air loops.
-
#add_hotwater_loop(model:, fuel_type_set:) ⇒ Object
Add one hot-water loop for hot-water baseboards if required.
-
#add_outdoor_vrf_unit(model:, ecm_name: nil, condenser_type: 'AirCooled') ⇒ Object
Add an outdoor VRF unit.
-
#add_plantloop(model:, loop_htg_eqpt_type:, loop_clg_eqpt_type:, loop_heat_rej_eqpt_type:, loop_pump_type:, loop_spm_type:, loop_setpoint:, loop_temp_diff:) ⇒ Object
add plant loop with all its components.
-
#add_zone_eqpt(model:, airloop:, zones:, outdoor_unit:, zone_diffuser_type:, zone_htg_eqpt_type:, zone_supp_htg_eqpt_type:, zone_clg_eqpt_type:, zone_fan_type:, hw_loop: nil) ⇒ Object
add zonal heating and cooling equipment.
-
#air_sys_comps_assumptions(sys_name:, zones:, system_doas_flags:) ⇒ Object
Set assumptions for type of components for air system based on the number of zones served by the system and whether it’s a mixed or doas.
-
#airconditioner_variablerefrigerantflow_cooling_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) ⇒ Object
Find cooling efficiency for “AirConditionerVariableRefrigerantFlow” object.
-
#airconditioner_variablerefrigerantflow_cooling_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) ⇒ Object
Applies the cooling performance curves to “AirConditionerVariableRefrigerantFlow” object.
-
#airconditioner_variablerefrigerantflow_cooling_find_capacity(airconditioner_variablerefrigerantflow) ⇒ Object
Find cooling capacity for “AirConditionerVariableRefrigerantFlow” object.
-
#airconditioner_variablerefrigerantflow_heating_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) ⇒ Object
Find heating efficiency for “AirConditionerVariableRefrigerantFlow” object.
-
#airconditioner_variablerefrigerantflow_heating_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) ⇒ Object
Applies the heating performance curves to “AirConditionerVariableRefrigerantFlow” object.
-
#airconditioner_variablerefrigerantflow_heating_find_capacity(airconditioner_variablerefrigerantflow) ⇒ Object
Find heating capacity for “AirConditionerVariableRefrigerantFlow” object.
-
#apply_efficiency_ecm_hs08_ccashp_vrf(model, standard, air_sys_eqpt_type: 'ccashp') ⇒ Object
Apply efficiencies for ECM ‘hs08_ccashp_vrf’.
-
#apply_efficiency_ecm_hs09_ccashp_baseboard(model, standard) ⇒ Object
Apply effiencies for ECM “hs09_ccashp_baseboard”.
-
#apply_efficiency_ecm_hs11_ashp_pthp(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs11_ashp_pthp”.
-
#apply_efficiency_ecm_hs12_ashp_baseboard(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs12_ashp_baseboard”.
-
#apply_efficiency_ecm_hs13_ashp_vrf(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs12_ashp_vrf”.
-
#apply_efficiency_ecm_hs14_cgshp_fancoils(model, standard) ⇒ Object
Appy efficiencies for ECM “hs14_cgshp_fancoils”.
-
#apply_erv_ecm_efficiency(model:, erv_package: nil) ⇒ Object
This method will set the properties of the ERV.
- #apply_nv(model:, nv_type:, nv_opening_fraction:, nv_temp_out_min:, nv_delta_temp_in_out:) ⇒ Object
- #apply_pv_ground(model:, pv_ground_type:, pv_ground_total_area_pv_panels_m2:, pv_ground_tilt_angle:, pv_ground_azimuth_angle:, pv_ground_module_description:) ⇒ Object
- #apply_system_ecm(model:, ecm_system_name: nil, template_standard:, runner: nil, ecm_system_zones_map_option: 'NECB_Default') ⇒ Object
- #apply_system_efficiencies_ecm(model:, ecm_system_name: nil, template_standard:) ⇒ Object
-
#calculate_building_footprint(model:) ⇒ Object
Method for calculating footprint of the building model.
-
#chiller_electric_eir_apply_curves_and_cop(chiller_electric_eir, search_criteria) ⇒ Object
Applies the performance curves “ChillerElectricEIR” object.
-
#chiller_electric_eir_find_capacity(chiller_electric_eir) ⇒ Object
Find cooling capacity for “ChillerElectricEIR” object.
-
#coil_cooling_dx_single_speed_apply_cop(coil_cooling_dx_single_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilCoolingDXSingleSpeed” object.
-
#coil_cooling_dx_single_speed_apply_curves(coil_cooling_dx_single_speed, eqpt_name) ⇒ Object
Applies the performance curves “CoilCoolingDXSingleSpeed” object.
-
#coil_cooling_dx_variable_speed_apply_cop(coil_cooling_dx_variable_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilCoolingDXVariableSpeed” object.
-
#coil_cooling_dx_variable_speed_apply_curves(coil_cooling_dx_variable_speed, eqpt_name) ⇒ Object
Applies the performance curves “CoilCoolingDXVariableSpeed” object.
-
#coil_cooling_dx_variable_speed_find_capacity(coil_cooling_dx_variable_speed) ⇒ Object
Find cooling capacity for “CoilCoolingDXVariableSpeed” object.
-
#coil_heating_dx_single_speed_apply_cop(coil_heating_dx_single_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilHeatingDXSingleSpeed” object.
-
#coil_heating_dx_single_speed_apply_curves(coil_heating_dx_single_speed, eqpt_name) ⇒ Object
Applies the performance curves to “CoilHeatingSingleSpeed” object.
-
#coil_heating_dx_variable_speed_apply_cop(coil_heating_dx_variable_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilHeatingDXVariableSpeed” object.
-
#coil_heating_dx_variable_speed_apply_curves(coil_heating_dx_variable_speed, eqpt_name) ⇒ Object
Applies performance curves to “CoilHeatingVariableSpeed” object.
-
#coil_heating_dx_variable_speed_find_capacity(coil_heating_dx_variable_speed) ⇒ Object
Find heating capacity for “CoilHeatingDXVariableSpeed” object.
-
#create_air_sys_clg_eqpt(model, clg_eqpt_type) ⇒ Object
create air system cooling equipment.
-
#create_air_sys_fan(model, fan_type) ⇒ Object
create air system fan.
-
#create_air_sys_htg_eqpt(model, htg_eqpt_type) ⇒ Object
create air system heating equipment.
-
#create_air_sys_spm(model, setpoint_mgr_type, zones) ⇒ Object
create air system setpoint manager.
-
#create_airloop(model, sys_vent_type) ⇒ Object
create air loop.
-
#create_plantloop_clg_eqpt(model, loop_clg_eqpt_type) ⇒ Object
add plant loop cooling eqpt.
-
#create_plantloop_heat_rej_eqpt(model, loop_heat_rej_eqpt_type) ⇒ Object
add plant loop heat rejection equipment.
-
#create_plantloop_htg_eqpt(model, loop_htg_eqpt_type) ⇒ Object
add plant loop heating eqpt created by: [email protected] (August 2021).
-
#create_plantloop_pump(model, loop_pump_type) ⇒ Object
add plant loop pump.
-
#create_plantloop_spm(model, loop_spm_type, loop_setpoint) ⇒ Object
add plant loop setpoint manager.
-
#create_zone_clg_eqpt(model, zone_clg_eqpt_type) ⇒ Object
create zonal cooling equipment.
-
#create_zone_container_eqpt(model:, zone_cont_eqpt_type:, zone_htg_eqpt:, zone_supp_htg_eqpt:, zone_clg_eqpt:, zone_fan:, zone_vent_off: true) ⇒ Object
create zpne container eqpt.
-
#create_zone_diffuser(model, zone_diffuser_type, zone) ⇒ Object
create zone diffuser.
-
#create_zone_htg_eqpt(model, zone_htg_eqpt_type, hw_loop) ⇒ Object
create zonal heating equipment.
-
#find_chiller_set(chiller_type:, ref_capacity_w:) ⇒ Object
.
-
#get_hvac_comp_init_name(obj, htg_flag) ⇒ Object
Name of HVAC component might have been updated by standards methods for setting efficiency.
-
#get_lowest_floor_ext_wall_centroid_coords(storeys_clg_zcoords) ⇒ Object
Return x,y,z coordinates of exterior wall with largest area on the lowest floor.
-
#get_map_systems_to_zones(systems) ⇒ Object
Return map of systems to zones and set flag for dedicated outdoor air unit for each system.
-
#get_max_vrf_pipe_lengths(model) ⇒ Object
Determine maximum equivalent and net vertical pipe runs for VRF model.
-
#get_roof_centroid_coords(storey) ⇒ Object
Return x,y,z coordinates of the centroid of the roof of the storey.
-
#get_space_centroid_coords(space) ⇒ Object
Return x,y,z coordinates of space centroid.
-
#get_storey_avg_clg_zcoords(model) ⇒ Object
Return hash of flags for whether storey is conditioned and average ceiling z-coordinates of building storeys.
-
#get_storey_zones_map(system_zones_map) ⇒ Object
Get a map of bldg storeys and zones.
-
#get_zone_clg_eqpt_type(model) ⇒ Object
Return hash of zone and cooling equipment type in the zone.
-
#get_zone_storey(zone) ⇒ Object
Get building storey for a zone.
-
#initialize ⇒ ECMS
constructor
A new instance of ECMS.
-
#load_standards_database_new ⇒ Object
Combine the data from the JSON files into a single hash Load JSON files differently depending on whether loading from the OpenStudio CLI embedded filesystem or from typical gem installation.
-
#modify_boiler_efficiency(model:, boiler_eff: nil) ⇒ Object
Apply boiler efficiency This model takes an OS model and a boiler efficiency string or hash sent to it with the following form: “boiler_eff”: { “name” => “NECB 88% Efficient Condensing Boiler”, “efficiency” => 0.88, “part_load_curve” => “BOILER-EFFPLR-COND-NECB2011”, “notes” => “From NECB 2011.” } If boiler_eff is nill then it does nothing.
-
#modify_chiller_efficiency(model:, chiller_type:) ⇒ Object
Apply advanced chiller measure.
-
#modify_furnace_efficiency(model:, furnace_eff: nil) ⇒ Object
Apply Furnace efficiency This model takes an OS model and a furnace efficiency string or hash sent to it with the following form: “furnace_eff”: { “name” => “NECB 85% Efficient Condensing Furnace”, “efficiency” => 0.85, “part_load_curve” => “FURNACE-EFFPLR-COND-NECB2011”, “notes” => “From NECB 2011.” } If furnace_eff is nil then it does nothing.
-
#modify_shw_efficiency(model:, shw_eff: nil) ⇒ Object
Apply shw efficiency This model takes an OS model and a shw efficiency string or hash sent to it with the following form: “shw_eff”: { “name” => “Natural Gas Power Vent with Electric Ignition”, “efficiency” => 0.94, “part_load_curve” => “SWH-EFFFPLR-NECB2011” “notes” => “From NECB 2011.” } If shw_eff is nil then it does nothing.
-
#modify_unitary_cop(model:, unitary_cop:, sizing_done:, sql_db_vars_map:) ⇒ Object
Method to update the cop and/or the performance curves of unitary dx coils.
-
#remove_air_loops(model) ⇒ Object
Remove air loops.
-
#remove_all_zone_eqpt(sys_objs) ⇒ Object
Remove existing zone equipment.
-
#remove_chw_loops(model) ⇒ Object
Remove chilled-water plant loops.
-
#remove_cw_loops(model) ⇒ Object
Remove condenser-water plant loops.
-
#remove_hw_loops(model) ⇒ Object
Remove hot-water plant loops.
-
#reset_boiler_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_BoilerHotWater” type compenent, condensing efficiency limit and an efficiency hash which looks like: “eff”: { “name”: “NECB 88% Efficient Condensing Boiler”, “efficiency” => 0.88, “part_load_curve” => “BOILER-EFFPLR-COND-NECB2011”, “notes” => “From NECB 2011.” } This method sets efficiency of the boiler to whatever is entered in eff.
-
#reset_chiller_efficiency(model:, component:, cop:) ⇒ Object
.
-
#reset_furnace_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_CoilHeatingGas” type compenent, and an efficiency hash which looks like: “eff”: { “name”: “NECB 85% Efficient Condensing Furnace”, “efficiency” => 0.85, “part_load_curve” => “FURNACE-EFFPLR-COND-NECB2011”, “notes” => “From NECB 2011.” } This method sets the efficiency of the furnace to whatever is entered in eff.
-
#reset_shw_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_WaterHeaterMixed” type compenent, and an efficiency hash which looks like: “eff”: { “name”: “Natural Gas Power Vent with Electric Ignition”, “efficiency” => 0.94, “part_load_curve” => “SWH-EFFFPLR-NECB2011”, “notes” => “From NECB 2011.” } This method sets the efficiency of the shw heater to whatever is entered in eff.
-
#scale_electrical_loads(model:, scale: 'NECB_Default') ⇒ Object
Electrical.
-
#scale_infiltration_loads(model:, scale: 'NECB_Default') ⇒ Object
Infiltration.
-
#scale_oa_loads(model:, scale: 'NECB_Default') ⇒ Object
Outdoor Air.
-
#scale_occupancy_loads(model:, scale: 'NECB_Default') ⇒ Object
Occupancy.
-
#set_ghx_loop_district_cap(model) ⇒ Object
.
-
#update_system_zones_map(model, system_zones_map, system_zones_map_option, system_key) ⇒ Object
Update the map between systems and zones.
-
#update_system_zones_map_keys(system_zones_map, sys_abbr) ⇒ Object
The first 5 letters of the air loop name designate the system type (sys_abbr).
-
#zone_with_no_vrf_eqpt?(zone) ⇒ Boolean
Method to determine whether zone can have terminal vrf equipment.
Methods inherited from NECB2011
#add_all_spacetypes_to_model, #add_onespeed_DX_coil, #add_onespeed_htg_DX_coil, #add_ptac_dx_cooling, #add_sys1_unitary_ac_baseboard_heating, #add_sys1_unitary_ac_baseboard_heating_multi_speed, #add_sys1_unitary_ac_baseboard_heating_single_speed, #add_sys2_FPFC_sys5_TPFC, #add_sys3_and_8_zone_equip, #add_sys3and8_single_zone_packaged_rooftop_unit_with_baseboard_heating, #add_sys3and8_single_zone_packaged_rooftop_unit_with_baseboard_heating_multi_speed, #add_sys3and8_single_zone_packaged_rooftop_unit_with_baseboard_heating_single_speed, #add_sys4_single_zone_make_up_air_unit_with_baseboard_heating, #add_sys6_multi_zone_built_up_system_with_baseboard_heating, #add_sys6_multi_zone_reference_hp_with_baseboard_heating, #add_system_3_and_8_airloop, #add_system_3_and_8_airloop_multi_speed, #add_zone_baseboards, #adjust_wildcard_spacetype_schedule, #air_loop_hvac_apply_economizer_integration, #air_loop_hvac_apply_energy_recovery_ventilator, #air_loop_hvac_apply_multizone_vav_outdoor_air_sizing, #air_loop_hvac_apply_single_zone_controls, #air_loop_hvac_apply_vav_damper_action, #air_loop_hvac_demand_control_ventilation_required?, #air_loop_hvac_economizer_required?, #air_loop_hvac_enable_unoccupied_fan_shutoff, #air_loop_hvac_energy_recovery_ventilator_required?, #air_loop_hvac_motorized_oa_damper_limits, #air_loop_hvac_static_pressure_reset_required?, #air_terminal_single_duct_vav_reheat_set_heating_cap, #apply_auto_zoning, #apply_building_default_constructionset, #apply_default_constructionsets_to_spacetypes, #apply_economizers, #apply_envelope, #apply_fdwr_srr_daylighting, #apply_kiva_foundation, #apply_limit_fdwr, #apply_loads, #apply_loop_pump_power, #apply_max_fdwr_nrcan, #apply_max_srr_nrcan, #apply_standard_construction_properties, #apply_standard_efficiencies, #apply_standard_lights, #apply_standard_skylight_to_roof_ratio, #apply_standard_window_to_wall_ratio, #apply_systems, #apply_systems_and_efficiencies, #apply_thermal_bridging, #apply_weather_data, #are_space_loads_similar?, #are_zone_loads_similar?, #assign_base_sys_name, #assign_contruction_to_adiabatic_surfaces, #auto_size_shw_capacity, #auto_size_shw_pump_head, #auto_system_all_other_spaces, #auto_system_dwelling_units, #auto_system_storage_spaces, #auto_system_wet_spaces, #auto_system_wild_spaces, #auto_zone_all_other_spaces, #auto_zone_dwelling_units, #auto_zone_wet_spaces, #auto_zone_wild_spaces, #boiler_hot_water_apply_efficiency_and_curves, #boiler_hot_water_find_search_criteria, #check_boolean_value, #check_datapoint_weather_folder, #chiller_electric_eir_apply_efficiency_and_curves, #clean_and_scale_model, #coil_cooling_dx_multi_speed_apply_efficiency_and_curves, #coil_dx_heating_type, #coil_heating_dx_single_speed_find_capacity, #coil_heating_gas_apply_efficiency_and_curves, #coil_heating_gas_find_capacity, #coil_heating_gas_find_search_criteria, #coil_heating_gas_multi_stage_apply_efficiency_and_curves, #coil_heating_gas_standard_minimum_thermal_efficiency, #common_air_loop, #convert_arg_to_bool, #convert_arg_to_f, #convert_arg_to_string, #corrupt_standards_database, #create_base_data, #create_ems_to_turn_on_AirLoopHVACUnitaryHeatPumpAirToAirMultiSpeed_for_night_cycle, #create_heating_cooling_on_off_availability_schedule, #create_hw_loop_if_required, #create_necb_system, #determine_control_zone, #determine_dominant_necb_schedule_type, #determine_dominant_schedule, #determine_necb_schedule_type, #determine_spacetype_vintage, #distance, #download_and_save_file, #extract_weather_data, #fan_baseline_impeller_efficiency, #fan_constant_volume_apply_prototype_fan_pressure_rise, #fan_standard_minimum_motor_efficiency_and_size, #fan_variable_volume_apply_prototype_fan_pressure_rise, #fan_variable_volume_part_load_fan_power_limitation?, #find_mech_room, #friction_factor, #get_all_spacetype_names, #get_any_number_ppm, #get_climate_zone_index, #get_climate_zone_name, #get_max_space_height_for_space_type, #get_necb_hdd18, #get_necb_spacetype_system_selection, #get_necb_thermal_zone_system_selection, #get_parameters_sidelighting, #get_parameters_skylight, #get_qaqc_table, #get_sql_table_to_json, #get_sql_tables_to_json, #get_standard_constant_value, #get_standards_constant, #get_standards_formula, #get_standards_table, #get_surface_exp_per, #get_weather_file_from_repo, #group_similar_zones_together, #heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness, #init_qaqc, #is_a_necb_dwelling_unit?, #is_an_necb_storage_space?, #is_an_necb_wet_space?, #is_an_necb_wildcard_space?, #load_building_type_from_library, #load_qaqc_database_new, #look_up_csv_data, #max_fwdr, #merge_recursively, #model_add_construction_set_from_osm, #model_add_constructions, #model_add_daylighting_controls, #model_add_hvac, #model_add_loads, #model_add_schedule, #model_add_swh, #model_apply_sizing_parameters, #model_apply_standard, #model_create_prototype_model, #model_create_thermal_zones, #model_enable_demand_controlled_ventilation, #model_find_climate_zone_set, #necb_design_supply_temp_compliance, #necb_economizer_compliance, #necb_envelope_compliance, #necb_exterior_fenestration_compliance, #necb_exterior_ground_surfaces_compliance, #necb_exterior_opaque_compliance, #necb_hrv_compliance, #necb_hrv_compliance_for_single_airloop, #necb_hrv_compliance_inc_murb, #necb_infiltration_compliance, #necb_plantloop_sanity, #necb_qaqc, #necb_section_test, #necb_space_compliance, #necb_vav_fan_power_compliance, #necb_zone_sizing_compliance, #new_add_sys6_multi_zone_built_up_system_with_baseboard_heating, #percentage_difference, #pump_standard_minimum_motor_efficiency_and_size, #pump_variable_speed_control_type, #qaqc_only, #replace_massless_material_with_std_material, #sanity_check, #scale_model_geometry, #set_boiler_cap_ratios, #set_lighting_per_area, #set_lighting_per_area_led_lighting, #set_necb_external_subsurface_conductance, #set_necb_external_surface_conductance, #set_occ_sensor_spacetypes, #set_output_meters, #set_output_variables, #set_random_rendering_color, #set_wildcard_schedules_to_dominant_building_schedule, #set_zones_thermostat_schedule_based_on_space_type_schedules, #setup_chw_loop_with_components, #setup_cw_loop_with_components, #setup_hw_loop_with_components, #space_apply_infiltration_rate, #space_surface_report, #space_type_apply_internal_loads, #store_space_sizing_loads, #stored_space_cooling_load, #stored_space_heating_load, #stored_zone_cooling_load, #stored_zone_heating_load, #surfaces_are_in_contact?, #thermal_zone_demand_control_ventilation_required?, #thermal_zone_get_centroid_per_floor, #three_vertices_same_line_and_dir?, #update_sys_name, #validate_and_upate_space_types, #validate_primary_heating_fuel, #water_heater_mixed_apply_efficiency, #zone_hvac_component_occupancy_ventilation_control
Methods inherited from Standard
#adjust_sizing_system, #afue_to_thermal_eff, #air_loop_hvac_add_motorized_oa_damper, #air_loop_hvac_adjust_minimum_vav_damper_positions, #air_loop_hvac_adjust_minimum_vav_damper_positions_outpatient, #air_loop_hvac_allowable_system_brake_horsepower, #air_loop_hvac_apply_baseline_fan_pressure_rise, #air_loop_hvac_apply_economizer_integration, #air_loop_hvac_apply_economizer_limits, #air_loop_hvac_apply_energy_recovery_ventilator, #air_loop_hvac_apply_energy_recovery_ventilator_efficiency, #air_loop_hvac_apply_maximum_reheat_temperature, #air_loop_hvac_apply_minimum_vav_damper_positions, #air_loop_hvac_apply_multizone_vav_outdoor_air_sizing, #air_loop_hvac_apply_prm_baseline_controls, #air_loop_hvac_apply_prm_baseline_economizer, #air_loop_hvac_apply_prm_baseline_fan_power, #air_loop_hvac_apply_prm_sizing_temperatures, #air_loop_hvac_apply_single_zone_controls, #air_loop_hvac_apply_standard_controls, #air_loop_hvac_apply_vav_damper_action, #air_loop_hvac_data_center_area_served, #air_loop_hvac_dcv_required_when_erv, #air_loop_hvac_demand_control_ventilation_limits, #air_loop_hvac_demand_control_ventilation_required?, #air_loop_hvac_disable_multizone_vav_optimization, #air_loop_hvac_dx_cooling?, #air_loop_hvac_economizer?, #air_loop_hvac_economizer_limits, #air_loop_hvac_economizer_required?, #air_loop_hvac_economizer_type_allowable?, #air_loop_hvac_enable_demand_control_ventilation, #air_loop_hvac_enable_multizone_vav_optimization, #air_loop_hvac_enable_optimum_start, #air_loop_hvac_enable_supply_air_temperature_reset_delta, #air_loop_hvac_enable_supply_air_temperature_reset_outdoor_temperature, #air_loop_hvac_enable_supply_air_temperature_reset_warmest_zone, #air_loop_hvac_enable_unoccupied_fan_shutoff, #air_loop_hvac_energy_recovery?, #air_loop_hvac_energy_recovery_ventilator_flow_limit, #air_loop_hvac_energy_recovery_ventilator_heat_exchanger_type, #air_loop_hvac_energy_recovery_ventilator_required?, #air_loop_hvac_energy_recovery_ventilator_type, #air_loop_hvac_fan_power_limitation_pressure_drop_adjustment_brake_horsepower, #air_loop_hvac_find_design_supply_air_flow_rate, #air_loop_hvac_floor_area_served, #air_loop_hvac_floor_area_served_exterior_zones, #air_loop_hvac_floor_area_served_interior_zones, #air_loop_hvac_get_occupancy_schedule, #air_loop_hvac_get_relief_fan_power, #air_loop_hvac_get_return_fan_power, #air_loop_hvac_get_supply_fan, #air_loop_hvac_get_supply_fan_power, #air_loop_hvac_has_parallel_piu_air_terminals?, #air_loop_hvac_has_simple_transfer_air?, #air_loop_hvac_humidifier_count, #air_loop_hvac_include_cooling_coil?, #air_loop_hvac_include_economizer?, #air_loop_hvac_include_evaporative_cooler?, #air_loop_hvac_include_hydronic_cooling_coil?, #air_loop_hvac_include_unitary_system?, #air_loop_hvac_include_wshp?, #air_loop_hvac_integrated_economizer_required?, #air_loop_hvac_minimum_zone_ventilation_efficiency, #air_loop_hvac_motorized_oa_damper_limits, #air_loop_hvac_motorized_oa_damper_required?, #air_loop_hvac_multi_stage_dx_cooling?, #air_loop_hvac_multizone_vav_optimization_required?, #air_loop_hvac_multizone_vav_system?, #air_loop_hvac_optimum_start_required?, #air_loop_hvac_prm_baseline_economizer_required?, #air_loop_hvac_prm_economizer_type_and_limits, #air_loop_hvac_remove_erv, #air_loop_hvac_remove_motorized_oa_damper, #air_loop_hvac_residential_area_served, #air_loop_hvac_return_air_plenum, #air_loop_hvac_set_minimum_damper_position, #air_loop_hvac_set_vsd_curve_type, #air_loop_hvac_single_zone_controls_num_stages, #air_loop_hvac_standby_mode_occupancy_control, #air_loop_hvac_static_pressure_reset_required?, #air_loop_hvac_supply_air_temperature_reset_required?, #air_loop_hvac_supply_return_exhaust_relief_fans, #air_loop_hvac_system_fan_brake_horsepower, #air_loop_hvac_system_multiplier, #air_loop_hvac_terminal_reheat?, #air_loop_hvac_total_cooling_capacity, #air_loop_hvac_unitary_system?, #air_loop_hvac_unoccupied_fan_shutoff_required?, #air_loop_hvac_unoccupied_threshold, #air_loop_hvac_vav_damper_action, #air_loop_hvac_vav_system?, #air_terminal_single_duct_parallel_piu_reheat_apply_minimum_primary_airflow_fraction, #air_terminal_single_duct_parallel_piu_reheat_apply_prm_baseline_fan_power, #air_terminal_single_duct_parallel_piu_reheat_fan_on_flow_fraction, #air_terminal_single_duct_parallel_reheat_piu_minimum_primary_airflow_fraction, #air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position, #air_terminal_single_duct_vav_reheat_apply_minimum_damper_position, #air_terminal_single_duct_vav_reheat_minimum_damper_position, #air_terminal_single_duct_vav_reheat_reheat_type, #air_terminal_single_duct_vav_reheat_set_heating_cap, #apply_lighting_schedule, #apply_limit_to_subsurface_ratio, #boiler_get_eff_fplr, #boiler_hot_water_apply_efficiency_and_curves, #boiler_hot_water_find_capacity, #boiler_hot_water_find_design_water_flow_rate, #boiler_hot_water_find_search_criteria, #boiler_hot_water_standard_minimum_thermal_efficiency, build, #chiller_electric_eir_apply_efficiency_and_curves, #chiller_electric_eir_find_search_criteria, #chiller_electric_eir_get_cap_f_t_curve_name, #chiller_electric_eir_get_eir_f_plr_curve_name, #chiller_electric_eir_get_eir_f_t_curve_name, #chiller_electric_eir_standard_minimum_full_load_efficiency, #chw_sizing_control, #coil_cooling_dx_multi_speed_apply_efficiency_and_curves, #coil_cooling_dx_multi_speed_find_capacity, #coil_cooling_dx_multi_speed_standard_minimum_cop, #coil_cooling_dx_single_speed_apply_efficiency_and_curves, #coil_cooling_dx_single_speed_find_capacity, #coil_cooling_dx_single_speed_standard_minimum_cop, #coil_cooling_dx_two_speed_apply_efficiency_and_curves, #coil_cooling_dx_two_speed_find_capacity, #coil_cooling_dx_two_speed_standard_minimum_cop, #coil_cooling_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_cooling_water_to_air_heat_pump_find_capacity, #coil_cooling_water_to_air_heat_pump_standard_minimum_cop, #coil_heating_dx_multi_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_apply_defrost_eir_curve_limits, #coil_heating_dx_single_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_find_capacity, #coil_heating_dx_single_speed_standard_minimum_cop, #coil_heating_gas_additional_search_criteria, #coil_heating_gas_apply_efficiency_and_curves, #coil_heating_gas_apply_prototype_efficiency, #coil_heating_gas_find_capacity, #coil_heating_gas_multi_stage_apply_efficiency_and_curves, #coil_heating_gas_multi_stage_find_capacity, #coil_heating_gas_multi_stage_find_search_criteria, #coil_heating_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_heating_water_to_air_heat_pump_find_capacity, #coil_heating_water_to_air_heat_pump_standard_minimum_cop, #combustion_eff_to_thermal_eff, #controller_water_coil_set_convergence_limits, #convert_curve_biquadratic, #cooling_tower_single_speed_apply_efficiency_and_curves, #cooling_tower_two_speed_apply_efficiency_and_curves, #cooling_tower_variable_speed_apply_efficiency_and_curves, #cop_heating_to_cop_heating_no_fan, #cop_no_fan_to_eer, #cop_no_fan_to_seer, #cop_to_eer, #cop_to_kw_per_ton, #cop_to_seer, #create_air_conditioner_variable_refrigerant_flow, #create_boiler_hot_water, #create_central_air_source_heat_pump, #create_coil_cooling_dx_single_speed, #create_coil_cooling_dx_two_speed, #create_coil_cooling_water, #create_coil_cooling_water_to_air_heat_pump_equation_fit, #create_coil_heating_dx_single_speed, #create_coil_heating_electric, #create_coil_heating_gas, #create_coil_heating_water, #create_coil_heating_water_to_air_heat_pump_equation_fit, #create_curve_bicubic, #create_curve_biquadratic, #create_curve_cubic, #create_curve_exponent, #create_curve_quadratic, #create_fan_constant_volume, #create_fan_constant_volume_from_json, #create_fan_on_off, #create_fan_on_off_from_json, #create_fan_variable_volume, #create_fan_variable_volume_from_json, #create_fan_zone_exhaust, #create_fan_zone_exhaust_from_json, #define_space_multiplier, #eer_to_cop, #eer_to_cop_no_fan, #ems_friendly_name, #enthalpy_recovery_ratio_design_to_typical_adjustment, #fan_constant_volume_airloop_fan_pressure_rise, #fan_constant_volume_apply_prototype_fan_pressure_rise, #fan_on_off_airloop_or_unitary_fan_pressure_rise, #fan_on_off_apply_prototype_fan_pressure_rise, #fan_variable_volume_airloop_fan_pressure_rise, #fan_variable_volume_apply_prototype_fan_pressure_rise, #fan_variable_volume_cooling_system_type, #fan_variable_volume_part_load_fan_power_limitation?, #fan_variable_volume_part_load_fan_power_limitation_capacity_limit, #fan_variable_volume_part_load_fan_power_limitation_hp_limit, #fan_variable_volume_set_control_type, #fan_zone_exhaust_apply_prototype_fan_pressure_rise, #find_exposed_conditioned_roof_surfaces, #find_exposed_conditioned_vertical_surfaces, #find_highest_roof_centre, #fluid_cooler_apply_minimum_power_per_flow, #get_avg_of_other_zones, #get_default_surface_cons_from_surface_type, #get_fan_object_for_airloop, #get_fan_schedule_for_each_zone, #get_group_heat_types, #get_outdoor_subsurface_ratio, #get_weekday_values_from_8760, #get_wtd_avg_of_other_zones, #headered_pumps_variable_speed_set_control_type, #heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency_enthalpy_recovery_ratio, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_nominal_electric_power, #heat_exchanger_air_to_air_sensible_and_latent_enthalpy_recovery_ratio_to_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_minimum_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_prototype_default_fan_efficiency, #hspf_to_cop, #hspf_to_cop_no_fan, #interior_lighting_get_prm_data, #kw_per_ton_to_cop, #load_hvac_map, #load_initial_osm, #load_standards_database, #make_ruleset_sched_from_8760, #make_week_ruleset_sched_from_168, #model_add_baseboard, #model_add_cav, #model_add_central_air_source_heat_pump, #model_add_chw_loop, #model_add_construction, #model_add_construction_set, #model_add_crac, #model_add_crah, #model_add_curve, #model_add_cw_loop, #model_add_data_center_hvac, #model_add_data_center_load, #model_add_daylighting_controls, #model_add_district_ambient_loop, #model_add_doas, #model_add_doas_cold_supply, #model_add_elevator, #model_add_elevators, #model_add_evap_cooler, #model_add_exhaust_fan, #model_add_four_pipe_fan_coil, #model_add_furnace_central_ac, #model_add_ground_hx_loop, #model_add_high_temp_radiant, #model_add_hp_loop, #model_add_hvac, #model_add_hvac_system, #model_add_hw_loop, #model_add_ideal_air_loads, #model_add_low_temp_radiant, #model_add_material, #model_add_minisplit_hp, #model_add_plant_supply_water_temperature_control, #model_add_prm_baseline_system, #model_add_prm_elevators, #model_add_psz_ac, #model_add_psz_vav, #model_add_ptac, #model_add_pthp, #model_add_pvav, #model_add_pvav_pfp_boxes, #model_add_radiant_basic_controls, #model_add_radiant_proportional_controls, #model_add_refrigeration_case, #model_add_refrigeration_compressor, #model_add_refrigeration_system, #model_add_refrigeration_walkin, #model_add_residential_erv, #model_add_residential_ventilator, #model_add_schedule, #model_add_split_ac, #model_add_swh, #model_add_swh_end_uses_by_space, #model_add_transformer, #model_add_typical_exterior_lights, #model_add_typical_refrigeration, #model_add_typical_swh, #model_add_unitheater, #model_add_vav_pfp_boxes, #model_add_vav_reheat, #model_add_vrf, #model_add_water_source_hp, #model_add_waterside_economizer, #model_add_window_ac, #model_add_zone_erv, #model_add_zone_heat_cool_request_count_program, #model_add_zone_ventilation, #model_apply_baseline_exterior_lighting, #model_apply_hvac_efficiency_standard, #model_apply_infiltration_standard, #model_apply_multizone_vav_outdoor_air_sizing, #model_apply_prm_baseline_sizing_schedule, #model_apply_prm_baseline_skylight_to_roof_ratio, #model_apply_prm_baseline_window_to_wall_ratio, #model_apply_prm_construction_types, #model_apply_prm_sizing_parameters, #model_apply_standard_constructions, #model_apply_standard_infiltration, #model_baseline_system_vav_fan_type, #model_create_exterior_lighting_area_length_count_hash, #model_create_multizone_fan_schedule, #model_create_prm_any_baseline_building, #model_create_prm_baseline_building, #model_create_prm_baseline_building_requires_proposed_model_sizing_run, #model_create_prm_baseline_building_requires_vlt_sizing_run, #model_create_prm_proposed_building, #model_create_prm_stable_baseline_building, #model_create_space_type_hash, #model_create_story_hash, #model_cw_loop_cooling_tower_fan_type, #model_differentiate_primary_secondary_thermal_zones, #model_effective_num_stories, #model_elevator_fan_pwr, #model_elevator_lift_power, #model_elevator_lighting_pct_incandescent, #model_eliminate_outlier_zones, #model_find_and_add_construction, #model_find_ashrae_hot_water_demand, #model_find_climate_zone_set, #model_find_icc_iecc_2015_hot_water_demand, #model_find_icc_iecc_2015_internal_loads, #model_find_object, #model_find_objects, #model_find_prototype_floor_area, #model_find_target_eui, #model_find_target_eui_by_end_use, #model_find_water_heater_capacity_volume_and_parasitic, #model_get_baseline_system_type_by_zone, #model_get_building_properties, #model_get_climate_zone_set_from_list, #model_get_construction_properties, #model_get_construction_set, #model_get_district_heating_zones, #model_get_lookup_name, #model_get_or_add_ambient_water_loop, #model_get_or_add_chilled_water_loop, #model_get_or_add_ground_hx_loop, #model_get_or_add_heat_pump_loop, #model_get_or_add_hot_water_loop, #model_is_hvac_autosized, #model_legacy_results_by_end_use_and_fuel_type, #model_make_name, #model_prm_baseline_system_change_fuel_type, #model_prm_baseline_system_groups, #model_prm_baseline_system_number, #model_prm_baseline_system_type, #model_prm_skylight_to_roof_ratio_limit, #model_process_results_for_datapoint, #model_remap_office, #model_remove_external_shading_devices, #model_remove_prm_ems_objects, #model_remove_prm_hvac, #model_remove_unused_resource_objects, #model_set_vav_terminals_to_control_for_outdoor_air, #model_system_outdoor_air_sizing_vrp_method, #model_two_pipe_loop, #model_typical_display_case_zone, #model_typical_hvac_system_type, #model_typical_walkin_zone, #model_validate_standards_spacetypes_in_model, #model_ventilation_method, #model_walkin_freezer_latent_case_credit_curve, #model_zones_with_occ_and_fuel_type, #planar_surface_apply_standard_construction, #plant_loop_adiabatic_pipes_only, #plant_loop_apply_prm_baseline_chilled_water_pumping_type, #plant_loop_apply_prm_baseline_chilled_water_temperatures, #plant_loop_apply_prm_baseline_condenser_water_pumping_type, #plant_loop_apply_prm_baseline_condenser_water_temperatures, #plant_loop_apply_prm_baseline_hot_water_pumping_type, #plant_loop_apply_prm_baseline_hot_water_temperatures, #plant_loop_apply_prm_baseline_pump_power, #plant_loop_apply_prm_baseline_pumping_type, #plant_loop_apply_prm_baseline_temperatures, #plant_loop_apply_prm_number_of_boilers, #plant_loop_apply_prm_number_of_chillers, #plant_loop_apply_prm_number_of_cooling_towers, #plant_loop_apply_standard_controls, #plant_loop_capacity_w_by_maxflow_and_delta_t_forwater, #plant_loop_enable_supply_water_temperature_reset, #plant_loop_find_maximum_loop_flow_rate, #plant_loop_prm_baseline_condenser_water_temperatures, #plant_loop_set_chw_pri_sec_configuration, #plant_loop_supply_water_temperature_reset_required?, #plant_loop_swh_loop?, #plant_loop_swh_system_type, #plant_loop_total_cooling_capacity, #plant_loop_total_floor_area_served, #plant_loop_total_heating_capacity, #plant_loop_total_rated_w_per_gpm, #plant_loop_variable_flow_system?, #prototype_apply_condenser_water_temperatures, #prototype_condenser_water_temperatures, #pump_variable_speed_control_type, #pump_variable_speed_get_control_type, #pump_variable_speed_set_control_type, register_standard, #remove_all_hvac, #remove_all_plant_loops, #remove_all_zone_equipment, #remove_hvac, #remove_plant_loops, #remove_unused_curves, #remove_vrf, #remove_zone_equipment, #rename_air_loop_nodes, #rename_plant_loop_nodes, #safe_load_model, #seer_to_cop, #seer_to_cop_no_fan, #set_maximum_fraction_outdoor_air_schedule, #space_add_daylighting_controls, #space_apply_infiltration_rate, #space_conditioning_category, #space_daylighted_area_window_width, #space_daylighted_areas, #space_daylighting_control_required?, #space_daylighting_fractions_and_windows, #space_get_equip_annual_array, #space_get_loads_for_all_equips, #space_infiltration_rate_75_pa, #space_internal_load_annual_array, #space_occupancy_annual_array, #space_remove_daylighting_controls, #space_set_baseline_daylighting_controls, #space_sidelighting_effective_aperture, #space_skylight_effective_aperture, #space_type_apply_int_loads_prm, #space_type_apply_internal_load_schedules, #space_type_apply_internal_loads, #space_type_apply_rendering_color, #space_type_get_construction_properties, #space_type_get_standards_data, #space_type_light_sch_change, #standard_design_sizing_temperatures, #standards_lookup_table_first, #standards_lookup_table_many, #strip_model, #sub_surface_create_centered_subsurface_from_scaled_surface, #sub_surface_create_scaled_subsurfaces_from_surface, #surface_adjust_fenestration_in_a_surface, #surface_subsurface_ua, #thermal_eff_to_afue, #thermal_eff_to_comb_eff, #thermal_zone_add_exhaust, #thermal_zone_add_exhaust_fan_dcv, #thermal_zone_apply_prm_baseline_supply_temperatures, #thermal_zone_conditioning_category, #thermal_zone_demand_control_ventilation_limits, #thermal_zone_demand_control_ventilation_required?, #thermal_zone_exhaust_fan_dcv_required?, #thermal_zone_fossil_or_electric_type, #thermal_zone_get_annual_operating_hours, #thermal_zone_get_zone_fuels_for_occ_and_fuel_type, #thermal_zone_infer_system_type, #thermal_zone_occupancy_eflh, #thermal_zone_occupancy_type, #thermal_zone_peak_internal_load, #thermal_zone_prm_baseline_cooling_design_supply_temperature, #thermal_zone_prm_baseline_heating_design_supply_temperature, #thermal_zone_prm_lab_delta_t, #thermal_zone_prm_unitheater_design_supply_temperature, #true?, #validate_initial_model, #water_heater_convert_energy_factor_to_thermal_efficiency_and_ua, #water_heater_convert_uniform_energy_factor_to_energy_factor, #water_heater_determine_sub_type, #water_heater_mixed_additional_search_criteria, #water_heater_mixed_apply_efficiency, #water_heater_mixed_apply_prm_baseline_fuel_type, #water_heater_mixed_find_capacity, #water_heater_mixed_get_efficiency_requirement, #zone_hvac_component_apply_prm_baseline_fan_power, #zone_hvac_component_apply_standard_controls, #zone_hvac_component_apply_vestibule_heating_control, #zone_hvac_component_occupancy_ventilation_control, #zone_hvac_component_prm_baseline_fan_efficacy, #zone_hvac_component_vestibule_heating_control_required?, #zone_hvac_get_fan_object, #zone_hvac_model_standby_mode_occupancy_control, #zone_hvac_unoccupied_threshold
Methods included from PrototypeFan
apply_base_fan_variables, #create_fan_by_name, #get_fan_from_standards, #lookup_fan_curve_coefficients_from_json, #prototype_fan_apply_prototype_fan_efficiency
Methods included from CoilDX
#coil_dx_find_search_criteria, #coil_dx_heat_pump?, #coil_dx_heating_type, #coil_dx_subcategory
Methods included from CoolingTower
#cooling_tower_apply_minimum_power_per_flow, #cooling_tower_apply_minimum_power_per_flow_gpm_limit
Methods included from Pump
#pump_apply_prm_pressure_rise_and_motor_efficiency, #pump_apply_standard_minimum_motor_efficiency, #pump_brake_horsepower, #pump_motor_horsepower, #pump_pumppower, #pump_rated_w_per_gpm, #pump_standard_minimum_motor_efficiency_and_size
Methods included from Fan
#fan_adjust_pressure_rise_to_meet_fan_power, #fan_apply_standard_minimum_motor_efficiency, #fan_baseline_impeller_efficiency, #fan_brake_horsepower, #fan_change_impeller_efficiency, #fan_change_motor_efficiency, #fan_design_air_flow, #fan_fanpower, #fan_motor_horsepower, #fan_rated_w_per_cfm, #fan_small_fan?, #fan_standard_minimum_motor_efficiency_and_size
Constructor Details
#initialize ⇒ ECMS
Returns a new instance of ECMS.
36 37 38 39 40 |
# File 'lib/openstudio-standards/standards/necb/ECMS/ecms.rb', line 36 def initialize super() @standards_data = load_standards_database_new @standards_data['curves'] = standards_data['tables']['curves']['table'] end |
Instance Method Details
#add_air_system(model:, zones:, sys_abbr:, sys_vent_type:, sys_heat_rec_type:, sys_htg_eqpt_type:, sys_supp_htg_eqpt_type:, sys_clg_eqpt_type:, sys_supp_fan_type:, sys_ret_fan_type:, sys_setpoint_mgr_type:) ⇒ Object
add air system with all its components
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 775 def add_air_system(model:, zones:, sys_abbr:, sys_vent_type:, sys_heat_rec_type:, sys_htg_eqpt_type:, sys_supp_htg_eqpt_type:, sys_clg_eqpt_type:, sys_supp_fan_type:, sys_ret_fan_type:, sys_setpoint_mgr_type:) # create all the needed components and the air loop airloop = create_airloop(model, sys_vent_type) setpoint_mgr = create_air_sys_spm(model, sys_setpoint_mgr_type, zones) supply_fan = create_air_sys_fan(model, sys_supp_fan_type) supply_fan.setName('Supply Fan') if supply_fan return_fan = create_air_sys_fan(model, sys_ret_fan_type) return_fan.setName('Return Fan') if return_fan htg_eqpt = create_air_sys_htg_eqpt(model, sys_htg_eqpt_type) supp_htg_eqpt = create_air_sys_htg_eqpt(model, sys_supp_htg_eqpt_type) clg_eqpt = create_air_sys_clg_eqpt(model, sys_clg_eqpt_type) # add components to the air loop clg_eqpt.addToNode(airloop.supplyOutletNode) if clg_eqpt htg_eqpt.addToNode(airloop.supplyOutletNode) if htg_eqpt supp_htg_eqpt.addToNode(airloop.supplyOutletNode) if supp_htg_eqpt supply_fan.addToNode(airloop.supplyOutletNode) if supply_fan setpoint_mgr.addToNode(airloop.supplyOutletNode) if setpoint_mgr # OA controller oa_controller = OpenStudio::Model::ControllerOutdoorAir.new(model) oa_controller.autosizeMinimumOutdoorAirFlowRate oa_system = OpenStudio::Model::AirLoopHVACOutdoorAirSystem.new(model, oa_controller) oa_system.addToNode(airloop.supplyInletNode) # Set airloop name sys_name_pars = {} sys_name_pars['sys_hr'] = 'none' sys_name_pars['sys_clg'] = sys_clg_eqpt_type sys_name_pars['sys_htg'] = sys_htg_eqpt_type sys_name_pars['sys_sf'] = 'cv' if sys_supp_fan_type == 'constant_volume' sys_name_pars['sys_sf'] = 'vv' if sys_supp_fan_type == 'variable_volume' sys_name_pars['zone_htg'] = 'none' sys_name_pars['zone_clg'] = 'none' sys_name_pars['sys_rf'] = 'none' sys_name_pars['sys_rf'] = 'cv' if sys_ret_fan_type == 'constant_volume' sys_name_pars['sys_rf'] = 'vv' if sys_ret_fan_type == 'variable_volume' assign_base_sys_name(airloop, sys_abbr: sys_abbr, sys_oa: sys_vent_type, sys_name_pars: sys_name_pars) return airloop, clg_eqpt, htg_eqpt, return_fan end |
#add_airloop_economizer(model:, airloop_economizer_type:) ⇒ Object
Add air side economizer for each airloop
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3657 def add_airloop_economizer(model:, airloop_economizer_type:) return if airloop_economizer_type.nil? || (airloop_economizer_type.to_s == 'NECB_Default') if airloop_economizer_type.downcase == "differentialenthalpy" economizer_type = 'DifferentialEnthalpy' elsif airloop_economizer_type.downcase == "differentialdrybulb" economizer_type = 'DifferentialDryBulb' else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.airLoopHVACOutdoorAirSystem', "The air loop economizer type #{airloop_economizer_type} is not recognized. Please make sure that the economizer being applied by the ECM is either a DifferentialEnthalpy or DifferentialDryBulb type. No economizer will be applied.") return end model.getAirLoopHVACs.sort.each do |air_loop| oa_sys = air_loop.airLoopHVACOutdoorAirSystem if oa_sys.is_initialized oa_sys = oa_sys.get oa_control = oa_sys.getControllerOutdoorAir oa_control.setEconomizerControlType(economizer_type) end end end |
#add_ecm_hs08_ccashp_vrf(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:, air_sys_eqpt_type: 'ccashp') ⇒ Object
Add equipment for ECM ‘hs08_ccashp_vrf’:
-Constant-volume DOAS with air-source heat pump for heating and cooling and electric backup
-Zonal terminal VRF units connected to an outdoor VRF condenser unit
-Zonal electric or hot-water backup
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 502 def add_ecm_hs08_ccashp_vrf( model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:, air_sys_eqpt_type: 'ccashp') # Get the heating fuel type from the system fuels object defined by the standards object heating_fuel = standard.fuel_type_set.ecm_fueltype # Create one hot-water loop for hot-water baseboards if required hw_loop = nil hw_loop = add_hotwater_loop(model: model, fuel_type_set: standard.fuel_type_set) if standard.fuel_type_set.baseboard_type == 'Hot Water' # Update system zones map if needed system_zones_map = update_system_zones_map_keys(system_zones_map,'sys_1') system_zones_map = update_system_zones_map(model,system_zones_map,ecm_system_zones_map_option,'sys_1') if ecm_system_zones_map_option != 'NECB_Default' # Add outdoor VRF unit outdoor_vrf_unit = add_outdoor_vrf_unit(model: model, ecm_name: 'hs08_ccashp_vrf') eqpt_name = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit' airconditioner_variablerefrigerantflow_cooling_apply_curves(outdoor_vrf_unit,eqpt_name) airconditioner_variablerefrigerantflow_heating_apply_curves(outdoor_vrf_unit,eqpt_name) # Update system doas flags system_doas_flags = {} system_zones_map.keys.each { |sname| system_doas_flags[sname] = true } # use system zones map and generate new air system and zonal equipment system_zones_map.sort.each do |sys_name, zones| sys_info = air_sys_comps_assumptions(sys_name: sys_name, zones: zones, system_doas_flags: system_doas_flags) sys_supp_htg_eqpt_type = 'coil_electric' sys_supp_htg_eqpt_type = 'coil_gas' if heating_fuel == 'NaturalGas' airloop,clg_dx_coil,htg_dx_coil,return_fan = add_air_system(model: model, zones: zones, sys_abbr: sys_info['sys_abbr'], sys_vent_type: sys_info['sys_vent_type'], sys_heat_rec_type: sys_info['sys_heat_rec_type'], sys_htg_eqpt_type: air_sys_eqpt_type, sys_supp_htg_eqpt_type: sys_supp_htg_eqpt_type, sys_clg_eqpt_type: air_sys_eqpt_type, sys_supp_fan_type: sys_info['sys_supp_fan_type'], sys_ret_fan_type: sys_info['sys_ret_fan_type'], sys_setpoint_mgr_type: sys_info['sys_setpoint_mgr_type']) # Appy performance curves if air_sys_eqpt_type == 'ccashp' eqpt_name = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit RTU' coil_cooling_dx_variable_speed_apply_curves(clg_dx_coil, eqpt_name) coil_heating_dx_variable_speed_apply_curves(htg_dx_coil, eqpt_name) elsif air_sys_eqpt_type == 'ashp' eqpt_name = 'NECB2015_ASHP' coil_cooling_dx_single_speed_apply_curves(clg_dx_coil, eqpt_name) coil_heating_dx_single_speed_apply_curves(htg_dx_coil, eqpt_name) else raise("add_ecm_hs08_ccashp_vrf: The air system equipment type is neither an ashp nor a ccashp") end # add zone equipment and diffuser # add terminal VRF units add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: outdoor_vrf_unit, zone_diffuser_type: sys_info['zone_diffuser_type'], zone_htg_eqpt_type: 'vrf', zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: 'vrf', zone_fan_type: 'On_Off', hw_loop: hw_loop) # add electric or hot-water baseboards for backup; Type of baseboard follows the primary heating fuel used in the building model. zone_htg_eqpt_type = 'baseboard_hotwater' if standard.fuel_type_set.baseboard_type == 'Hot Water' zone_htg_eqpt_type = 'baseboard_electric' if standard.fuel_type_set.baseboard_type == 'Electric' add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: nil, zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: 'none', zone_fan_type: 'none', hw_loop: hw_loop) # Now we can find and apply maximum horizontal and vertical distances between outdoor vrf unit and zones with vrf terminal units max_hor_pipe_length, max_vert_pipe_length = get_max_vrf_pipe_lengths(model) outdoor_vrf_unit.setEquivalentPipingLengthusedforPipingCorrectionFactorinCoolingMode(max_hor_pipe_length) outdoor_vrf_unit.setEquivalentPipingLengthusedforPipingCorrectionFactorinHeatingMode(max_hor_pipe_length) outdoor_vrf_unit.setVerticalHeightusedforPipingCorrectionFactor(max_vert_pipe_length) end end |
#add_ecm_hs09_ccashp_baseboard(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs09_ccashp_baseboard”:
-Constant-volume reheat system for single zone systems
-VAV system with reheat for non DOAS multi-zone systems
-Cold-climate air-source heat pump for heating and cooling with electric backup
-Electric or hot-water baseboards
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1218 def add_ecm_hs09_ccashp_baseboard(model:, system_zones_map:, # hash of ailoop names as keys and array of zones as values system_doas_flags:, # hash of system names as keys and flag for DOAS as values ecm_system_zones_map_option:, standard:) # Get the heating fuel type from the system fuels object defined by the standards object heating_fuel = standard.fuel_type_set.ecm_fueltype # Create one hot-water loop for hot-water baseboards if required hw_loop = nil hw_loop = add_hotwater_loop(model: model, fuel_type_set: standard.fuel_type_set) if standard.fuel_type_set.baseboard_type == 'Hot Water' # Set supplemental heating for air loop sys_supp_htg_eqpt_type = 'coil_electric' sys_supp_htg_eqpt_type = 'coil_gas' if heating_fuel == 'NaturalGas' systems = [] system_zones_map.sort.each do |sys_name, zones| sys_info = air_sys_comps_assumptions(sys_name: sys_name, zones: zones, system_doas_flags: system_doas_flags) # add airloop and its equipment airloop,clg_dx_coil,htg_dx_coil,return_fan = add_air_system( model: model, zones: zones, sys_abbr: sys_info['sys_abbr'], sys_vent_type: sys_info['sys_vent_type'], sys_heat_rec_type: sys_info['sys_heat_rec_type'], sys_htg_eqpt_type: 'ccashp', sys_supp_htg_eqpt_type: sys_supp_htg_eqpt_type, sys_clg_eqpt_type: 'ccashp', sys_supp_fan_type: sys_info['sys_supp_fan_type'], sys_ret_fan_type: sys_info['sys_ret_fan_type'], sys_setpoint_mgr_type: sys_info['sys_setpoint_mgr_type'] ) # Apply performance curves eqpt_name = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit RTU' coil_cooling_dx_variable_speed_apply_curves(clg_dx_coil, eqpt_name) coil_heating_dx_variable_speed_apply_curves(htg_dx_coil, eqpt_name) # add zone equipment and diffuser if sys_info['sys_vent_type'] == 'doas' zone_htg_eqpt_type = 'ptac_electric_off' zone_clg_eqpt_type = 'ptac_electric_off' zone_fan_type = 'on_off' else zone_htg_eqpt_type = 'baseboard_electric' if standard.fuel_type_set.baseboard_type == 'Electric' zone_htg_eqpt_type = 'baseboard_hotwater' if standard.fuel_type_set.baseboard_type == 'Hot Water' zone_clg_eqpt_type = 'none' zone_fan_type = 'none' end add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: sys_info['zone_diffuser_type'], zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: zone_clg_eqpt_type, zone_fan_type: zone_fan_type, hw_loop: hw_loop) # for doas use baseboard electric or hotwater as backup for PTAC units if sys_info['sys_vent_type'] == 'doas' zone_htg_eqpt_type = 'baseboard_electric' if standard.fuel_type_set.baseboard_type == 'Electric' zone_htg_eqpt_type = 'baseboard_hotwater' if standard.fuel_type_set.baseboard_type == 'Hot Water' add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: nil, zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: 'none', zone_fan_type: 'none', hw_loop: hw_loop) end return_fan.addToNode(airloop.returnAirNode.get) if return_fan systems << airloop end return systems end |
#add_ecm_hs11_ashp_pthp(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ECM “hs11_ashp_pthp”
-Constant volume DOAS with air-source heat pump for heating and cooling and electric backup
-Packaged-Terminal air-source heat pumps with electric backup
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1390 def add_ecm_hs11_ashp_pthp(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) hw_loop = nil # Get the heating fuel type from the system fuels object defined by the standards object heating_fuel = standard.fuel_type_set.ecm_fueltype # Set supplemental heaing for airloop sys_supp_htg_eqpt_type = 'coil_electric' sys_supp_htg_eqpt_type = 'coil_gas' if heating_fuel == 'NaturalGas' # Update system zones map if needed system_zones_map = update_system_zones_map_keys(system_zones_map,'sys_1') system_zones_map = update_system_zones_map(model,system_zones_map,ecm_system_zones_map_option,'sys_1') if ecm_system_zones_map_option != 'NECB_Default' # Update system doas flags system_doas_flags = {} system_zones_map.keys.each { |sname| system_doas_flags[sname] = true } # use system zones map and generate new air system and zonal equipment systems = [] system_zones_map.sort.each do |sys_name, zones| sys_info = air_sys_comps_assumptions(sys_name: sys_name, zones: zones, system_doas_flags: system_doas_flags) airloop,clg_dx_coil,htg_dx_coil,return_fan = add_air_system(model: model, zones: zones, sys_abbr: sys_info['sys_abbr'], sys_vent_type: sys_info['sys_vent_type'], sys_heat_rec_type: sys_info['sys_heat_rec_type'], sys_htg_eqpt_type: 'ashp', sys_supp_htg_eqpt_type: sys_supp_htg_eqpt_type, sys_clg_eqpt_type: 'ashp', sys_supp_fan_type: sys_info['sys_supp_fan_type'], sys_ret_fan_type: sys_info['sys_ret_fan_type'], sys_setpoint_mgr_type: sys_info['sys_setpoint_mgr_type']) eqpt_name = 'HS11_PTHP' coil_cooling_dx_single_speed_apply_curves(clg_dx_coil,eqpt_name) coil_heating_dx_single_speed_apply_curves(htg_dx_coil,eqpt_name) # add zone equipment and diffuser zone_htg_eqpt_type = 'pthp' zone_clg_eqpt_type = 'pthp' zone_supp_htg_eqpt_type = 'coil_electric' zone_fan_type = 'on_off' add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: sys_info['zone_diffuser_type'], zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: zone_supp_htg_eqpt_type, zone_clg_eqpt_type: zone_clg_eqpt_type, zone_fan_type: zone_fan_type, hw_loop: hw_loop) zones.each do |zone| zone.equipment.each do |comp| if comp.to_ZoneHVACPackagedTerminalHeatPump.is_initialized if comp.to_ZoneHVACPackagedTerminalHeatPump.get.heatingCoil.to_CoilHeatingDXSingleSpeed.is_initialized htg_coil = comp.to_ZoneHVACPackagedTerminalHeatPump.get.heatingCoil.to_CoilHeatingDXSingleSpeed.get coil_heating_dx_single_speed_apply_curves(htg_coil,eqpt_name) end if comp.to_ZoneHVACPackagedTerminalHeatPump.get.coolingCoil.to_CoilCoolingDXSingleSpeed.is_initialized clg_coil = comp.to_ZoneHVACPackagedTerminalHeatPump.get.coolingCoil.to_CoilCoolingDXSingleSpeed.get coil_cooling_dx_single_speed_apply_curves(clg_coil,eqpt_name) end end end end return_fan.addToNode(airloop.returnAirNode.get) if return_fan systems << airloop end return systems end |
#add_ecm_hs12_ashp_baseboard(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs12_ashp_baseboard”:
-Constant-volume reheat system for single zone systems
-VAV system with reheat for non DOAS multi-zone systems
-Air-source heat pump for heating and cooling with electric backup
-Electric or hot-water baseboards
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1536 def add_ecm_hs12_ashp_baseboard(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) # Get the heating fuel type from the system fuels object defined by the standards object heating_fuel = standard.fuel_type_set.ecm_fueltype # Create one hot-water loop for hot-water baseboards if required hw_loop = nil hw_loop = add_hotwater_loop(model: model, fuel_type_set: standard.fuel_type_set) if standard.fuel_type_set.baseboard_type == 'Hot Water' # Set supplemental heating fuel for airloop sys_supp_htg_eqpt_type = 'coil_electric' sys_supp_htg_eqpt_type = 'coil_gas' if heating_fuel == 'NaturalGas' systems = [] system_zones_map.sort.each do |sys_name, zones| sys_info = air_sys_comps_assumptions(sys_name: sys_name, zones: zones, system_doas_flags: system_doas_flags) # add air loop and its equipment airloop,clg_dx_coil,htg_dx_coil,return_fan = add_air_system(model: model, zones: zones, sys_abbr: sys_info['sys_abbr'], sys_vent_type: sys_info['sys_vent_type'], sys_heat_rec_type: sys_info['sys_heat_rec_type'], sys_htg_eqpt_type: 'ashp', sys_supp_htg_eqpt_type: sys_supp_htg_eqpt_type, sys_clg_eqpt_type: 'ashp', sys_supp_fan_type: sys_info['sys_supp_fan_type'], sys_ret_fan_type: sys_info['sys_ret_fan_type'], sys_setpoint_mgr_type: sys_info['sys_setpoint_mgr_type']) eqpt_name = 'NECB2015_ASHP' coil_cooling_dx_single_speed_apply_curves(clg_dx_coil,eqpt_name) coil_heating_dx_single_speed_apply_curves(htg_dx_coil,eqpt_name) # add zone equipment and diffuser if sys_info['sys_vent_type'] == 'doas' zone_htg_eqpt_type = 'ptac_electric_off' zone_clg_eqpt_type = 'ptac_electric_off' zone_fan_type = 'on_off' else zone_htg_eqpt_type = 'baseboard_electric' if standard.fuel_type_set.baseboard_type == 'Electric' zone_htg_eqpt_type = 'baseboard_hotwater' if standard.fuel_type_set.baseboard_type == 'Hot Water' zone_clg_eqpt_type = 'none' zone_fan_type = 'none' end add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: sys_info['zone_diffuser_type'], zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: zone_clg_eqpt_type, zone_fan_type: zone_fan_type, hw_loop: hw_loop) # for doas use baseboard electric or hotwater as backup for PTAC units if sys_info['sys_vent_type'] == 'doas' zone_htg_eqpt_type = 'baseboard_electric' if standard.fuel_type_set.baseboard_type == 'Electric' zone_htg_eqpt_type = 'baseboard_hotwater' if standard.fuel_type_set.baseboard_type == 'Hot Water' add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: nil, zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: 'none', zone_clg_eqpt_type: 'none', zone_fan_type: 'none', hw_loop: hw_loop) end return_fan.addToNode(airloop.returnAirNode.get) if return_fan systems << airloop end return systems end |
#add_ecm_hs13_ashp_vrf(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ecm “hs13_ashp_vrf”:
-Constant-volume dedicated-outside air system
-Air-source heat pump for heating and cooling with electric backup
-Zonal VRF terminal units for heating and cooling with electric baseboards
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1690 def add_ecm_hs13_ashp_vrf(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) # call method for ECM hs08 with ASHP in the air system add_ecm_hs08_ccashp_vrf(model: model, system_zones_map: system_zones_map, system_doas_flags: system_doas_flags, ecm_system_zones_map_option: ecm_system_zones_map_option, standard: standard, air_sys_eqpt_type: 'ashp') end |
#add_ecm_hs14_cgshp_fancoils(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) ⇒ Object
Add equipment for ECM “hs14_cgshp_fancoils”
-Constant volume DOAS with hydronic htg and clg coils.
-Zonal terminal fan coil (4-pipe) connected to central ground-source heat pump.
-Plant has a heating loop with water-to-water heat pump with a backup boiler. It also has a water-cooled chiller with a
backup air-cooled chiller. Water-source heat pump and water-cooled chiller are connected to a ground-loop.
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1717 def add_ecm_hs14_cgshp_fancoils(model:, system_zones_map:, system_doas_flags:, ecm_system_zones_map_option:, standard:) # Get the heating fuel type from the system fuels object defined by the standards object heating_fuel = standard.fuel_type_set.ecm_fueltype # Set supplemental heaing for airloop sys_supp_htg_eqpt_type = 'coil_electric' sys_supp_htg_eqpt_type = 'coil_gas' if heating_fuel == 'NaturalGas' # Update system zones map if needed system_zones_map = update_system_zones_map_keys(system_zones_map,'sys_1') system_zones_map = update_system_zones_map(model,system_zones_map,ecm_system_zones_map_option,'sys_1') if ecm_system_zones_map_option != 'NECB_Default' # Update system doas flags system_doas_flags = {} system_zones_map.keys.each { |sname| system_doas_flags[sname] = true } # use system zones map and generate new air system and zonal equipment systems = [] system_zones_map.sort.each do |sys_name, zones| sys_info = air_sys_comps_assumptions(sys_name: sys_name, zones: zones, system_doas_flags: system_doas_flags) airloop,clg_coil,htg_coil,return_fan = add_air_system(model: model, zones: zones, sys_abbr: sys_info['sys_abbr'], sys_vent_type: sys_info['sys_vent_type'], sys_heat_rec_type: sys_info['sys_heat_rec_type'], sys_htg_eqpt_type: 'coil_hw', sys_supp_htg_eqpt_type: 'none', sys_clg_eqpt_type: 'coil_chw', sys_supp_fan_type: sys_info['sys_supp_fan_type'], sys_ret_fan_type: sys_info['sys_ret_fan_type'], sys_setpoint_mgr_type: 'warmest') # add zone equipment and diffuser zone_htg_eqpt_type = 'fancoil_4pipe' zone_clg_eqpt_type = 'fancoil_4pipe' zone_supp_htg_eqpt_type = 'none' zone_fan_type = 'on_off' add_zone_eqpt(model: model, airloop: airloop, zones: zones, outdoor_unit: nil, zone_diffuser_type: sys_info['zone_diffuser_type'], zone_htg_eqpt_type: zone_htg_eqpt_type, zone_supp_htg_eqpt_type: zone_supp_htg_eqpt_type, zone_clg_eqpt_type: zone_clg_eqpt_type, zone_fan_type: zone_fan_type) return_fan.addToNode(airloop.returnAirNode.get) if return_fan systems << airloop end # add hot-water loop hw_loop,hw_loop_htg_eqpt = add_plantloop(model: model, loop_htg_eqpt_type: 'HeatPump_WaterToWater_EquationFit', loop_clg_eqpt_type: 'none', loop_heat_rej_eqpt_type: 'none', loop_pump_type: 'variable_speed', loop_spm_type: 'Scheduled', loop_setpoint: 50.0, loop_temp_diff: 5.0) model.getCoilHeatingWaters.sort.each {|coil| hw_loop.addDemandBranchForComponent(coil)} hcapf_curve_name = "HEATPUMP_WATERTOWATER_HCAPF" hcapf_curve = model_add_curve(model, hcapf_curve_name) if hcapf_curve hw_loop_htg_eqpt.setHeatingCapacityCurve(hcapf_curve) else raise("Can not find curve hcapf for #{hw_loop_htg_eqpt.name}") end hpowerf_curve_name = "HEATPUMP_WATERTOWATER_HPOWERF" hpowerf_curve = model_add_curve(model, hpowerf_curve_name) if hpowerf_curve hw_loop_htg_eqpt.setHeatingCompressorPowerCurve(hpowerf_curve) else raise("Can not find curve hpowerf for #{hw_loop_htg_eqpt.name}") end boiler = OpenStudio::Model::BoilerHotWater.new(model) boiler.setFuelType(heating_fuel) hw_loop_htg_eqpt_outlet_node = hw_loop_htg_eqpt.supplyOutletModelObject.get.to_Node.get boiler.addToNode(hw_loop_htg_eqpt_outlet_node) # add chilled-water loop chw_loop,chw_loop_clg_eqpt = add_plantloop(model: model, loop_htg_eqpt_type: 'none', loop_clg_eqpt_type: 'chiller_electric_eir', loop_heat_rej_eqpt_type: 'none', loop_pump_type: 'variable_speed', loop_spm_type: 'Scheduled', loop_setpoint: 7.0, loop_temp_diff: 6.0) chw_loop_clg_eqpt.setName('ChillerWaterCooled') chw_loop_clg_eqpt.setCondenserType("WaterCooled") model.getCoilCoolingWaters.sort.each {|coil| chw_loop.addDemandBranchForComponent(coil)} sec_chiller = OpenStudio::Model::ChillerElectricEIR.new(model) chw_loop_clg_eqpt_outlet_node = chw_loop_clg_eqpt.supplyOutletModelObject.get.to_Node.get sec_chiller.addToNode(chw_loop_clg_eqpt_outlet_node) sec_chiller.setName('ChillerAirCooled') # add ground HX loop with district heating and cooling plant to represent the ground HX heat_rej_loop,heat_rej_loop_eqpt = add_plantloop(model: model, loop_htg_eqpt_type: 'none', loop_clg_eqpt_type: 'none', loop_heat_rej_eqpt_type: 'District_Heating', loop_pump_type: 'variable_speed', loop_spm_type: 'none', loop_setpoint: 'none', loop_temp_diff: 10.0) heat_rej_loop_eqpt.setName('DistrictHeating GLHX') htg_eqpt_outlet_node = heat_rej_loop_eqpt.outletModelObject.get.to_Node.get clg_eqpt = create_plantloop_clg_eqpt(model, 'District_Cooling') clg_eqpt.setName('DistrictCooling GLHX') clg_eqpt.addToNode(htg_eqpt_outlet_node) htg_spm = create_plantloop_spm( model, 'Scheduled', 5.0) htg_spm.addToNode(htg_eqpt_outlet_node) clg_eqpt_outlet_node = clg_eqpt.outletModelObject.get.to_Node.get clg_spm = create_plantloop_spm( model, 'Scheduled', 25.0) clg_spm.addToNode(heat_rej_loop.supplyOutletNode) heat_rej_loop.setName("#{heat_rej_loop.name.to_s} GLHX") heat_rej_loop.addDemandBranchForComponent(hw_loop_htg_eqpt) heat_rej_loop.addDemandBranchForComponent(chw_loop_clg_eqpt) # add output variables for district heating and cooling model.getOutputVariables.each {|ivar| ivar.remove} dist_htg_var = OpenStudio::Model::OutputVariable.new("District Heating Water Rate",model) dist_htg_var.setReportingFrequency("hourly") dist_htg_var.setKeyValue("*") dist_clg_var = OpenStudio::Model::OutputVariable.new("District Cooling Water Rate",model) dist_clg_var.setReportingFrequency("hourly") dist_clg_var.setKeyValue("*") return systems end |
#add_ecm_remove_airloops_add_zone_baseboards(model:, system_zones_map:, system_doas_flags: nil, ecm_system_zones_map_option:, standard:) ⇒ Object
Despite the name, this method does not actually remove any air loops. All air loops, hot water loops, cooling and any existing baseboard heaters should already be gone. The name is an artifact of the way ECM methods are named and used. With everything gone, this method adds a hot water loop (if required) and baseboard heating back in to all zones requiring heating. Originally, code was included in the ‘apply_systems’ method which would prevent the air loops and other stuff from being created if someone did not want them. But others felt that that was not a clear way of doing things and did not feel the performance penalty of creating objects, then removing them, then creating them again was significant.
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3503 def add_ecm_remove_airloops_add_zone_baseboards(model:, system_zones_map:, system_doas_flags: nil, ecm_system_zones_map_option:, standard:) # Set the primary fuel set to default to to specific fuel type. standards_info = standard.standards_data # Assign fuel sources. boiler_fueltype = standard.fuel_type_set.boiler_fueltype backup_boiler_fueltype = standard.fuel_type_set.backup_boiler_fueltype baseboard_type = standard.fuel_type_set.baseboard_type mau_heating_coil_type = 'none' # Create the hot water loop if necessary. hw_loop = standard.create_hw_loop_if_required( baseboard_type, boiler_fueltype, backup_boiler_fueltype, mau_heating_coil_type, model ) # Add baseboard heaters to each heated zone. system_zones_map.sort.each do |sname, zones| zones.each do |zone| standard.add_zone_baseboards(baseboard_type: baseboard_type, hw_loop: hw_loop, model: model, zone: zone) end end end |
#add_hotwater_loop(model:, fuel_type_set:) ⇒ Object
Add one hot-water loop for hot-water baseboards if required
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3680 def add_hotwater_loop(model:, fuel_type_set:) primary_boiler_fueltype = fuel_type_set.boiler_fueltype backup_boiler_fueltype = fuel_type_set.backup_boiler_fueltype plant_loop_names = [] model.getPlantLoops.sort.each do |plant_loop| plant_loop_names << plant_loop.name.to_s end unless plant_loop_names.include? 'Hot Water Loop' hw_loop = OpenStudio::Model::PlantLoop.new(model) setup_hw_loop_with_components(model, hw_loop, primary_boiler_fueltype, backup_boiler_fueltype, model.alwaysOnDiscreteSchedule) end return hw_loop end |
#add_outdoor_vrf_unit(model:, ecm_name: nil, condenser_type: 'AirCooled') ⇒ Object
Add an outdoor VRF unit
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 266 def add_outdoor_vrf_unit(model:, ecm_name: nil, condenser_type: 'AirCooled') outdoor_vrf_unit = OpenStudio::Model::AirConditionerVariableRefrigerantFlow.new(model) outdoor_vrf_unit.setName('VRF Outdoor Unit') outdoor_vrf_unit.setHeatPumpWasteHeatRecovery(true) outdoor_vrf_unit.setRatedHeatingCOP(4.0) outdoor_vrf_unit.setRatedCoolingCOP(4.0) outdoor_vrf_unit.setMinimumOutdoorTemperatureinHeatingMode(-25.0) outdoor_vrf_unit.setHeatingPerformanceCurveOutdoorTemperatureType('WetBulbTemperature') outdoor_vrf_unit.setMasterThermostatPriorityControlType('ThermostatOffsetPriority') outdoor_vrf_unit.setDefrostControl('OnDemand') outdoor_vrf_unit.setDefrostStrategy('ReverseCycle') outdoor_vrf_unit.autosizeResistiveDefrostHeaterCapacity outdoor_vrf_unit.setPipingCorrectionFactorforHeightinHeatingModeCoefficient(-0.00019231) outdoor_vrf_unit.setPipingCorrectionFactorforHeightinCoolingModeCoefficient(-0.00019231) outdoor_vrf_unit.setMinimumOutdoorTemperatureinHeatRecoveryMode(-5.0) outdoor_vrf_unit.setMaximumOutdoorTemperatureinHeatRecoveryMode(26.2) outdoor_vrf_unit.setInitialHeatRecoveryCoolingCapacityFraction(0.5) outdoor_vrf_unit.setHeatRecoveryCoolingCapacityTimeConstant(0.15) outdoor_vrf_unit.setInitialHeatRecoveryCoolingEnergyFraction(1.0) outdoor_vrf_unit.setHeatRecoveryCoolingEnergyTimeConstant(0.0) outdoor_vrf_unit.setInitialHeatRecoveryHeatingCapacityFraction(1.0) outdoor_vrf_unit.setHeatRecoveryHeatingCapacityTimeConstant(0.15) outdoor_vrf_unit.setInitialHeatRecoveryHeatingEnergyFraction(1.0) outdoor_vrf_unit.setHeatRecoveryCoolingEnergyTimeConstant(0.0) outdoor_vrf_unit.setMinimumHeatPumpPartLoadRatio(0.5) outdoor_vrf_unit.setCondenserType(condenser_type) outdoor_vrf_unit.setCrankcaseHeaterPowerperCompressor(1.0e-6) heat_defrost_eir_ft = nil if ecm_name search_criteria = {} search_criteria['name'] = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit' props = model_find_object(standards_data['tables']['heat_pump_heating_ecm']['table'], search_criteria, 1.0) heat_defrost_eir_ft = model_add_curve(model, props['heat_defrost_eir_ft']) end if heat_defrost_eir_ft outdoor_vrf_unit.setDefrostEnergyInputRatioModifierFunctionofTemperatureCurve(heat_defrost_eir_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{outdoor_vrf_unit.name}, cannot find heat_defrost_eir_ft curve, will not be set.") end return outdoor_vrf_unit end |
#add_plantloop(model:, loop_htg_eqpt_type:, loop_clg_eqpt_type:, loop_heat_rej_eqpt_type:, loop_pump_type:, loop_spm_type:, loop_setpoint:, loop_temp_diff:) ⇒ Object
add plant loop with all its components
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1128 def add_plantloop(model:, loop_htg_eqpt_type:, loop_clg_eqpt_type:, loop_heat_rej_eqpt_type:, loop_pump_type:, loop_spm_type:, loop_setpoint:, loop_temp_diff:) # create all the needed components and the plant loop plantloop = OpenStudio::Model::PlantLoop.new(model) spm = create_plantloop_spm(model, loop_spm_type, loop_setpoint) pump = create_plantloop_pump(model, loop_pump_type) htg_eqpt = create_plantloop_htg_eqpt(model, loop_htg_eqpt_type) clg_eqpt = create_plantloop_clg_eqpt(model, loop_clg_eqpt_type) heat_rej_eqpt = create_plantloop_heat_rej_eqpt(model, loop_heat_rej_eqpt_type) if heat_rej_eqpt.nil? if !htg_eqpt.nil? plantloop.sizingPlant.setLoopType('Heating') plantloop.setName("HW PlantLoop") eqpt = htg_eqpt elsif !clg_eqpt.nil? plantloop.sizingPlant.setLoopType('Cooling') plantloop.setName("CHW PlantLoop") eqpt = clg_eqpt end elsif !heat_rej_eqpt.nil? plantloop.sizingPlant.setLoopType('Condenser') plantloop.setName("Condenser PlantLoop") eqpt = heat_rej_eqpt end plantloop.sizingPlant.setDesignLoopExitTemperature(loop_setpoint) if loop_setpoint != 'none' plantloop.sizingPlant.setLoopDesignTemperatureDifference(loop_temp_diff) if loop_temp_diff != 'none' bypass_pipe = OpenStudio::Model::PipeAdiabatic.new(model) supply_outlet_pipe = OpenStudio::Model::PipeAdiabatic.new(model) supply_inlet_node = plantloop.supplyInletNode supply_outlet_node = plantloop.supplyOutletNode pump.addToNode(supply_inlet_node) plantloop.addSupplyBranchForComponent(eqpt) plantloop.addSupplyBranchForComponent(bypass_pipe) supply_outlet_pipe.addToNode(supply_outlet_node) spm.addToNode(supply_outlet_node) if loop_spm_type != 'none' return plantloop,eqpt end |
#add_zone_eqpt(model:, airloop:, zones:, outdoor_unit:, zone_diffuser_type:, zone_htg_eqpt_type:, zone_supp_htg_eqpt_type:, zone_clg_eqpt_type:, zone_fan_type:, hw_loop: nil) ⇒ Object
add zonal heating and cooling equipment
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 963 def add_zone_eqpt(model:, airloop:, zones:, outdoor_unit:, zone_diffuser_type:, zone_htg_eqpt_type:, zone_supp_htg_eqpt_type:, zone_clg_eqpt_type:, zone_fan_type:, hw_loop: nil) always_on = model.alwaysOnDiscreteSchedule zones.sort.each do |zone| # during the first call to this method for a zone, the diffuser type has to be specified if there is an air loop serving the zone if zone_diffuser_type zone.sizingZone.setZoneCoolingDesignSupplyAirTemperature(13.0) zone.sizingZone.setZoneHeatingDesignSupplyAirTemperature(43.0) zone.sizingZone.setZoneCoolingSizingFactor(1.1) zone.sizingZone.setZoneHeatingSizingFactor(1.3) diffuser = create_zone_diffuser(model, zone_diffuser_type, zone) airloop.removeBranchForZone(zone) airloop.addBranchForZone(zone, diffuser.to_StraightComponent) end clg_eqpt = create_zone_clg_eqpt(model, zone_clg_eqpt_type) htg_eqpt = create_zone_htg_eqpt(model, zone_htg_eqpt_type, hw_loop) supp_htg_eqpt = create_zone_htg_eqpt(model, zone_supp_htg_eqpt_type, hw_loop) fan = create_air_sys_fan(model, zone_fan_type) # for container zonal equipment call method "create_zone_container_equipment" this_is_container_comp = false if (zone_htg_eqpt_type == 'pthp') || (zone_htg_eqpt_type == 'vrf') || (zone_htg_eqpt_type.include? 'unitheater') || (zone_htg_eqpt_type.include? 'ptac') || (zone_htg_eqpt_type.include? 'fancoil') this_is_container_comp = true zone_cont_eqpt = create_zone_container_eqpt(model: model, zone_cont_eqpt_type: zone_htg_eqpt_type, zone_htg_eqpt: htg_eqpt, zone_supp_htg_eqpt: supp_htg_eqpt, zone_clg_eqpt: clg_eqpt, zone_fan: fan) end if zone_cont_eqpt zone_cont_eqpt.addToThermalZone(zone) outdoor_unit.addTerminal(zone_cont_eqpt) if outdoor_unit elsif htg_eqpt && !this_is_container_comp htg_eqpt.addToThermalZone(zone) end end sys_name_zone_htg_eqpt_type = zone_htg_eqpt_type sys_name_zone_htg_eqpt_type = 'b-e' if zone_htg_eqpt_type == 'baseboard_electric' || zone_htg_eqpt_type == 'ptac_electric_off' sys_name_zone_htg_eqpt_type = 'b-hw' if zone_htg_eqpt_type == 'baseboard_hotwater' sys_name_zone_clg_eqpt_type = zone_clg_eqpt_type sys_name_zone_clg_eqpt_type = 'ptac' if zone_clg_eqpt_type == 'ptac_electric_off' update_sys_name(airloop, zone_htg: sys_name_zone_htg_eqpt_type, zone_clg: sys_name_zone_clg_eqpt_type) if zone_diffuser_type end |
#air_sys_comps_assumptions(sys_name:, zones:, system_doas_flags:) ⇒ Object
Set assumptions for type of components for air system based on the number of zones served by the system and whether it’s a mixed or doas.
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1177 def air_sys_comps_assumptions(sys_name:, zones:, system_doas_flags:) sys_info = {} sys_info['sys_abbr'] = sys_name.split('|')[0] sys_info['sys_vent_type'] = 'mixed' sys_info['sys_vent_type'] = 'doas' if system_doas_flags[sys_name.to_s] sys_info['sys_heat_rec_type'] = 'none' sys_info['sys_htg_eqpt_type'] = 'coil_electric' sys_info['sys_supp_htg_eqpt_type'] = 'none' sys_info['sys_clg_eqpt_type'] = 'coil_dx' if (zones.size == 1) || (sys_info['sys_abbr'] == 'sys_4') sys_info['sys_setpoint_mgr_type'] = 'single_zone_reheat' sys_info['sys_setpoint_mgr_type'] = 'scheduled' if system_doas_flags[sys_name.to_s] sys_info['sys_supp_fan_type'] = 'constant_volume' sys_info['sys_ret_fan_type'] = 'none' sys_info['zone_diffuser_type'] = 'single_duct_uncontrolled' elsif zones.size > 1 if system_doas_flags[sys_name.to_s] sys_info['sys_setpoint_mgr_type'] = 'scheduled' sys_info['sys_supp_fan_type'] = 'constant_volume' sys_info['sys_ret_fan_type'] = 'none' sys_info['zone_diffuser_type'] = 'single_duct_uncontrolled' else sys_info['sys_setpoint_mgr_type'] = 'warmest' sys_info['sys_supp_fan_type'] = 'variable_volume' sys_info['sys_ret_fan_type'] = 'variable_volume' sys_info['zone_diffuser_type'] = 'single_duct_vav_reheat' end end return sys_info end |
#airconditioner_variablerefrigerantflow_cooling_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) ⇒ Object
Find cooling efficiency for “AirConditionerVariableRefrigerantFlow” object
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2891 def airconditioner_variablerefrigerantflow_cooling_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) capacity_w = airconditioner_variablerefrigerantflow_cooling_find_capacity(airconditioner_variablerefrigerantflow) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as EER unless props['minimum_energy_efficiency_ratio'].nil? min_eer = props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as HSPF (heat pump) unless props['minimum_heating_seasonal_performance_factor'].nil? min_hspf = props['minimum_heating_seasonal_performance_factor'] cop = hspf_to_cop_no_fan(min_hspf) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}HSPF" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless props['minimum_full_load_efficiency'].nil? min_eer = props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless props['minimum_coefficient_of_performance_cooling'].nil? cop = props['minimum_coefficient_of_performance_cooling'] new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # Rename if rename airconditioner_variablerefrigerantflow.setName(new_comp_name) end # Set COP airconditioner_variablerefrigerantflow.setRatedCoolingCOP(cop.to_f) unless cop.nil? end |
#airconditioner_variablerefrigerantflow_cooling_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) ⇒ Object
Applies the cooling performance curves to “AirConditionerVariableRefrigerantFlow” object.
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2364 def airconditioner_variablerefrigerantflow_cooling_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) successfully_set_all_properties = true search_criteria = {} search_criteria['name'] = eqpt_name # Get the capacity capacity_w = airconditioner_variablerefrigerantflow_cooling_find_capacity(airconditioner_variablerefrigerantflow) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup performance curves props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find efficiency info using #{search_criteria}, cannot apply efficiency.") successfully_set_all_properties = false end # Make the COOL-CAP-FT Low curve cool_cap_ft_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_cap_ft_low']) if cool_cap_ft_low airconditioner_variablerefrigerantflow.setCoolingCapacityRatioModifierFunctionofLowTemperatureCurve(cool_cap_ft_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_cap_ft_low curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CAP-FT boundary curve cool_cap_ft_boundary = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_cap_ft_boundary']) if cool_cap_ft_boundary airconditioner_variablerefrigerantflow.setCoolingCapacityRatioBoundaryCurve(cool_cap_ft_boundary) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_cap_ft_boundary curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CAP-FT high curve cool_cap_ft_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_cap_ft_high']) if cool_cap_ft_high airconditioner_variablerefrigerantflow.setCoolingCapacityRatioModifierFunctionofHighTemperatureCurve(cool_cap_ft_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_cap_ft_high curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FT low curve cool_eir_ft_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_eir_ft_low']) if cool_eir_ft_low airconditioner_variablerefrigerantflow.setCoolingEnergyInputRatioModifierFunctionofLowTemperatureCurve(cool_eir_ft_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_eir_ft_low curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FT boundary curve cool_eir_ft_boundary = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_eir_ft_boundary']) if cool_eir_ft_boundary airconditioner_variablerefrigerantflow.setCoolingEnergyInputRatioBoundaryCurve(cool_eir_ft_boundary) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_eir_ft_boundary curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FT high curve cool_eir_ft_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_eir_ft_high']) if cool_eir_ft_high airconditioner_variablerefrigerantflow.setCoolingEnergyInputRatioModifierFunctionofHighTemperatureCurve(cool_eir_ft_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_eir_ft_high curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FPLR low curve cool_eir_fplr_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_eir_fplr_low']) if cool_eir_fplr_low airconditioner_variablerefrigerantflow.setCoolingEnergyInputRatioModifierFunctionofLowPartLoadRatioCurve(cool_eir_fplr_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_eir_fplr_low curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FPLR high curve cool_eir_fplr_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_eir_fplr_high']) if cool_eir_fplr_high airconditioner_variablerefrigerantflow.setCoolingEnergyInputRatioModifierFunctionofHighPartLoadRatioCurve(cool_eir_fplr_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_eir_fplr_high curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CCR curve cool_ccr = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_ccr']) if cool_ccr airconditioner_variablerefrigerantflow.setCoolingCombinationRatioCorrectionFactorCurve(cool_ccr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_ccr curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-PLF-FPLR curve cool_plf_fplr = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_plf_fplr']) if cool_plf_fplr airconditioner_variablerefrigerantflow.setCoolingPartLoadFractionCorrelationCurve(cool_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_plf_fplr curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-PLF-FPLR curve cool_plf_fplr = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_plf_fplr']) if cool_plf_fplr airconditioner_variablerefrigerantflow.setCoolingPartLoadFractionCorrelationCurve(cool_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_plf_fplr curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CAP-FPL curve cool_cap_fpl = model_add_curve(airconditioner_variablerefrigerantflow.model, props['cool_cap_fpl']) if cool_cap_fpl airconditioner_variablerefrigerantflow.setPipingCorrectionFactorforLengthinCoolingModeCurve(cool_cap_fpl) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_cap_fpl curve, will not be set.") successfully_set_all_properties = false end end |
#airconditioner_variablerefrigerantflow_cooling_find_capacity(airconditioner_variablerefrigerantflow) ⇒ Object
Find cooling capacity for “AirConditionerVariableRefrigerantFlow” object
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3052 def airconditioner_variablerefrigerantflow_cooling_find_capacity(airconditioner_variablerefrigerantflow) capacity_w = nil if airconditioner_variablerefrigerantflow.ratedTotalCoolingCapacity.is_initialized capacity_w = airconditioner_variablerefrigerantflow.ratedTotalCoolingCapacity.get elsif airconditioner_variablerefrigerantflow.autosizedRatedTotalCoolingCapacity.is_initialized capacity_w = airconditioner_variablerefrigerantflow.autosizedRatedTotalCoolingCapacity.get airconditioner_variablerefrigerantflow.setRatedTotalCoolingCapacity(capacity_w) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name} cooling capacity is not available.") return 0.0 end return capacity_w end |
#airconditioner_variablerefrigerantflow_heating_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) ⇒ Object
Find heating efficiency for “AirConditionerVariableRefrigerantFlow” object
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2955 def airconditioner_variablerefrigerantflow_heating_apply_cop(airconditioner_variablerefrigerantflow, search_criteria, rename = false) capacity_w = airconditioner_variablerefrigerantflow_heating_find_capacity(airconditioner_variablerefrigerantflow) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics props = model_find_object(standards_data['tables']['heat_pump_heating_ecm'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heating efficiency info using #{search_criteria}.") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as EER unless props['minimum_energy_efficiency_ratio'].nil? min_eer = props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as HSPF (heat pump) unless props['minimum_heating_seasonal_performance_factor'].nil? min_hspf = props['minimum_heating_seasonal_performance_factor'] cop = hspf_to_cop_no_fan(min_hspf) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}HSPF" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless props['minimum_full_load_efficiency'].nil? min_eer = props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless props['minimum_coefficient_of_performance_heating'].nil? min_cop = props['minimum_coefficient_of_performance_heating'] cop = cop_heating_to_cop_heating_no_fan(min_cop, capacity_w) new_comp_name = "#{airconditioner_variablerefrigerantflow.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{template}: #{airconditioner_variablerefrigerantflow.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # Rename if rename airconditioner_variablerefrigerantflow.setName(new_comp_name) end # Set COP airconditioner_variablerefrigerantflow.setRatedHeatingCOP(cop.to_f) unless cop.nil? end |
#airconditioner_variablerefrigerantflow_heating_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) ⇒ Object
Applies the heating performance curves to “AirConditionerVariableRefrigerantFlow” object.
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2495 def airconditioner_variablerefrigerantflow_heating_apply_curves(airconditioner_variablerefrigerantflow, eqpt_name) successfully_set_all_properties = true search_criteria = {} search_criteria['name'] = eqpt_name # Get the capacity capacity_w = airconditioner_variablerefrigerantflow_heating_find_capacity(airconditioner_variablerefrigerantflow) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup performance curves props = model_find_object(standards_data['tables']['heat_pump_heating_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heating efficiency info using #{search_criteria}, cannot apply efficiency.") successfully_set_all_properties = false end # Make the HEAT-CAP-FT Low curve heat_cap_ft_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_cap_ft_low']) if heat_cap_ft_low airconditioner_variablerefrigerantflow.setHeatingCapacityRatioModifierFunctionofLowTemperatureCurve(heat_cap_ft_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_cap_ft_low curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-CAP-FT boundary curve heat_cap_ft_boundary = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_cap_ft_boundary']) if heat_cap_ft_boundary airconditioner_variablerefrigerantflow.setHeatingCapacityRatioBoundaryCurve(heat_cap_ft_boundary) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_cap_ft_boundary curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-CAP-FT high curve heat_cap_ft_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_cap_ft_high']) if heat_cap_ft_high airconditioner_variablerefrigerantflow.setHeatingCapacityRatioModifierFunctionofHighTemperatureCurve(heat_cap_ft_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_cap_ft_high curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FT low curve heat_eir_ft_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_eir_ft_low']) if heat_eir_ft_low airconditioner_variablerefrigerantflow.setHeatingEnergyInputRatioModifierFunctionofLowTemperatureCurve(heat_eir_ft_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_eir_ft_low curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FT boundary curve heat_eir_ft_boundary = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_eir_ft_boundary']) if heat_eir_ft_boundary airconditioner_variablerefrigerantflow.setHeatingEnergyInputRatioBoundaryCurve(heat_eir_ft_boundary) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_eir_ft_boundary curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FT high curve heat_eir_ft_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_eir_ft_high']) if heat_eir_ft_high airconditioner_variablerefrigerantflow.setHeatingEnergyInputRatioModifierFunctionofHighTemperatureCurve(heat_eir_ft_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_eir_ft_high curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FPLR low curve heat_eir_fplr_low = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_eir_fplr_low']) if heat_eir_fplr_low airconditioner_variablerefrigerantflow.setHeatingEnergyInputRatioModifierFunctionofLowPartLoadRatioCurve(heat_eir_fplr_low) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_eir_fplr_low curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FPLR high curve heat_eir_fplr_high = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_eir_fplr_high']) if heat_eir_fplr_high airconditioner_variablerefrigerantflow.setHeatingEnergyInputRatioModifierFunctionofHighPartLoadRatioCurve(heat_eir_fplr_high) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_eir_fplr_high curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-HCR curve heat_hcr = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_hcr']) if heat_hcr airconditioner_variablerefrigerantflow.setHeatingCombinationRatioCorrectionFactorCurve(heat_hcr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_hcr curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-PLF-FPLR curve heat_plf_fplr = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_plf_fplr']) if heat_plf_fplr airconditioner_variablerefrigerantflow.setHeatingPartLoadFractionCorrelationCurve(heat_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find cool_plf_fplr curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-CAP-FPL curve heat_cap_fpl = model_add_curve(airconditioner_variablerefrigerantflow.model, props['heat_cap_fpl']) if heat_cap_fpl airconditioner_variablerefrigerantflow.setPipingCorrectionFactorforLengthinHeatingModeCurve(heat_cap_fpl) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name}, cannot find heat_cap_fpl curve, will not be set.") successfully_set_all_properties = false end end |
#airconditioner_variablerefrigerantflow_heating_find_capacity(airconditioner_variablerefrigerantflow) ⇒ Object
Find heating capacity for “AirConditionerVariableRefrigerantFlow” object
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3069 def airconditioner_variablerefrigerantflow_heating_find_capacity(airconditioner_variablerefrigerantflow) capacity_w = nil if airconditioner_variablerefrigerantflow.ratedTotalHeatingCapacity.is_initialized capacity_w = airconditioner_variablerefrigerantflow.ratedTotalHeatingCapacity.get elsif airconditioner_variablerefrigerantflow.autosizedRatedTotalHeatingCapacity.is_initialized capacity_w = airconditioner_variablerefrigerantflow.autosizedRatedTotalHeatingCapacity.get airconditioner_variablerefrigerantflow.setRatedTotalHeatingCapacity(capacity_w) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirConditionerVariableRefrigerantFlow', "For #{airconditioner_variablerefrigerantflow.name} heating capacity is not available.") return 0.0 end return capacity_w end |
#apply_efficiency_ecm_hs08_ccashp_vrf(model, standard, air_sys_eqpt_type: 'ccashp') ⇒ Object
Apply efficiencies for ECM ‘hs08_ccashp_vrf’
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 595 def apply_efficiency_ecm_hs08_ccashp_vrf(model, standard, air_sys_eqpt_type: 'ccashp') # Use same performance data as ECM 'hs09_ccashpsys' for air system if air_sys_eqpt_type == 'ccashp' apply_efficiency_ecm_hs09_ccashp_baseboard(model,standard) elsif air_sys_eqpt_type == 'ashp' apply_efficiency_ecm_hs12_ashp_baseboard(model,standard) end # Apply efficiency for VRF units eqpt_name = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit' search_criteria = {} search_criteria['name'] = eqpt_name model.getAirConditionerVariableRefrigerantFlows.sort.each do |vrf_unit| airconditioner_variablerefrigerantflow_cooling_apply_cop(vrf_unit, search_criteria) airconditioner_variablerefrigerantflow_heating_apply_cop(vrf_unit, search_criteria) end # Set fan size of VRF terminal units fan_power_per_flow_rate = 150.0 # based on Mitsubishi data: 100 low and 200 high (W-s/m3) model.getZoneHVACTerminalUnitVariableRefrigerantFlows.each do |iunit| fan = iunit.supplyAirFan.to_FanOnOff.get fan_pr_rise = fan_power_per_flow_rate * (fan.fanEfficiency * fan.motorEfficiency) fan.setPressureRise(fan_pr_rise) end # Set fan size of unit heaters model.getZoneHVACUnitHeaters.each do |iunit| fan = iunit.supplyAirFan.to_FanConstantVolume.get fan_pr_rise = fan_power_per_flow_rate * (fan.fanEfficiency * fan.motorEfficiency) fan.setPressureRise(fan_pr_rise) end end |
#apply_efficiency_ecm_hs09_ccashp_baseboard(model, standard) ⇒ Object
Apply effiencies for ECM “hs09_ccashp_baseboard”
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1302 def apply_efficiency_ecm_hs09_ccashp_baseboard(model,standard) # fraction of electric backup heating coil capacity assigned to dx heating coil fr_backup_coil_cap_as_dx_coil_cap = 0.5 model.getAirLoopHVACs.sort.each do |isys| clg_dx_coil = nil htg_dx_coil = nil backup_coil = nil fans = [] # Find the components on the air loop isys.supplyComponents.sort.each do |icomp| if icomp.to_CoilCoolingDXVariableSpeed.is_initialized clg_dx_coil = icomp.to_CoilCoolingDXVariableSpeed.get elsif icomp.to_CoilHeatingDXVariableSpeed.is_initialized htg_dx_coil = icomp.to_CoilHeatingDXVariableSpeed.get elsif icomp.to_CoilHeatingElectric.is_initialized backup_coil = icomp.to_CoilHeatingElectric.get elsif icomp.to_CoilHeatingGas.is_initialized backup_coil = icomp.to_CoilHeatingGas.get elsif icomp.to_FanConstantVolume.is_initialized fans << icomp.to_FanConstantVolume.get elsif icomp.to_FanVariableVolume.is_initialized fans << icomp.to_FanVariableVolume.get end end if clg_dx_coil && htg_dx_coil && backup_coil clg_dx_coil_init_name = get_hvac_comp_init_name(clg_dx_coil, false) clg_dx_coil.setName(clg_dx_coil_init_name) if clg_dx_coil.autosizedGrossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.is_initialized max_pd = 0.0 supply_fan = nil fans.each do |fan| if fan.pressureRise.to_f > max_pd max_pd = fan.pressureRise.to_f supply_fan = fan # assume supply fan has higher pressure drop end end # There is an error in EnergyPlus in the estimated capacity of the coil "CoilCoolingDXVariableSpeed". # Here the capacity reported by OS is adjusted to estimate an appropriate capacity for the cooling coil. # The autosized capacity is corrected for the actual fan flow rate and fan power. if supply_fan.maximumFlowRate.is_initialized fan_max_afr = supply_fan.maximumFlowRate.to_f elsif supply_fan.autosizedMaximumFlowRate.is_initialized fan_max_afr = supply_fan.autosizedMaximumFlowRate.to_f else raise "Fan flow rate is undefined for fan #{supply_fan.name.to_s}" end if clg_dx_coil.ratedAirFlowRateAtSelectedNominalSpeedLevel.is_initialized clg_dx_coil_afr = clg_dx_coil.ratedAirFlowRateAtSelectedNominalSpeedLevel.to_f elsif clg_dx_coil.autosizedRatedAirFlowRateAtSelectedNominalSpeedLevel.is_initialized clg_dx_coil_afr = clg_dx_coil.autosizedRatedAirFlowRateAtSelectedNominalSpeedLevel.to_f else raise "Rated air flow rate at selected nominal speed level is undefined for coil #{clg_dx_coil.name.to_s}" end fan_power = fan_max_afr * max_pd / supply_fan.fanTotalEfficiency.to_f clg_dx_coil_cap = clg_dx_coil.autosizedGrossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.to_f * fan_max_afr / clg_dx_coil_afr + fan_power / clg_dx_coil.speeds.last.referenceUnitGrossRatedSensibleHeatRatio.to_f elsif clg_dx_coil.grossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.is_initialized clg_dx_coil_cap = clg_dx_coil.grossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.to_f else raise "Rated total cooling capacity at selected nominal speed is undefined for coil #{clg_dx_coil.name.to_s}" end htg_dx_coil_init_name = get_hvac_comp_init_name(htg_dx_coil, false) htg_dx_coil.setName(htg_dx_coil_init_name) if backup_coil.nominalCapacity.is_initialized backup_coil_cap = backup_coil.nominalCapacity.to_f elsif backup_coil.autosizedNominalCapacity.is_initialized backup_coil_cap = backup_coil.autosizedNominalCapacity.to_f else raise "Nominal capacity is undefiled for coil #{backup_coil.name.to_s}" end # Set the DX capacities to the maximum of the fraction of the backup coil capacity or the cooling capacity needed dx_cap = fr_backup_coil_cap_as_dx_coil_cap * backup_coil_cap if dx_cap < clg_dx_coil_cap then dx_cap = clg_dx_coil_cap end clg_dx_coil.setGrossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel(dx_cap) htg_dx_coil.setRatedHeatingCapacityAtSelectedNominalSpeedLevel(dx_cap) # Assign COPs search_criteria = {} search_criteria['name'] = 'Mitsubishi_Hyper_Heating_VRF_Outdoor_Unit RTU' coil_cooling_dx_variable_speed_apply_cop(clg_dx_coil, search_criteria, false) coil_heating_dx_variable_speed_apply_cop(htg_dx_coil, search_criteria, false) end end end |
#apply_efficiency_ecm_hs11_ashp_pthp(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs11_ashp_pthp”
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1466 def apply_efficiency_ecm_hs11_ashp_pthp(model,standard) fr_backup_coil_cap_as_dx_coil_cap = 0.5 # fraction of electric backup heating coil capacity assigned to dx heating coil apply_efficiency_ecm_hs12_ashp_baseboard(model,standard) pthp_eqpt_name = 'HS11_PTHP' model.getAirLoopHVACs.sort.each do |isys| isys.thermalZones.each do |zone| clg_dx_coil = nil htg_dx_coil = nil backup_coil = nil fan = nil zone.equipment.sort.each do |icomp| if icomp.to_ZoneHVACPackagedTerminalHeatPump.is_initialized if icomp.to_ZoneHVACPackagedTerminalHeatPump.get.coolingCoil.to_CoilCoolingDXSingleSpeed.is_initialized clg_dx_coil = icomp.to_ZoneHVACPackagedTerminalHeatPump.get.coolingCoil.to_CoilCoolingDXSingleSpeed.get end if icomp.to_ZoneHVACPackagedTerminalHeatPump.get.heatingCoil.to_CoilHeatingDXSingleSpeed.is_initialized htg_dx_coil = icomp.to_ZoneHVACPackagedTerminalHeatPump.get.heatingCoil.to_CoilHeatingDXSingleSpeed.get end if icomp.to_ZoneHVACPackagedTerminalHeatPump.get.supplementalHeatingCoil.to_CoilHeatingElectric.is_initialized backup_coil = icomp.to_ZoneHVACPackagedTerminalHeatPump.get.supplementalHeatingCoil.to_CoilHeatingElectric.get end if icomp.to_ZoneHVACPackagedTerminalHeatPump.get.supplyAirFan.to_FanOnOff.is_initialized fan = icomp.to_ZoneHVACPackagedTerminalHeatPump.get.supplyAirFan.to_FanOnOff.get end end if clg_dx_coil && htg_dx_coil && backup_coil && fan clg_dx_coil_init_name = get_hvac_comp_init_name(clg_dx_coil, false) clg_dx_coil.setName(clg_dx_coil_init_name) if clg_dx_coil.ratedTotalCoolingCapacity.is_initialized clg_dx_coil_cap = clg_dx_coil.ratedTotalCoolingCapacity.to_f elsif clg_dx_coil.autosizedRatedTotalCoolingCapacity.is_initialized clg_dx_coil_cap = clg_dx_coil.autosizedRatedTotalCoolingCapacity.to_f else raise "The total cooling capacity is undefined for coil #{clg_dx_coil_cap.name.to_s}" end htg_dx_coil_init_name = get_hvac_comp_init_name(htg_dx_coil, true) htg_dx_coil.setName(htg_dx_coil_init_name) if backup_coil.nominalCapacity.is_initialized backup_coil_cap = backup_coil.nominalCapacity.to_f elsif backup_coil.autosizedNominalCapacity.is_initialized backup_coil_cap = backup_coil.autosizedNominalCapacity.to_f else raise "The nominal capacity is undefined for coil #{backup_coil.name.to_s}" end # Set the DX capacities to the maximum of the fraction of the backup coil capacity or the cooling capacity needed dx_cap = fr_backup_coil_cap_as_dx_coil_cap * backup_coil_cap if dx_cap < clg_dx_coil_cap then dx_cap = clg_dx_coil_cap end clg_dx_coil.setRatedTotalCoolingCapacity(dx_cap) htg_dx_coil.setRatedTotalHeatingCapacity(dx_cap) # assign COPs search_criteria = {} search_criteria['name'] = pthp_eqpt_name coil_cooling_dx_single_speed_apply_cop(clg_dx_coil, search_criteria) coil_heating_dx_single_speed_apply_cop(htg_dx_coil, search_criteria) # Set fan power fan_power_per_flow_rate = 150.0 # based on Mitsubishi data: 100 low and 200 high (W-s/m3) fan_pr_rise = fan_power_per_flow_rate * (fan.fanEfficiency * fan.motorEfficiency) fan.setPressureRise(fan_pr_rise) end end end end end |
#apply_efficiency_ecm_hs12_ashp_baseboard(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs12_ashp_baseboard”
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1632 def apply_efficiency_ecm_hs12_ashp_baseboard(model,standard) fr_backup_coil_cap_as_dx_coil_cap = 0.5 # fraction of electric backup heating coil capacity assigned to dx heating coil ashp_eqpt_name = 'NECB2015_ASHP' model.getAirLoopHVACs.sort.each do |isys| clg_dx_coil = nil htg_dx_coil = nil backup_coil = nil # Find the coils on the air loop isys.supplyComponents.sort.each do |icomp| if icomp.to_CoilCoolingDXSingleSpeed.is_initialized clg_dx_coil = icomp.to_CoilCoolingDXSingleSpeed.get elsif icomp.to_CoilHeatingDXSingleSpeed.is_initialized htg_dx_coil = icomp.to_CoilHeatingDXSingleSpeed.get elsif icomp.to_CoilHeatingElectric.is_initialized backup_coil = icomp.to_CoilHeatingElectric.get elsif icomp.to_CoilHeatingGas.is_initialized backup_coil = icomp.to_CoilHeatingGas.get end end if clg_dx_coil && htg_dx_coil && backup_coil # update names of dx coils clg_dx_coil_init_name = get_hvac_comp_init_name(clg_dx_coil, false) clg_dx_coil.setName(clg_dx_coil_init_name) if clg_dx_coil.ratedTotalCoolingCapacity.is_initialized clg_dx_coil_cap = clg_dx_coil.ratedTotalCoolingCapacity.to_f elsif clg_dx_coil.autosizedRatedTotalCoolingCapacity.is_initialized clg_dx_coil_cap = clg_dx_coil.autosizedRatedTotalCoolingCapacity.to_f else raise "Rated total cooling capacity is undefined for coil #{clg_dx_coil.name.to_s}" end htg_dx_coil_init_name = get_hvac_comp_init_name(htg_dx_coil, true) htg_dx_coil.setName(htg_dx_coil_init_name) if backup_coil.nominalCapacity.is_initialized backup_coil_cap = backup_coil.nominalCapacity.to_f elsif backup_coil.autosizedNominalCapacity.is_initialized backup_coil_cap = backup_coil.autosizedNominalCapacity.to_f else raise "Nominal capacity is undefined for coil #{backup_coil.name.to_s}" end # set the DX capacities to the maximum of the fraction of the backup coil capacity or the cooling capacity needed dx_cap = fr_backup_coil_cap_as_dx_coil_cap * backup_coil_cap if dx_cap < clg_dx_coil_cap then dx_cap = clg_dx_coil_cap end clg_dx_coil.setRatedTotalCoolingCapacity(dx_cap) htg_dx_coil.setRatedTotalHeatingCapacity(dx_cap) # assign COPs search_criteria = {} search_criteria['name'] = ashp_eqpt_name coil_cooling_dx_single_speed_apply_cop(clg_dx_coil, search_criteria) coil_heating_dx_single_speed_apply_cop(htg_dx_coil, search_criteria) end end end |
#apply_efficiency_ecm_hs13_ashp_vrf(model, standard) ⇒ Object
Apply efficiencies and performance curves for ECM “hs12_ashp_vrf”
1706 1707 1708 1709 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1706 def apply_efficiency_ecm_hs13_ashp_vrf(model,standard) # call method for ECM hs08 with ASHP in air system apply_efficiency_ecm_hs08_ccashp_vrf(model, standard, air_sys_eqpt_type: 'ashp') end |
#apply_efficiency_ecm_hs14_cgshp_fancoils(model, standard) ⇒ Object
Appy efficiencies for ECM “hs14_cgshp_fancoils”
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1856 def apply_efficiency_ecm_hs14_cgshp_fancoils(model,standard) heatpump_siz_f = 0.4 # sizing factor for water-source heat pump (heating mode) chiller_siz_f = 0.4 # sizing factor for water-cooled chiller # get water-source heat pump and boiler hw_loops = model.getPlantLoops.select {|loop| loop.sizingPlant.loopType.to_s.downcase == 'heating'} hw_heatpump_loop = nil hw_heatpump = nil hw_boiler = nil hw_loops.each do |hw_loop| hw_heatpumps = hw_loop.supplyComponents.select {|comp| comp.to_HeatPumpWaterToWaterEquationFitHeating.is_initialized} if !hw_heatpumps.empty? hw_heatpump_loop = hw_loop hw_heatpump = hw_heatpumps[0].to_HeatPumpWaterToWaterEquationFitHeating.get end hw_boilers = hw_loop.supplyComponents.select {|comp| comp.to_BoilerHotWater.is_initialized} hw_boiler = hw_boilers[0].to_BoilerHotWater.get if !hw_boilers.empty? break if !hw_heatpump_loop.nil? && !hw_heatpump.nil? && !hw_boiler.nil? end raise("apply_efficiency_ecm_hs14_cgshp_fancoils: no water-source heat pump found in heating loop #{hw_loops.name.to_s}") if hw_heatpump.nil? cw_loop = model.getPlantLoops.select {|loop| loop.sizingPlant.loopType.to_s.downcase == 'condenser'}[0] # condenser flow rate is set based on heating loop flow rate and cooling loop flow rate (adjusted for sizing factors) cw_loop_max_flow = 0.0 if hw_heatpump_loop.maximumLoopFlowRate.is_initialized cw_loop_max_flow += heatpump_siz_f*hw_heatpump_loop.maximumLoopFlowRate.to_f elsif hw_heatpump_loop.autosizedMaximumLoopFlowRate.is_initialized cw_loop_max_flow += heatpump_siz_f*hw_heatpump_loop.autosizedMaximumLoopFlowRate.to_f else raise("apply_efficiency_ecm_hs14_cgshp_fancoils: heating loop #{hw_heatpump_loop.name.to_s} flow rate is not defined") end chw_loop = model.getPlantLoops.select {|loop| loop.sizingPlant.loopType.to_s.downcase == 'cooling'}[0] if chw_loop.maximumLoopFlowRate.is_initialized cw_loop_max_flow += chiller_siz_f*chw_loop.maximumLoopFlowRate.to_f elsif chw_loop.autosizedMaximumLoopFlowRate.is_initialized cw_loop_max_flow += chiller_siz_f*chw_loop.autosizedMaximumLoopFlowRate.to_f else raise("apply_efficiency_ecm_hs14_cgshp_fancoils: cooling loop #{chw_loop.name.to_s} is not defined") end cw_loop.setMaximumLoopFlowRate(cw_loop_max_flow) cw_loop_pump = cw_loop.supplyComponents.select {|comp| comp.to_PumpVariableSpeed.is_initialized}[0].to_PumpVariableSpeed.get cw_loop_pump.setRatedFlowRate(cw_loop_max_flow) # set heating capacity of water-source heat pump and boiler if hw_heatpump.autosizedRatedHeatingCapacity.is_initialized cap = hw_heatpump.autosizedRatedHeatingCapacity.to_f elsif hw_heatpump.ratedHeatingCapacity.is_initialized cap = hw_heatpump.ratedHeatingCapacity.to_f elsif hw_heatpump.autosizedRatedHeatingCapacity.is_initialized cap = hw_heatpump.autosizedRatedHeatingCapacity.to_f else raise("apply_efficiency_ecm_hs14_cgshp_fancoils: capacity of water-source heat pump #{hw_heatpump.name.to_s} is not defined") end hw_heatpump.setRatedHeatingCapacity(heatpump_siz_f*cap) hw_boiler.setNominalCapacity((1.0-heatpump_siz_f)*cap) # set cooling capacity of chillers chillers = chw_loop.supplyComponents.select {|comp| comp.to_ChillerElectricEIR.is_initialized} chiller_water_cooled = nil chiller_air_cooled = nil chillers.each do |comp| chlr = comp.to_ChillerElectricEIR.get chiller_water_cooled = chlr if chlr.name.to_s.include? 'ChillerWaterCooled' chiller_air_cooled = chlr if chlr.name.to_s.include? 'ChillerAirCooled' break if !chiller_water_cooled.nil? && !chiller_air_cooled.nil? end raise("apply_efficiency_ecm_hs14_cgshp_fancoils: no water-cooled chiller found in cooling loop #{chw_loop.name.to_s}") if chiller_water_cooled.nil? raise("apply_efficiency_ecm_hs14_cgshp_fancoils: no air-cooled chiller found in cooling loop #{chw_loop.name.to_s}") if chiller_air_cooled.nil? if chiller_water_cooled.autosizedReferenceCapacity.is_initialized cap = chiller_water_cooled.autosizedReferenceCapacity.to_f elsif chiller_water_cooled.referenceCapacity.is_initialized cap = chiller_water_cooled.referenceCapacity.to_f elsif chiller_water_cooled.autosizedReferenceCapacity.is_initialized cap = chiller_water_cooled.autosizedReferenceCapacity.to_f else raise("apply_efficiency_ecm_hs14_cgshp_fancoils: cooling capacity of chiller #{chiller_water_cooled.name.to_s} is not defined") end chiller_water_cooled.setReferenceCapacity(chiller_siz_f*cap) chiller_air_cooled.setReferenceCapacity((1.0-chiller_siz_f)*cap) # call standard efficiency method again for water-cooled chiller new_chlr_name = chiller_water_cooled.name.to_s.chomp!(chiller_water_cooled.name.to_s.split.last).strip new_chlr_name = new_chlr_name.chomp!(new_chlr_name.split.last).strip new_chlr_name = new_chlr_name.chomp!(new_chlr_name.split.last).strip chiller_water_cooled.setName(new_chlr_name) standard.chiller_electric_eir_apply_efficiency_and_curves(chiller_water_cooled,nil) # set curves and cop of air-cooled chiller chlr_cap_w = (1.0-chiller_siz_f)*cap chlr_cap_ton = OpenStudio.convert(chlr_cap_w, 'W', 'ton').get search_criteria = {} search_criteria['cooling_type'] = 'AirCooled' chlr_props = model_find_object(standards_data['tables']['chiller_types_ecm']['table'], search_criteria, chlr_cap_ton) chiller_air_cooled.setName("ChillerAirCooled #{chlr_props['compressor_type']}") search_criteria = {} search_criteria['name'] = 'NECB2020_AirCooledChiller' search_criteria['compressor_type'] = chlr_props['compressor_type'] chiller_electric_eir_apply_curves_and_cop(chiller_air_cooled, search_criteria) end |
#apply_erv_ecm_efficiency(model:, erv_package: nil) ⇒ Object
This method will set the properties of the ERV. Must be run after the standard efficiency is complete as this will overwrite those values. See data/erv.json to view/add different erv packages available.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
# File 'lib/openstudio-standards/standards/necb/ECMS/erv.rb', line 4 def apply_erv_ecm_efficiency(model:, erv_package: nil) # If erv is nil.. do nothing. return if erv_package.nil? || erv_package == 'none' || erv_package == 'NECB_Default' erv_info = @standards_data['tables']['erv']['table'].detect { |item| item['erv_name'] == erv_package } # Check if we were able to get data. if erv_info.nil? # Get name of ERVs in erv.json. valid = @standards_data['tables']['erv']['table'].map { |x| x['erv_name'] } # tell user. raise("ERV package name #{erv_package} does not exist. must be #{valid} /n Stopping.") end # add ervs if required model.getAirLoopHVACs.sort.each do |air_loop| if air_loop.airLoopHVACOutdoorAirSystem.is_initialized erv = air_loop.airLoopHVACOutdoorAirSystem.get.components.select{|comp| comp.to_HeatExchangerAirToAirSensibleAndLatent.is_initialized} if (erv.empty? && (erv_info['application'] == 'Add_ERVs_To_All_Airloops')) air_loop_hvac_apply_energy_recovery_ventilator(air_loop, nil) end end end # Apply ecm effectiveness values model.getHeatExchangerAirToAirSensibleAndLatents.each { |erv| heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness(erv, erv_package) } end |
#apply_nv(model:, nv_type:, nv_opening_fraction:, nv_temp_out_min:, nv_delta_temp_in_out:) ⇒ Object
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# File 'lib/openstudio-standards/standards/necb/ECMS/nv.rb', line 2 def apply_nv(model:, nv_type:, nv_opening_fraction:, nv_temp_out_min:, nv_delta_temp_in_out:) ##### If any of users' inputs are nil/false/none, do nothing. ##### If users' input for 'nv_type' is 'NECB_Default', do nothing. ##### If any of users' inputs for nv_opening_fraction/nv_temp_out_min/nv_delta_temp_in_out is 'NECB_Default', use default values as defined here. return if nv_type.nil? || nv_type == false || nv_type == 'none' || nv_type == 'NECB_Default' return if nv_opening_fraction.nil? || nv_opening_fraction == false || nv_opening_fraction == 'none' return if nv_temp_out_min.nil? || nv_temp_out_min == false || nv_temp_out_min == 'none' return if nv_delta_temp_in_out.nil? || nv_delta_temp_in_out == false || nv_delta_temp_in_out == 'none' ##### Convert a string to a float (except for nv_type) if nv_opening_fraction.instance_of?(String) && nv_opening_fraction != 'NECB_Default' nv_opening_fraction = nv_opening_fraction.to_f end if nv_temp_out_min.instance_of?(String) && nv_temp_out_min != 'NECB_Default' nv_temp_out_min = nv_temp_out_min.to_f end if nv_delta_temp_in_out.instance_of?(String) && nv_delta_temp_in_out != 'NECB_Default' nv_delta_temp_in_out = nv_delta_temp_in_out.to_f end ##### Set default nv_opening_fraction as 0.1 if nv_opening_fraction == 'NECB_Default' nv_opening_fraction = 0.1 end ##### Set default nv_temp_out_min as 13.0 if nv_temp_out_min == 'NECB_Default' nv_temp_out_min = 13.0 # Note: 13.0 is based on inputs from Michel Tardif re a real school in QC end ##### Set default nv_delta_temp_in_out as 1.0 if nv_delta_temp_in_out == 'NECB_Default' nv_delta_temp_in_out = 1.0 # Note: 1.0 is based on inputs from Michel Tardif re a real school in QC end setpoint_adjustment_for_nv = 2.0 # This is to adjust heating and cooling setpoint temperature as min and max indoor temperature to have NV model.getZoneHVACEquipmentLists.sort.each do |zone_hvac_equipment_list| thermal_zone = zone_hvac_equipment_list.thermalZone thermal_zone.spaces.sort.each do |space| number_of_windows = 0.0 ##### Gather OA per person and floor area of the space from the osm file outdoor_air = space.designSpecificationOutdoorAir.get outdoor_air_flow_per_person = outdoor_air.outdoorAirFlowperPerson outdoor_air_flow_per_floor_area = outdoor_air.outdoorAirFlowperFloorArea ##### Get heating/cooling setpoint temperature schedules from the osm file # These schedules are used for min/max Tin schedules under the objects of "ZoneVentilation:DesignFlowRate" and "ZoneVentilation:WindandStackOpenArea". # Note: as per E+ I/O Ref.: "If the user enters a valid schedule name, the minimum/maximum temperature values specified in this schedule will override the constant value specified in the Minimum/Maximum Indoor Temperature field." under the objects of "ZoneVentilation:DesignFlowRate" and "ZoneVentilation:WindandStackOpenArea". if thermal_zone.thermostat.is_initialized if thermal_zone.thermostat.get.to_ThermostatSetpointDualSetpoint.is_initialized if thermal_zone.thermostat.get.to_ThermostatSetpointDualSetpoint.get.heatingSetpointTemperatureSchedule.is_initialized || thermal_zone.thermostat.get.to_ThermostatSetpointDualSetpoint.get.coolingSetpointTemperatureSchedule.is_initialized zone_thermostat = thermal_zone.thermostatSetpointDualSetpoint.get zone_clg_thermostat_sch = zone_thermostat.coolingSetpointTemperatureSchedule.get zone_htg_thermostat_sch = zone_thermostat.heatingSetpointTemperatureSchedule.get ##### Create schedule for max Tin to have NV on the basis of cooling setpoint temperature for default day zone_clg_thermostat_sch_name = zone_clg_thermostat_sch.name zone_clg_sp_schedule = zone_clg_thermostat_sch.to_ScheduleRuleset.get max_Tin_schedule = zone_clg_sp_schedule.clone(model).to_ScheduleRuleset.get max_Tin_schedule.setName('natural_ventilation_max_Tin_schedule') ## default days/weekdays max_Tin_schedule_defaultDay = max_Tin_schedule.defaultDaySchedule max_Tin_schedule_defaultDay.setName('natural_ventilation_max_Tin_schedule_defaultDay') max_Tin_schedule_defaultDay_times = max_Tin_schedule_defaultDay.times max_Tin_schedule_defaultDay_values = max_Tin_schedule_defaultDay.values max_Tin_schedule_defaultDay_values_adjusted = max_Tin_schedule_defaultDay_values.map { |i| i + setpoint_adjustment_for_nv } i = 0.0 max_Tin_schedule_defaultDay_times.each do |time| max_Tin_schedule_defaultDay.addValue(time, max_Tin_schedule_defaultDay_values_adjusted[i]) i += 1.0 end ##### Create schedule for min Tin to have NV on the basis of cooling setpoint temperature for default day zone_htg_thermostat_sch_name = zone_htg_thermostat_sch.name zone_htg_sp_schedule = zone_htg_thermostat_sch.to_ScheduleRuleset.get min_Tin_schedule = zone_htg_sp_schedule.clone(model).to_ScheduleRuleset.get min_Tin_schedule.setName('natural_ventilation_min_Tin_schedule') ## default days/weekdays min_Tin_schedule_defaultDay = min_Tin_schedule.defaultDaySchedule min_Tin_schedule_defaultDay.setName('natural_ventilation_min_Tin_schedule_defaultDay') min_Tin_schedule_defaultDay_times = min_Tin_schedule_defaultDay.times min_Tin_schedule_defaultDay_values = min_Tin_schedule_defaultDay.values min_Tin_schedule_defaultDay_values_adjusted = min_Tin_schedule_defaultDay_values.map { |index| index - setpoint_adjustment_for_nv } i = 0.0 min_Tin_schedule_defaultDay_times.each do |time| min_Tin_schedule_defaultDay.addValue(time, min_Tin_schedule_defaultDay_values_adjusted[i]) i += 1.0 end ##### Calculate how many windows a space has. # The total number of windows is used to divide OA/person and OA/FloorArea of the space by it (i.e. number of windows). # In this way, NV-driven OA in each space would be avoided to be more than required. space.surfaces.sort.each do |surface| surface.subSurfaces.sort.each do |subsurface| if (subsurface.subSurfaceType == 'OperableWindow' || subsurface.subSurfaceType == 'FixedWindow') && subsurface.outsideBoundaryCondition == 'Outdoors' number_of_windows += 1.0 end end end oa_per_person_normalized_by_number_of_windows = outdoor_air_flow_per_person / number_of_windows oa_per_floor_area_normalized_by_number_of_windows = outdoor_air_flow_per_floor_area / number_of_windows ##### Add NV in each space that has window(s) using two objects: "ZoneVentilation:DesignFlowRate" and "ZoneVentilation:WindandStackOpenArea" space.surfaces.sort.each do |surface| surface.subSurfaces.sort.each do |subsurface| if (subsurface.subSurfaceType == 'OperableWindow' || subsurface.subSurfaceType == 'FixedWindow') && subsurface.outsideBoundaryCondition == 'Outdoors' window_azimuth_deg = OpenStudio.convert(subsurface.azimuth, 'rad', 'deg').get window_area = subsurface.netArea ##### Define a constant schedule for operable windows operable_window_schedule = OpenStudio::Model::ScheduleConstant.new(model) operable_window_schedule.setName('operable_window_schedule_constant') operable_window_schedule.setScheduleTypeLimits(BTAP::Resources::Schedules::StandardScheduleTypeLimits.get_on_off(model)) ##### Add a "ZoneVentilation:DesignFlowRate" object for NV to set OA per person. zn_vent_design_flow_rate_1 = OpenStudio::Model::ZoneVentilationDesignFlowRate.new(model) zn_vent_design_flow_rate_1.setFlowRateperPerson(oa_per_person_normalized_by_number_of_windows) if model.version < OpenStudio::VersionString.new('3.5.0') # Design Flow Rate Calculation Method is automatically set in 3.5.0+ zn_vent_design_flow_rate_1.setDesignFlowRateCalculationMethod('Flow/Person') end zn_vent_design_flow_rate_1.setVentilationType('Natural') zn_vent_design_flow_rate_1.setMinimumIndoorTemperatureSchedule(min_Tin_schedule) zn_vent_design_flow_rate_1.setMaximumIndoorTemperatureSchedule(max_Tin_schedule) zn_vent_design_flow_rate_1.setMinimumOutdoorTemperature(nv_temp_out_min) zn_vent_design_flow_rate_1.setMaximumOutdoorTemperatureSchedule(max_Tin_schedule) zn_vent_design_flow_rate_1.setDeltaTemperature(nv_delta_temp_in_out) # E+ I/O Ref.: "This is the temperature difference between the indoor and outdoor air dry-bulb temperatures below which ventilation is shutoff." zone_hvac_equipment_list.addEquipment(zn_vent_design_flow_rate_1) ##### Add another "ZoneVentilation:DesignFlowRate" object for NV to set OA per floor area. zn_vent_design_flow_rate_2 = OpenStudio::Model::ZoneVentilationDesignFlowRate.new(model) zn_vent_design_flow_rate_2.setFlowRateperZoneFloorArea(oa_per_floor_area_normalized_by_number_of_windows) if model.version < OpenStudio::VersionString.new('3.5.0') # Design Flow Rate Calculation Method is automatically set in 3.5.0+ zn_vent_design_flow_rate_2.setDesignFlowRateCalculationMethod('Flow/Area') end zn_vent_design_flow_rate_2.setVentilationType('Natural') zn_vent_design_flow_rate_2.setMinimumIndoorTemperatureSchedule(min_Tin_schedule) zn_vent_design_flow_rate_2.setMaximumIndoorTemperatureSchedule(max_Tin_schedule) zn_vent_design_flow_rate_2.setMinimumOutdoorTemperature(nv_temp_out_min) zn_vent_design_flow_rate_2.setMaximumOutdoorTemperatureSchedule(max_Tin_schedule) zn_vent_design_flow_rate_2.setDeltaTemperature(nv_delta_temp_in_out) zone_hvac_equipment_list.addEquipment(zn_vent_design_flow_rate_2) ##### Add the "ZoneVentilation:WindandStackOpenArea" for NV. # Note: it has been assumed that 'Opening Effectiveness' and 'Discharge Coefficient for Opening' are autocalculated (which are the default assumptions). zn_vent_wind_and_stack = OpenStudio::Model::ZoneVentilationWindandStackOpenArea.new(model) zn_vent_wind_and_stack.setOpeningArea(window_area * nv_opening_fraction) zn_vent_wind_and_stack.setOpeningAreaFractionSchedule(operable_window_schedule) # (Ref: E+ I/O) The Effective Angle value "is used to calculate the angle between the wind direction and the opening outward normal to determine the opening effectiveness values when the input field Opening Effectiveness = Autocalculate." # (Ref: E+ I/O) "Effective Angle is the angle in degrees counting from the North clockwise to the opening outward normal." zn_vent_wind_and_stack.setEffectiveAngle(window_azimuth_deg) zn_vent_wind_and_stack.setMinimumIndoorTemperatureSchedule(min_Tin_schedule) zn_vent_wind_and_stack.setMaximumIndoorTemperatureSchedule(max_Tin_schedule) zn_vent_wind_and_stack.setMinimumOutdoorTemperature(nv_temp_out_min) zn_vent_wind_and_stack.setMaximumOutdoorTemperatureSchedule(max_Tin_schedule) zn_vent_wind_and_stack.setDeltaTemperature(nv_delta_temp_in_out) zone_hvac_equipment_list.addEquipment(zn_vent_wind_and_stack) # if (subsurface.subSurfaceType == 'OperableWindow' || subsurface.subSurfaceType == 'FixedWindow') && subsurface.outsideBoundaryCondition == 'Outdoors' end # surface.subSurfaces.sort.each do |subsurface| end # space.surfaces.sort.each do |surface| end end end end # thermal_zone.spaces.sort.each do |space| end # model.getZoneHVACEquipmentLists.sort.each do |zone_hvac_equipment_list| end ##### Add AvailabilityManagerHybridVentilation to "prevents simultaneous natural ventilation and HVAC system operation" (Ref: E+ I/O) model.getAirLoopHVACs.sort.each do |air_loop| air_loop.availabilityManagers.sort.each do |avail_mgr| if avail_mgr.to_AvailabilityManagerHybridVentilation.empty? avail_mgr_hybr_vent = OpenStudio::Model::AvailabilityManagerHybridVentilation.new(model) avail_mgr_hybr_vent.setMinimumOutdoorTemperature(nv_temp_out_min) # Note: since "Ventilation Control Mode" is by default set to "Temperature (i.e. 1)", only min and max Tout are needed. (see E+ I/O Ref.) #Note: Tout_min is to avoid overcooling (see E+ I/O Ref). avail_mgr_hybr_vent.setMaximumOutdoorTemperature(30.0) # Note: the AvailabilityManagerHybridVentilation obj does not have a schedule field for Tout, so it has been set to a fixed value of 30C. air_loop.addAvailabilityManager(avail_mgr_hybr_vent) end end end end |
#apply_pv_ground(model:, pv_ground_type:, pv_ground_total_area_pv_panels_m2:, pv_ground_tilt_angle:, pv_ground_azimuth_angle:, pv_ground_module_description:) ⇒ Object
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/openstudio-standards/standards/necb/ECMS/pv_ground.rb', line 2 def apply_pv_ground(model:, pv_ground_type:, pv_ground_total_area_pv_panels_m2:, pv_ground_tilt_angle:, pv_ground_azimuth_angle:, pv_ground_module_description:) ##### Remove leading or trailing whitespace in case users add them in inputs if pv_ground_total_area_pv_panels_m2.instance_of?(String) pv_ground_total_area_pv_panels_m2 = pv_ground_total_area_pv_panels_m2.strip end if pv_ground_tilt_angle.instance_of?(String) pv_ground_tilt_angle = pv_ground_tilt_angle.strip end if pv_ground_azimuth_angle.instance_of?(String) pv_ground_azimuth_angle = pv_ground_azimuth_angle.strip end ##### If any of users' inputs are nil/false do nothing. return if pv_ground_type.nil? || pv_ground_type == false || pv_ground_type == 'none' || pv_ground_type == 'NECB_Default' return if pv_ground_total_area_pv_panels_m2 == nil? || pv_ground_total_area_pv_panels_m2 == false || pv_ground_total_area_pv_panels_m2 == 'none' return if pv_ground_tilt_angle == nil? || pv_ground_tilt_angle == false || pv_ground_tilt_angle == 'none' return if pv_ground_azimuth_angle == nil? || pv_ground_azimuth_angle == false || pv_ground_azimuth_angle == 'none' return if pv_ground_module_description == nil? || pv_ground_module_description == false || pv_ground_module_description == 'none' ##### Convert a string to a float (except for pv_ground_type and pv_ground_module_description) if pv_ground_total_area_pv_panels_m2.instance_of?(String) && pv_ground_total_area_pv_panels_m2 != 'NECB_Default' pv_ground_total_area_pv_panels_m2 = pv_ground_total_area_pv_panels_m2.to_f end if pv_ground_tilt_angle.instance_of?(String) && pv_ground_tilt_angle != 'NECB_Default' pv_ground_tilt_angle = pv_ground_tilt_angle.to_f end if pv_ground_azimuth_angle.instance_of?(String) && pv_ground_azimuth_angle != 'NECB_Default' pv_ground_azimuth_angle = pv_ground_azimuth_angle.to_f end ##### Calculate footprint of the building model (this is used as default value for pv_ground_total_area_pv_panels_m2) building_footprint_m2 = calculate_building_footprint(model: model) # puts "building_footprint_m2 is #{building_footprint_m2}" ##### Set default PV panels' total area as the building footprint if pv_ground_total_area_pv_panels_m2 == 'NECB_Default' pv_ground_total_area_pv_panels_m2 = building_footprint_m2 end ##### Set default PV panels' tilt angle as the latitude if pv_ground_tilt_angle == 'NECB_Default' epw = OpenStudio::EpwFile.new(model.weatherFile.get.path.get) pv_ground_tilt_angle = epw.latitude end ##### Set default PV panels' azimuth angle as south-facing arrays if pv_ground_azimuth_angle == 'NECB_Default' pv_ground_azimuth_angle = 180 # EnergyPlus I/O Reference: "An azimuth angle of 180deg is for a south-facing array, and an azimuth angle of 0deg is for a north-facing array." end ##### Set default PV module type as the the below one if pv_ground_module_description == 'NECB_Default' pv_ground_module_description = 'HES-160-36PV 26.6 x 58.3 x 1.38' # Note: As per Mike Lubun's comment, assuming a typical panel is 5 ft x 2 ft, the closest standard type PV panel in the spreadsheet would be the 160W HES. end ##### Calculate number of PV panels # Note: assuming 5 ft x 2 ft as PV panel's size since it seems to fit the racking system used for ground mounts as per Mike Lubun's comment. pv_area_each_ft2 = 5.0 * 2.0 pv_area_each_m2 = OpenStudio.convert(pv_area_each_ft2, 'ft^2', 'm^2').get # convert pv_area_each_ft2 to m2 pv_number_panels = pv_ground_total_area_pv_panels_m2 / pv_area_each_m2 ##### Get data of the PV panel from the json file pv_info = @standards_data['tables']['pv']['table'].detect { |item| item['pv_module_description'] == pv_ground_module_description } pv_ground_module_type = pv_info['pv_module_type'] pv_watt = pv_info['pv_module_wattage'] ##### Create the generator # Assuming one PVWatts generator in E+ as per Mike Lubun's comment for simplification, however exact number of PVWatts generators (and inverters) are calculated for costing. dc_system_capacity = pv_number_panels * pv_watt generator = OpenStudio::Model::GeneratorPVWatts.new(model, dc_system_capacity) generator.setModuleType(pv_ground_module_type) # generator.setArrayType('OneAxis') # Note: "tilt and azimuth are fixed" for this array type (see E+ I/O Reference). This array type has been chosen as per Mike Lubun's costing spec. generator.setArrayType('FixedOpenRack') # Note: The 'FixedOpenRack' array type has been used instead of 'OneAxis' since the 'OneAxis' array type did not allow to have a non-zero tilt angle in OpenStudio 3.2.1. # (As per E+ I/O Reference: 'FixedOpenRack' is used for ground mounted arrays, assumes air flows freely around the array.) generator.setTiltAngle(pv_ground_tilt_angle) generator.setAzimuthAngle(pv_ground_azimuth_angle) ##### Create the inverter inverter = OpenStudio::Model::ElectricLoadCenterInverterPVWatts.new(model) inverter.setDCToACSizeRatio(1.1) # Note: This is EnergyPlus' default value; This default value has been chosen for ground-mounted PV, assuming no storage as per Mike Lubun's costing spec. inverter.setInverterEfficiency(0.96) # Note: This is EnergyPlus' default value; This default value has been chosen as per Mike Lubun's costing spec. ##### Add distribution systems, set relevant parameters, and add created generator to it elc_distribution = OpenStudio::Model::ElectricLoadCenterDistribution.new(model) elc_distribution.setInverter(inverter) elc_distribution.setGeneratorOperationSchemeType('Baseload') # E+ I/O Reference: "The Baseload scheme requests all generators scheduled ON (available) to operate, even if the amount of electric power generated exceeds the total facility electric power demand." This scheme type has been chosen as per Mike Lubun's costing spec. elc_distribution.addGenerator(generator) end |
#apply_system_ecm(model:, ecm_system_name: nil, template_standard:, runner: nil, ecm_system_zones_map_option: 'NECB_Default') ⇒ Object
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/openstudio-standards/standards/necb/ECMS/ecms.rb', line 42 def apply_system_ecm(model:, ecm_system_name: nil, template_standard:, runner: nil, ecm_system_zones_map_option: 'NECB_Default') # Do nothing if nil or other usual suspects.. covering all bases for now. return if ecm_system_name.nil? || ecm_system_name == 'none' || ecm_system_name == 'NECB_Default' # Verify the heating fuel primary_heating_fuel = template_standard.fuel_type_set.ecm_fueltype raise("Heating fuel for ECM #{ecm_system_name} is neither Electricity nor NaturalGas") if ((primary_heating_fuel != 'Electricity') && (primary_heating_fuel != 'NaturalGas')) ecm_system_zones_map_option = 'NECB_Default' if ecm_system_zones_map_option.nil? || ecm_system_zones_map_option == 'none' ecm_std = Standard.build('ECMS') systems = model.getAirLoopHVACs map_system_to_zones, system_doas_flags = ecm_std.get_map_systems_to_zones(systems) ecm_add_method_name = "add_ecm_#{ecm_system_name.downcase}" raise("the method #{ecm_add_method_name} does not exist in the ECM class. Please verify that this should be called.") unless ecm_std.respond_to? ecm_add_method_name # when the ecm is associated with adding a new HVAC system, then remove existing system components and loops ecm_std.remove_all_zone_eqpt(systems) ecm_std.remove_air_loops(model) ecm_std.remove_hw_loops(model) ecm_std.remove_chw_loops(model) ecm_std.remove_cw_loops(model) ecm_std.send(ecm_add_method_name, model: model, system_zones_map: map_system_to_zones, system_doas_flags: system_doas_flags, ecm_system_zones_map_option: ecm_system_zones_map_option, standard: template_standard) end |
#apply_system_efficiencies_ecm(model:, ecm_system_name: nil, template_standard:) ⇒ Object
76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/openstudio-standards/standards/necb/ECMS/ecms.rb', line 76 def apply_system_efficiencies_ecm(model:, ecm_system_name: nil, template_standard:) # Do nothing if nil. return if ecm_system_name.nil? || ecm_system_name == 'none' || ecm_system_name == 'NECB_Default' || ecm_system_name.to_s.downcase == 'remove_airloops_add_zone_baseboards' ecm_std = Standard.build('ECMS') # Get method name that should be present in the ECM class. ecm_apply_eff_method_name = "apply_efficiency_ecm_#{ecm_system_name.downcase}" # Raise exception if method does not exists. raise("the method #{ecm_apply_eff_method_name} does not exist in the ECM class. Please verify that this should be called.") unless ecm_std.respond_to?(ecm_apply_eff_method_name) # apply system eff method. ecm_std.send(ecm_apply_eff_method_name, model, template_standard) end |
#calculate_building_footprint(model:) ⇒ Object
Method for calculating footprint of the building model
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'lib/openstudio-standards/standards/necb/ECMS/pv_ground.rb', line 91 def calculate_building_footprint(model:) building_footprint_m2_array = [] lowest_floor = 10000000000.0 # dummy number as initialization to find the lowest floor among spaces # @todo Question:it it fine that it has been assumed that the floor of all lowest spaces are at the same level? model.getSpaces.sort.each do |space| space.surfaces.sort.select { |surface| (surface.surfaceType == 'Floor') && (surface.outsideBoundaryCondition != 'Surface') && (surface.outsideBoundaryCondition != 'Adiabatic') }.each do |surface| floor_vertices = surface.vertices floor_z = floor_vertices[0].z.round(1) if floor_z <= lowest_floor lowest_floor = floor_z building_footprint_m2_array << surface.netArea end end end building_footprint_m2 = building_footprint_m2_array.sum return building_footprint_m2 end |
#chiller_electric_eir_apply_curves_and_cop(chiller_electric_eir, search_criteria) ⇒ Object
Applies the performance curves “ChillerElectricEIR” object.
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2161 def chiller_electric_eir_apply_curves_and_cop(chiller_electric_eir, search_criteria) successfully_set_all_properties = true # Get the capacity capacity_w = chiller_electric_eir_find_capacity(chiller_electric_eir) capacity_tons = OpenStudio.convert(capacity_w, 'W', 'ton').get # Lookup performance curves chlr_props = model_find_object(standards_data['tables']['chillers_ecm']['table'], search_criteria, capacity_tons) # Check to make sure properties were found if chlr_props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.ChillerElectricEIR', "For #{chiller_electric_eir.name}, cannot find efficiency info using #{search_criteria}") successfully_set_all_properties = false end # CAP-FT curve capft = model_add_curve(chiller_electric_eir.model, chlr_props['capft']) if capft chiller_electric_eir.setCoolingCapacityFunctionOfTemperature(capft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.ChillerElectricEIR', "For #{chiller_electric_eir.name}, cannot find cap_ft curve, will not be set.") successfully_set_all_properties = false end # EIR-FT curve eirft = model_add_curve(chiller_electric_eir.model, chlr_props['eirft']) if eirft chiller_electric_eir.setElectricInputToCoolingOutputRatioFunctionOfTemperature(eirft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.ChillerElectricEIR', "For #{chiller_electric_eir.name}, cannot find eir_ft curve, will not be set.") successfully_set_all_properties = false end # EIR-FPLR curve eirfplr = model_add_curve(chiller_electric_eir.model, chlr_props['eirfplr']) if eirfplr chiller_electric_eir.setElectricInputToCoolingOutputRatioFunctionOfPLR(eirfplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.ChillerElectricEIR', "For #{chiller_electric_eir.name}, cannot find eir_fplr curve, will not be set.") successfully_set_all_properties = false end # set COP cop = chlr_props['minimum_coefficient_of_performance_cooling'].to_f if cop chiller_electric_eir.setReferenceCOP(cop) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.ChillerElectricEIR', "For #{chiller_electric_eir.name}, cannot find cop, will not be set.") successfully_set_all_properties = false end end |
#chiller_electric_eir_find_capacity(chiller_electric_eir) ⇒ Object
Find cooling capacity for “ChillerElectricEIR” object
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3086 def chiller_electric_eir_find_capacity(chiller_electric_eir) capacity_w = nil if chiller_electric_eir.referenceCapacity.is_initialized capacity_w = chiller_electric_eir.referenceCapacity.get elsif chiller_electric_eir.autosizedRererenceCapacity.is_initialized capacity_w = chiller_electric_eir.autosizedRerenceCapacity.get chiller_electric_eir.setReferenceCapacity(capacity_w) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.ChillerElectricEIR', "For #{chiller_electric_eir.name} capacity not available") return 0.0 end return capacity_w end |
#coil_cooling_dx_single_speed_apply_cop(coil_cooling_dx_single_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilCoolingDXSingleSpeed” object
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2617 def coil_cooling_dx_single_speed_apply_cop(coil_cooling_dx_single_speed, search_criteria, rename = false) capacity_w = coil_cooling_dx_single_speed_find_capacity(coil_cooling_dx_single_speed) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics ac_props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if ac_props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as SEER unless ac_props['minimum_seasonal_energy_efficiency_ratio'].nil? min_seer = ac_props['minimum_seasonal_energy_efficiency_ratio'] cop = seer_to_cop_no_fan(min_seer) new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}SEER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{template}: #{coil_cooling_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER unless ac_props['minimum_energy_efficiency_ratio'].nil? min_eer = ac_props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{template}: #{coil_cooling_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as SEER (heat pump) unless ac_props['minimum_seasonal_efficiency'].nil? min_seer = ac_props['minimum_seasonal_efficiency'] cop = seer_to_cop_no_fan(min_seer) new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}SEER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{template}: #{coil_cooling_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless ac_props['minimum_full_load_efficiency'].nil? min_eer = ac_props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{template}: #{coil_cooling_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless ac_props['minimum_coefficient_of_performance_cooling'].nil? cop = ac_props['minimum_coefficient_of_performance_cooling'] new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{template}: #{coil_cooling_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; COP = #{cop}") end # Rename if rename coil_cooling_dx_single_speed.setName(new_comp_name) end # Set COP coil_cooling_dx_single_speed.setRatedCOP(cop.to_f) unless cop.nil? end |
#coil_cooling_dx_single_speed_apply_curves(coil_cooling_dx_single_speed, eqpt_name) ⇒ Object
Applies the performance curves “CoilCoolingDXSingleSpeed” object.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2012 def coil_cooling_dx_single_speed_apply_curves(coil_cooling_dx_single_speed, eqpt_name) successfully_set_all_properties = true search_criteria = {} search_criteria['name'] = eqpt_name # Get the capacity capacity_w = coil_cooling_dx_single_speed_find_capacity(coil_cooling_dx_single_speed) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup efficiencies ac_props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if ac_props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find efficiency info using #{search_criteria}, cannot apply efficiency.") successfully_set_all_properties = false end # Make the COOL-CAP-FT curve cool_cap_ft = model_add_curve(coil_cooling_dx_single_speed.model, ac_props['cool_cap_ft']) if cool_cap_ft coil_cooling_dx_single_speed.setTotalCoolingCapacityFunctionOfTemperatureCurve(cool_cap_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find cool_cap_ft curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CAP-FFLOW curve cool_cap_fflow = model_add_curve(coil_cooling_dx_single_speed.model, ac_props['cool_cap_fflow']) if cool_cap_fflow coil_cooling_dx_single_speed.setTotalCoolingCapacityFunctionOfFlowFractionCurve(cool_cap_fflow) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find cool_cap_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FT curve cool_eir_ft = model_add_curve(coil_cooling_dx_single_speed.model, ac_props['cool_eir_ft']) if cool_eir_ft coil_cooling_dx_single_speed.setEnergyInputRatioFunctionOfTemperatureCurve(cool_eir_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find cool_eir_ft curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FFLOW curve cool_eir_fflow = model_add_curve(coil_cooling_dx_single_speed.model, ac_props['cool_eir_fflow']) if cool_eir_fflow coil_cooling_dx_single_speed.setEnergyInputRatioFunctionOfFlowFractionCurve(cool_eir_fflow) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_single_speed.name}, cannot find cool_eir_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-PLF-FPLR curve cool_plf_fplr = model_add_curve(coil_cooling_dx_single_speed.model, ac_props['cool_plf_fplr']) if cool_plf_fplr coil_cooling_dx_single_speed.setPartLoadFractionCorrelationCurve(cool_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXSingleSpeed', "For #{coil_cooling_dx_Single_speed.name}, cannot find cool_plf_fplr curve, will not be set.") successfully_set_all_properties = false end end |
#coil_cooling_dx_variable_speed_apply_cop(coil_cooling_dx_variable_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilCoolingDXVariableSpeed” object
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2754 def coil_cooling_dx_variable_speed_apply_cop(coil_cooling_dx_variable_speed, search_criteria, rename = false) capacity_w = coil_cooling_dx_variable_speed_find_capacity(coil_cooling_dx_variable_speed) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics ac_props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if ac_props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as SEER unless ac_props['minimum_seasonal_energy_efficiency_ratio'].nil? min_seer = ac_props['minimum_seasonal_energy_efficiency_ratio'] cop = seer_to_cop_no_fan(min_seer) new_comp_name = "#{coil_cooling_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}SEER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{template}: #{coil_cooling_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER unless ac_props['minimum_energy_efficiency_ratio'].nil? min_eer = ac_props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_cooling_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{template}: #{coil_cooling_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as SEER (heat pump) unless ac_props['minimum_seasonal_efficiency'].nil? min_seer = ac_props['minimum_seasonal_efficiency'] cop = seer_to_cop_no_fan(min_seer) new_comp_name = "#{coil_cooling_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}SEER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{template}: #{coil_cooling_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless ac_props['minimum_full_load_efficiency'].nil? min_eer = ac_props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_cooling_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{template}: #{coil_cooling_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless ac_props['minimum_coefficient_of_performance_cooling'].nil? cop = ac_props['minimum_coefficient_of_performance_cooling'] new_comp_name = "#{coil_cooling_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{template}: #{coil_cooling_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; COP = #{cop}") end # Rename if rename coil_cooling_dx_variable_speed.setName(new_comp_name) end # Set COP values coil_cooling_dx_variable_speed.speeds.each { |speed| speed.setReferenceUnitGrossRatedCoolingCOP(cop.to_f) } unless cop.nil? end |
#coil_cooling_dx_variable_speed_apply_curves(coil_cooling_dx_variable_speed, eqpt_name) ⇒ Object
Applies the performance curves “CoilCoolingDXVariableSpeed” object.
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2217 def coil_cooling_dx_variable_speed_apply_curves(coil_cooling_dx_variable_speed, eqpt_name) successfully_set_all_properties = true # Get the capacity capacity_w = coil_cooling_dx_variable_speed_find_capacity(coil_cooling_dx_variable_speed) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup performance curves search_criteria = {} search_criteria['name'] = eqpt_name ac_props = model_find_object(standards_data['tables']['heat_pump_cooling_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if ac_props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find efficiency info using #{search_criteria}, cannot apply efficiency.") successfully_set_all_properties = false end # Make the COOL-CAP-FT curve cool_cap_ft = model_add_curve(coil_cooling_dx_variable_speed.model, ac_props['cool_cap_ft']) if cool_cap_ft coil_cooling_dx_variable_speed.speeds.each { |speed| speed.setTotalCoolingCapacityFunctionofTemperatureCurve(cool_cap_ft) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find cool_cap_ft curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-CAP-FFLOW curve cool_cap_fflow = model_add_curve(coil_cooling_dx_variable_speed.model, ac_props['cool_cap_fflow']) if cool_cap_fflow coil_cooling_dx_variable_speed.speeds.each { |speed| speed.setTotalCoolingCapacityFunctionofAirFlowFractionCurve(cool_cap_fflow) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standard.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find cool_cap_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FT curve cool_eir_ft = model_add_curve(coil_cooling_dx_variable_speed.model, ac_props['cool_eir_ft']) if cool_eir_ft coil_cooling_dx_variable_speed.speeds.each { |speed| speed.setEnergyInputRatioFunctionofTemperatureCurve(cool_eir_ft) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find cool_eir_ft curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-EIR-FFLOW curve cool_eir_fflow = model_add_curve(coil_cooling_dx_variable_speed.model, ac_props['cool_eir_fflow']) if cool_eir_fflow coil_cooling_dx_variable_speed.speeds.each { |speed| speed.setEnergyInputRatioFunctionofAirFlowFractionCurve(cool_eir_fflow) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find cool_eir_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the COOL-PLF-FPLR curve cool_plf_fplr = model_add_curve(coil_cooling_dx_variable_speed.model, ac_props['cool_plf_fplr']) if cool_plf_fplr coil_cooling_dx_variable_speed.setEnergyPartLoadFractionCurve(cool_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name}, cannot find cool_plf_fplr curve, will not be set.") successfully_set_all_properties = false end end |
#coil_cooling_dx_variable_speed_find_capacity(coil_cooling_dx_variable_speed) ⇒ Object
Find cooling capacity for “CoilCoolingDXVariableSpeed” object
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3020 def coil_cooling_dx_variable_speed_find_capacity(coil_cooling_dx_variable_speed) capacity_w = nil if coil_cooling_dx_variable_speed.grossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.is_initialized capacity_w = coil_cooling_dx_variable_speed.grossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.get elsif coil_cooling_dx_variable_speed.autosizedGrossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.is_initialized capacity_w = coil_cooling_dx_variable_speed.autosizedGrossRatedTotalCoolingCapacityAtSelectedNominalSpeedLevel.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilCoolingDXVariableSpeed', "For #{coil_cooling_dx_variable_speed.name} capacity is not available.") return 0.0 end return capacity_w end |
#coil_heating_dx_single_speed_apply_cop(coil_heating_dx_single_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilHeatingDXSingleSpeed” object
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2689 def coil_heating_dx_single_speed_apply_cop(coil_heating_dx_single_speed, search_criteria, rename = false) capacity_w = coil_heating_dx_single_speed_find_capacity(coil_heating_dx_single_speed) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics props = model_find_object(standards_data['tables']['heat_pump_heating_ecm'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find efficiency info using #{search_criteria}") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as EER unless props['minimum_energy_efficiency_ratio'].nil? min_eer = props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_heating_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{template}: #{coil_heating_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as HSPF (heat pump) unless props['minimum_heating_seasonal_performance_factor'].nil? min_hspf = props['minimum_heating_seasonal_performance_factor'] cop = hspf_to_cop_no_fan(min_hspf) new_comp_name = "#{coil_heating_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}HSPF" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{template}: #{coil_heating_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless props['minimum_full_load_efficiency'].nil? min_eer = props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_heating_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{template}: #{coil_heating_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless props['minimum_coefficient_of_performance_heating'].nil? cop_min = props['minimum_coefficient_of_performance_heating'] cop = cop_heating_to_cop_heating_no_fan(cop_min, capacity_w) new_comp_name = "#{coil_heating_dx_single_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{template}: #{coil_heating_dx_single_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # Rename if rename coil_heating_dx_single_speed.setName(new_comp_name) end # Set COP coil_heating_dx_single_speed.setRatedCOP(cop.to_f) unless cop.nil? end |
#coil_heating_dx_single_speed_apply_curves(coil_heating_dx_single_speed, eqpt_name) ⇒ Object
Applies the performance curves to “CoilHeatingSingleSpeed” object.
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2082 def coil_heating_dx_single_speed_apply_curves(coil_heating_dx_single_speed, eqpt_name) successfully_set_all_properties = true # Get the search criteria search_criteria = {} search_criteria['name'] = eqpt_name # Get the capacity capacity_w = coil_heating_dx_single_speed_find_capacity(coil_heating_dx_single_speed) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup efficiencies props = model_find_object(standards_data['tables']['heat_pump_heating_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false end # Make the HEAT-CAP-FT curve heat_cap_ft = model_add_curve(coil_heating_dx_single_speed.model, props['heat_cap_ft']) if heat_cap_ft coil_heating_dx_single_speed.setTotalHeatingCapacityFunctionofTemperatureCurve(heat_cap_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find heat_cap_ft curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-CAP-FFLOW curve heat_cap_fflow = model_add_curve(coil_heating_dx_single_speed.model, props['heat_cap_fflow']) if heat_cap_fflow coil_heating_dx_single_speed.setTotalHeatingCapacityFunctionofFlowFractionCurve(heat_cap_fflow) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find heat_cap_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FT curve heat_eir_ft = model_add_curve(coil_heating_dx_single_speed.model, props['heat_eir_ft']) if heat_eir_ft coil_heating_dx_single_speed.setEnergyInputRatioFunctionofTemperatureCurve(heat_eir_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find heat_eir_ft curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FFLOW curve heat_eir_fflow = model_add_curve(coil_heating_dx_single_speed.model, props['heat_eir_fflow']) if heat_eir_fflow coil_heating_dx_single_speed.setEnergyInputRatioFunctionofFlowFractionCurve(heat_eir_fflow) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find heat_eir_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-PLF-FPLR curve heat_plf_fplr = model_add_curve(coil_heating_dx_single_speed.model, props['heat_plf_fplr']) if heat_plf_fplr coil_heating_dx_single_speed.setPartLoadFractionCorrelationCurve(heat_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, cannot find heat_plf_fplr curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-DEFROST-EIR-FT curve heat_defrost_eir_ft = model_add_curve(coil_heating_dx_single_speed.model, props['heat_defrost_eir_ft']) if heat_defrost_eir_ft coil_heating_dx_single_speed.setDefrostEnergyInputRatioFunctionofTemperatureCurve(heat_defrost_eir_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXSingleSpeed', "For #{coil_heating_dx_single_speed.name}, can not find heat_defrost_eir_ft curve, will not be set.") successfully_set_all_properties = false end end |
#coil_heating_dx_variable_speed_apply_cop(coil_heating_dx_variable_speed, search_criteria, rename = false) ⇒ Object
Find efficiency for “CoilHeatingDXVariableSpeed” object
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2826 def coil_heating_dx_variable_speed_apply_cop(coil_heating_dx_variable_speed, search_criteria, rename = false) capacity_w = coil_heating_dx_variable_speed_find_capacity(coil_heating_dx_variable_speed) capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get capacity_kbtu_per_hr = OpenStudio.convert(capacity_w, 'W', 'kBtu/hr').get # Look up the efficiency characteristics props = model_find_object(standards_data['tables']['heat_pump_heating_ecm'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false return successfully_set_all_properties end # Get the minimum efficiency cop = nil # If specified as EER unless props['minimum_energy_efficiency_ratio'].nil? min_eer = props['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{template}: #{coil_heating_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # if specified as HSPF (heat pump) unless props['minimum_heating_seasonal_performance_factor'].nil? min_hspf = props['minimum_heating_seasonal_performance_factor'] cop = hspf_to_cop_no_fan(min_hspf) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_seer}HSPF" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{template}: #{coil_heating_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; SEER = #{min_seer}") end # If specified as EER (heat pump) unless props['minimum_full_load_efficiency'].nil? min_eer = props['minimum_full_load_efficiency'] cop = eer_to_cop_no_fan(min_eer) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{min_eer}EER" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{template}: #{coil_heating_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # If specified as COP unless props['minimum_coefficient_of_performance_heating'].nil? min_cop = props['minimum_coefficient_of_performance_heating'] cop = cop_heating_to_cop_heating_no_fan(min_cop, capacity_w) new_comp_name = "#{coil_heating_dx_variable_speed.name} #{capacity_kbtu_per_hr.round}kBtu/hr #{cop}COP" OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{template}: #{coil_heating_dx_variable_speed.name}: Capacity = #{capacity_kbtu_per_hr.round}kBtu/hr; EER = #{min_eer}") end # Rename if rename coil_heating_dx_variable_speed.setName(new_comp_name) end # Set COP values coil_heating_dx_variable_speed.speeds.each { |speed| speed.setReferenceUnitGrossRatedHeatingCOP(cop.to_f) } unless cop.nil? end |
#coil_heating_dx_variable_speed_apply_curves(coil_heating_dx_variable_speed, eqpt_name) ⇒ Object
Applies performance curves to “CoilHeatingVariableSpeed” object.
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 2285 def coil_heating_dx_variable_speed_apply_curves(coil_heating_dx_variable_speed, eqpt_name) successfully_set_all_properties = true # Get the search criteria search_criteria = {} search_criteria['name'] = eqpt_name # Get the capacity capacity_w = coil_heating_dx_variable_speed_find_capacity(coil_heating_dx_variable_speed) capacity_w = [1.0,capacity_w].max capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get # Lookup performance curves props = model_find_object(standards_data['tables']['heat_pump_heating_ecm']['table'], search_criteria, capacity_btu_per_hr) # Check to make sure properties were found if props.nil? OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find efficiency info using #{search_criteria}.") successfully_set_all_properties = false end # Make the HEAT-CAP-FT curve heat_cap_ft = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_cap_ft']) if heat_cap_ft coil_heating_dx_variable_speed.speeds.each { |speed| speed.setHeatingCapacityFunctionofTemperatureCurve(heat_cap_ft) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_cap_ft curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-CAP-FFLOW curve heat_cap_fflow = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_cap_fflow']) if heat_cap_fflow coil_heating_dx_variable_speed.speeds.each { |speed| speed.setTotalHeatingCapacityFunctionofAirFlowFractionCurve(heat_cap_fflow) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_cap_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FT curve heat_eir_ft = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_eir_ft']) if heat_eir_ft coil_heating_dx_variable_speed.speeds.each { |speed| speed.setEnergyInputRatioFunctionofTemperatureCurve(heat_eir_ft) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSingleSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_eir_ft curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-EIR-FFLOW curve heat_eir_fflow = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_eir_fflow']) if heat_eir_fflow coil_heating_dx_variable_speed.speeds.each { |speed| speed.setEnergyInputRatioFunctionofAirFlowFractionCurve(heat_eir_fflow) } else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_eir_fflow curve, will not be set.") successfully_set_all_properties = false end # Make the HEAT-PLF-FPLR curve heat_plf_fplr = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_plf_fplr']) if heat_plf_fplr coil_heating_dx_variable_speed.setEnergyPartLoadFractionCurve(heat_plf_fplr) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_plf_fplr curve, will not be set.") successfully_set_all_properties = false end # Make the heat_defrost_eir_ft heat_defrost_eir_ft = model_add_curve(coil_heating_dx_variable_speed.model, props['heat_defrost_eir_ft']) if heat_defrost_eir_ft coil_heating_dx_variable_speed.setDefrostEnergyInputRatioFunctionofTemperatureCurve(heat_defrost_eir_ft) else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name}, cannot find heat_defrost_eir_ft curve, will not be set") successfully_set_all_properties = false end end |
#coil_heating_dx_variable_speed_find_capacity(coil_heating_dx_variable_speed) ⇒ Object
Find heating capacity for “CoilHeatingDXVariableSpeed” object
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3036 def coil_heating_dx_variable_speed_find_capacity(coil_heating_dx_variable_speed) capacity_w = nil if coil_heating_dx_variable_speed.ratedHeatingCapacityAtSelectedNominalSpeedLevel.is_initialized capacity_w = coil_heating_dx_variable_speed.ratedHeatingCapacityAtSelectedNominalSpeedLevel.get elsif coil_heating_dx_variable_speed.autosizedRatedHeatingCapacityAtSelectedNominalSpeedLevel.is_initialized capacity_w = coil_heating_dx_variable_speed.autosizedRatedHeatingCapacityAtSelectedNominalSpeedLevel.get else OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.CoilHeatingDXVariableSpeed', "For #{coil_heating_dx_variable_speed.name} capacity is not available.") return 0.0 end return capacity_w end |
#create_air_sys_clg_eqpt(model, clg_eqpt_type) ⇒ Object
create air system cooling equipment
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 712 def create_air_sys_clg_eqpt(model, clg_eqpt_type) clg_eqpt = nil case clg_eqpt_type.downcase when 'ashp' clg_eqpt = OpenStudio::Model::CoilCoolingDXSingleSpeed.new(model) clg_eqpt.setName('CoilCoolingDxSingleSpeed_ASHP') clg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'ccashp' clg_eqpt = OpenStudio::Model::CoilCoolingDXVariableSpeed.new(model) clg_eqpt.setName('CoilCoolingDXVariableSpeed_CCASHP') clg_eqpt_speed1 = OpenStudio::Model::CoilCoolingDXVariableSpeedSpeedData.new(model) clg_eqpt.addSpeed(clg_eqpt_speed1) clg_eqpt.setNominalSpeedLevel(1) clg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'coil_chw' clg_eqpt = OpenStudio::Model::CoilCoolingWater.new(model) clg_eqpt.setName('CoilCoolingWater') when 'vrf' clg_eqpt = OpenStudio::Model::CoilCoolingDXVariableRefrigerantFlow.new(model) clg_eqpt.setName('CoilCoolingDXVariableRefrigerantFlow') end return clg_eqpt end |
#create_air_sys_fan(model, fan_type) ⇒ Object
create air system fan
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 693 def create_air_sys_fan(model, fan_type) fan = nil case fan_type.downcase when 'constant_volume' fan = OpenStudio::Model::FanConstantVolume.new(model) fan.setName('FanConstantVolume') when 'variable_volume' fan = OpenStudio::Model::FanVariableVolume.new(model) fan.setName('FanVariableVolume') when 'on_off' fan = OpenStudio::Model::FanOnOff.new(model) fan.setName('FanOnOff') end return fan end |
#create_air_sys_htg_eqpt(model, htg_eqpt_type) ⇒ Object
create air system heating equipment
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 739 def create_air_sys_htg_eqpt(model, htg_eqpt_type) always_on = model.alwaysOnDiscreteSchedule htg_eqpt = nil case htg_eqpt_type.downcase when 'coil_electric' htg_eqpt = OpenStudio::Model::CoilHeatingElectric.new(model, always_on) htg_eqpt.setName('CoilHeatingElectric') when 'coil_gas' htg_eqpt = OpenStudio::Model::CoilHeatingGas.new(model, always_on) htg_eqpt.setName('CoilHeatingGas') when 'ashp' htg_eqpt = OpenStudio::Model::CoilHeatingDXSingleSpeed.new(model) htg_eqpt.setName('CoilHeatingDXSingleSpeed_ASHP') htg_eqpt.setDefrostStrategy('ReverseCycle') htg_eqpt.setDefrostControl('OnDemand') htg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'ccashp' htg_eqpt = OpenStudio::Model::CoilHeatingDXVariableSpeed.new(model) htg_eqpt.setName('CoilHeatingDXVariableSpeed_CCASHP') htg_eqpt_speed1 = OpenStudio::Model::CoilHeatingDXVariableSpeedSpeedData.new(model) htg_eqpt.addSpeed(htg_eqpt_speed1) htg_eqpt.setNominalSpeedLevel(1) htg_eqpt.setMinimumOutdoorDryBulbTemperatureforCompressorOperation(-25.0) htg_eqpt.setDefrostStrategy('ReverseCycle') htg_eqpt.setDefrostControl('OnDemand') htg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'coil_hw' htg_eqpt = OpenStudio::Model::CoilHeatingWater.new(model) htg_eqpt.setName('CoilHeatingWater') end return htg_eqpt end |
#create_air_sys_spm(model, setpoint_mgr_type, zones) ⇒ Object
create air system setpoint manager
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 667 def create_air_sys_spm(model, setpoint_mgr_type, zones) spm = nil case setpoint_mgr_type.downcase when 'scheduled' sat = 20.0 sat_sch = OpenStudio::Model::ScheduleRuleset.new(model) sat_sch.defaultDaySchedule.addValue(OpenStudio::Time.new(0, 24, 0, 0), sat) spm = OpenStudio::Model::SetpointManagerScheduled.new(model, sat_sch) when 'single_zone_reheat' spm = OpenStudio::Model::SetpointManagerSingleZoneReheat.new(model) spm.setControlZone(zones[0]) spm.setMinimumSupplyAirTemperature(13.0) spm.setMaximumSupplyAirTemperature(43.0) when 'warmest' spm = OpenStudio::Model::SetpointManagerWarmest.new(model) spm.setMinimumSetpointTemperature(13.0) spm.setMaximumSetpointTemperature(22.0) end return spm end |
#create_airloop(model, sys_vent_type) ⇒ Object
create air loop
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 628 def create_airloop(model, sys_vent_type) airloop = OpenStudio::Model::AirLoopHVAC.new(model) airloop.sizingSystem.setPreheatDesignTemperature(7.0) airloop.sizingSystem.setPreheatDesignHumidityRatio(0.008) airloop.sizingSystem.setPrecoolDesignTemperature(13.0) airloop.sizingSystem.setPrecoolDesignHumidityRatio(0.008) airloop.sizingSystem.setSizingOption('NonCoincident') airloop.sizingSystem.setCoolingDesignAirFlowMethod('DesignDay') airloop.sizingSystem.setCoolingDesignAirFlowRate(0.0) airloop.sizingSystem.setHeatingDesignAirFlowMethod('DesignDay') airloop.sizingSystem.setHeatingDesignAirFlowRate(0.0) airloop.sizingSystem.setSystemOutdoorAirMethod('ZoneSum') airloop.sizingSystem.setCentralCoolingDesignSupplyAirHumidityRatio(0.0085) airloop.sizingSystem.setCentralHeatingDesignSupplyAirHumidityRatio(0.0080) if model.version < OpenStudio::VersionString.new('2.7.0') airloop.sizingSystem.setMinimumSystemAirFlowRatio(1.0) else airloop.sizingSystem.setCentralHeatingMaximumSystemAirFlowRatio(1.0) end case sys_vent_type.downcase when 'doas' airloop.sizingSystem.setAllOutdoorAirinCooling(true) airloop.sizingSystem.setAllOutdoorAirinHeating(true) airloop.sizingSystem.setTypeofLoadtoSizeOn('VentilationRequirement') airloop.sizingSystem.setCentralCoolingDesignSupplyAirTemperature(13.0) airloop.sizingSystem.setCentralHeatingDesignSupplyAirTemperature(22.0) when 'mixed' airloop.sizingSystem.setAllOutdoorAirinCooling(false) airloop.sizingSystem.setAllOutdoorAirinHeating(false) airloop.sizingSystem.setTypeofLoadtoSizeOn('Sensible') airloop.sizingSystem.setCentralCoolingDesignSupplyAirTemperature(13.0) airloop.sizingSystem.setCentralHeatingDesignSupplyAirTemperature(43.0) end return airloop end |
#create_plantloop_clg_eqpt(model, loop_clg_eqpt_type) ⇒ Object
add plant loop cooling eqpt
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1060 def create_plantloop_clg_eqpt(model, loop_clg_eqpt_type) clg_eqpt = nil case loop_clg_eqpt_type.downcase when "chiller_electric_eir" clg_eqpt = OpenStudio::Model::ChillerElectricEIR.new(model) clg_eqpt.setName("ChillerElectricEIR") when "district_cooling" clg_eqpt = OpenStudio::Model::DistrictCooling.new(model) clg_eqpt.setName("DistrictCooling") when "heatpump_watertowater_equationfit" clg_eqpt = OpenStudio::Model::HeatPumpWaterToWaterEquationFitCooling.new(model) clg_eqpt.setName("HeatPumpWaterToWaterEquationFitCooling") end return clg_eqpt end |
#create_plantloop_heat_rej_eqpt(model, loop_heat_rej_eqpt_type) ⇒ Object
add plant loop heat rejection equipment
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1101 def create_plantloop_heat_rej_eqpt(model, loop_heat_rej_eqpt_type) heat_rej_eqpt = nil case loop_heat_rej_eqpt_type.downcase when "tower_single_speed" heat_rej_eqpt = OpenStudio::Model::CoolingTowerSingleSpeed.new(model) heat_rej_eqpt.setName("CoolingTowerSingleSpeed") when "vertical_ground_hx" heat_rej_eqpt = OpenStudio::Model::GroundHeatExchangerVertical.new(model) heat_rej_eqpt.setName("GroundHeatExchangerVertical") when "district_heating" if model.version < OpenStudio::VersionString.new('3.7.0') heat_rej_eqpt = OpenStudio::Model::DistrictHeating.new(model) else heat_rej_eqpt = OpenStudio::Model::DistrictHeatingWater.new(model) end heat_rej_eqpt.setName("DistrictHeating") when "district_cooling" heat_rej_eqpt = OpenStudio::Model::DistrictCooling.new(model) heat_rej_eqpt.setName("DistrictCooling") end return heat_rej_eqpt end |
#create_plantloop_htg_eqpt(model, loop_htg_eqpt_type) ⇒ Object
add plant loop heating eqpt created by: [email protected] (August 2021)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1038 def create_plantloop_htg_eqpt(model, loop_htg_eqpt_type) htg_eqpt = nil case loop_htg_eqpt_type.downcase when "district_heating" if model.version < OpenStudio::VersionString.new('3.7.0') htg_eqpt = OpenStudio::Model::DistrictHeating.new(model) else htg_eqpt = OpenStudio::Model::DistrictHeatingWater.new(model) end htg_eqpt.setName("DistrictHeating") when "heatpump_watertowater_equationfit" htg_eqpt = OpenStudio::Model::HeatPumpWaterToWaterEquationFitHeating.new(model) htg_eqpt.setName("HeatPumpWaterToWaterEquationFitHeating") end return htg_eqpt end |
#create_plantloop_pump(model, loop_pump_type) ⇒ Object
add plant loop pump
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1020 def create_plantloop_pump(model, loop_pump_type) pump = nil case loop_pump_type.downcase when "constant_speed" pump = OpenStudio::Model::PumpConstantSpeed.new(model) pump.setName("PumpConstantSpeed") when "variable_speed" pump = OpenStudio::Model::PumpVariableSpeed.new(model) pump.setName("PumpVariableSpeed") end return pump end |
#create_plantloop_spm(model, loop_spm_type, loop_setpoint) ⇒ Object
add plant loop setpoint manager
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1081 def create_plantloop_spm( model, loop_spm_type, loop_setpoint) spm = nil case loop_spm_type.downcase when "scheduled" sch = OpenStudio::Model::ScheduleConstant.new(model) sch.setValue(loop_setpoint) spm = OpenStudio::Model::SetpointManagerScheduled.new(model,sch) spm.setName("SetpointManagerScheduled") when "followgroundtemperature" spm = OpenStudio::Model::SetpointManagerFollowGroundTemperature.new(model) spm.setReferenceGroundTemperatureObjectType("Site:GroundTemperature:Deep") spm.setMinimumSetpointTemperature(0.0) end return spm end |
#create_zone_clg_eqpt(model, zone_clg_eqpt_type) ⇒ Object
create zonal cooling equipment
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 884 def create_zone_clg_eqpt(model, zone_clg_eqpt_type) always_on = model.alwaysOnDiscreteSchedule clg_eqpt = nil case zone_clg_eqpt_type.downcase when 'fancoil_4pipe' clg_eqpt = OpenStudio::Model::CoilCoolingWater.new(model) clg_eqpt.setName('CoilCoolingWater_FanCoil') when 'ptac_electric_off', 'pthp' clg_eqpt = OpenStudio::Model::CoilCoolingDXSingleSpeed.new(model) clg_eqpt.setName('CoilCoolingDXSingleSpeed_PTHP') if zone_clg_eqpt_type.downcase == 'pthp' clg_eqpt.setName('CoilCoolingDXSingleSpeed_PTAC') if zone_clg_eqpt_type.downcase == 'ptac_electric_off' clg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'vrf' clg_eqpt = OpenStudio::Model::CoilCoolingDXVariableRefrigerantFlow.new(model) clg_eqpt.setName('CoilCoolingDXVariableRefrigerantFlow') end return clg_eqpt end |
#create_zone_container_eqpt(model:, zone_cont_eqpt_type:, zone_htg_eqpt:, zone_supp_htg_eqpt:, zone_clg_eqpt:, zone_fan:, zone_vent_off: true) ⇒ Object
create zpne container eqpt
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 906 def create_zone_container_eqpt(model:, zone_cont_eqpt_type:, zone_htg_eqpt:, zone_supp_htg_eqpt:, zone_clg_eqpt:, zone_fan:, zone_vent_off: true) always_on = model.alwaysOnDiscreteSchedule always_off = model.alwaysOffDiscreteSchedule zone_eqpt = nil case zone_cont_eqpt_type.downcase when 'fancoil_4pipe' zone_eqpt = OpenStudio::Model::ZoneHVACFourPipeFanCoil.new(model, always_on, zone_fan, zone_clg_eqpt, zone_htg_eqpt) zone_eqpt.setName('ZoneHVACFourPipeFanCoil') zone_eqpt.(always_off) zone_eqpt.setMaximumOutdoorAirFlowRate(1.0e-6) when 'ptac_electric_off' zone_eqpt = OpenStudio::Model::ZoneHVACPackagedTerminalAirConditioner.new(model, always_on, zone_fan, zone_htg_eqpt, zone_clg_eqpt) zone_eqpt.setName('ZoneHVACPackagedTerminalAirConditioner') zone_eqpt.(always_off) if zone_vent_off zone_eqpt.setOutdoorAirFlowRateDuringCoolingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateDuringHeatingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateWhenNoCoolingorHeatingisNeeded(1.0e-6) end when 'pthp' zone_eqpt = OpenStudio::Model::ZoneHVACPackagedTerminalHeatPump.new(model, always_on, zone_fan, zone_htg_eqpt, zone_clg_eqpt, zone_supp_htg_eqpt) zone_eqpt.setName('ZoneHVACPackagedTerminalHeatPump') if zone_vent_off zone_eqpt.setOutdoorAirFlowRateDuringCoolingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateDuringHeatingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateWhenNoCoolingorHeatingisNeeded(1.0e-6) zone_eqpt.(always_off) end when 'unitheater_electric' zone_eqpt = OpenStudio::Model::ZoneHVACUnitHeater.new(model, always_on, zone_fan, zone_htg_eqpt) zone_eqpt.setName('ZoneHVACUnitHeater') zone_eqpt.setFanControlType('OnOff') when 'vrf' zone_eqpt = OpenStudio::Model::ZoneHVACTerminalUnitVariableRefrigerantFlow.new(model, zone_clg_eqpt, zone_htg_eqpt, zone_fan) zone_eqpt.setName('ZoneHVACTerminalUnitVariableRefrigerantFlow') zone_eqpt.(always_off) if zone_vent_off zone_eqpt.setOutdoorAirFlowRateDuringCoolingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateDuringHeatingOperation(1.0e-6) zone_eqpt.setOutdoorAirFlowRateWhenNoCoolingorHeatingisNeeded(1.0e-6) zone_eqpt.setZoneTerminalUnitOffParasiticElectricEnergyUse(1.0e-6) zone_eqpt.setZoneTerminalUnitOnParasiticElectricEnergyUse(1.0e-6) end end return zone_eqpt end |
#create_zone_diffuser(model, zone_diffuser_type, zone) ⇒ Object
create zone diffuser
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 828 def create_zone_diffuser(model, zone_diffuser_type, zone) always_on = model.alwaysOnDiscreteSchedule diffuser = nil case zone_diffuser_type.downcase when 'single_duct_uncontrolled' diffuser = OpenStudio::Model::AirTerminalSingleDuctUncontrolled.new(model, always_on) when 'single_duct_vav_reheat' reheat_coil = OpenStudio::Model::CoilHeatingElectric.new(model, always_on) diffuser = OpenStudio::Model::AirTerminalSingleDuctVAVReheat.new(model, always_on, reheat_coil) # diffuser.setFixedMinimumAirFlowRate(0.002 * zone.floorArea ) diffuser.setMaximumReheatAirTemperature(43.0) diffuser.setDamperHeatingAction('Normal') end return diffuser end |
#create_zone_htg_eqpt(model, zone_htg_eqpt_type, hw_loop) ⇒ Object
create zonal heating equipment
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 847 def create_zone_htg_eqpt(model, zone_htg_eqpt_type, hw_loop) always_on = model.alwaysOnDiscreteSchedule always_off = model.alwaysOffDiscreteSchedule htg_eqpt = nil case zone_htg_eqpt_type.downcase when 'baseboard_electric' htg_eqpt = OpenStudio::Model::ZoneHVACBaseboardConvectiveElectric.new(model) htg_eqpt.setName('ZoneHVACBaseboardConvectiveElectric') when 'baseboard_hotwater' htg_coil = OpenStudio::Model::CoilHeatingWaterBaseboard.new(model) htg_coil.setName("CoilHeatingWaterBaseboard") hw_loop.addDemandBranchForComponent(htg_coil) htg_eqpt = OpenStudio::Model::ZoneHVACBaseboardConvectiveWater.new(model, model.alwaysOnDiscreteSchedule, htg_coil) htg_eqpt.setName('ZoneHVACBaseboardConvectiveWater') when 'coil_electric', 'ptac_electric_off', 'unitheater_electric' htg_eqpt = OpenStudio::Model::CoilHeatingElectric.new(model, always_on) htg_eqpt.setName('CoilHeatingElectric') htg_eqpt.setAvailabilitySchedule(always_off) if zone_htg_eqpt_type == 'ptac_electric_off' when 'fancoil_4pipe' htg_eqpt = OpenStudio::Model::CoilHeatingWater.new(model) htg_eqpt.setName('CoilHeatingWater_FanCoil') when 'pthp' htg_eqpt = OpenStudio::Model::CoilHeatingDXSingleSpeed.new(model) htg_eqpt.setName('CoilHeatingDXSingleSpeed_PTHP') htg_eqpt.setDefrostStrategy('ReverseCycle') htg_eqpt.setDefrostControl('OnDemand') htg_eqpt.setCrankcaseHeaterCapacity(1.0e-6) when 'vrf' htg_eqpt = OpenStudio::Model::CoilHeatingDXVariableRefrigerantFlow.new(model) htg_eqpt.setName('CoilHeatingDXVariableRefrigerantFlow') end return htg_eqpt end |
#find_chiller_set(chiller_type:, ref_capacity_w:) ⇒ Object
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3560 def find_chiller_set(chiller_type:, ref_capacity_w:) if chiller_type.is_a?(String) ##### Find the chiller that has the required capacity search_criteria = {} search_criteria['name'] = chiller_type capacity_w = ref_capacity_w chiller_packages = model_find_object(@standards_data['tables']['chiller_eff_ecm'], search_criteria, capacity_w) chiller_name = chiller_packages['notes'] ecm_name = chiller_name chiller_set = { 'notes' => ecm_name, 'capacity_w' => chiller_packages['capacity_w'], 'cop_w_by_w' => chiller_packages['cop_w_by_w'], 'ref_leaving_chilled_water_temp_c' => chiller_packages['ref_leaving_chilled_water_temp_c'], 'ref_entering_condenser_fluid_temp_c' => chiller_packages['ref_entering_condenser_fluid_temp_c'], 'ref_chilled_water_flow_rate_m3_s' => chiller_packages['ref_chilled_water_flow_rate_m3_s'], 'ref_condenser_fluid_flow_rate_m3_s' => chiller_packages['ref_condenser_fluid_flow_rate_m3_s'], 'capft_curve' => chiller_packages['capft_curve'], 'eirft_curve' => chiller_packages['eirft_curve'], 'eirfplr_curve' => chiller_packages['eirfplr_curve'], 'min_part_load_ratio' => chiller_packages['min_part_load_ratio'], 'max_part_load_ratio' => chiller_packages['max_part_load_ratio'], 'opt_part_load_ratio' => chiller_packages['opt_part_load_ratio'], 'min_unloading_ratio' => chiller_packages['min_unloading_ratio'], 'condenser_type' => chiller_packages['condenser_type'], 'fraction_of_compressor_electric_consumption_rejected_by_condenser' => chiller_packages['fraction_of_compressor_electric_consumption_rejected_by_condenser'], 'leaving_chilled_water_lower_temperature_limit_c' => chiller_packages['leaving_chilled_water_lower_temperature_limit_c'], 'chiller_flow_mode' => chiller_packages['chiller_flow_mode'], 'design_heat_recovery_water_flow_rate_m3_s' => chiller_packages['design_heat_recovery_water_flow_rate_m3_s'] } chiller_min_cap = chiller_packages['minimum_capacity'] chiller_max_cap = chiller_packages['maximum_capacity'] end return chiller_set, chiller_min_cap, chiller_max_cap end |
#get_hvac_comp_init_name(obj, htg_flag) ⇒ Object
Name of HVAC component might have been updated by standards methods for setting efficiency. Here original name of the component is restored.
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1618 def get_hvac_comp_init_name(obj, htg_flag) return obj.name.to_s if obj.name.to_s.split.size <= 2 init_name = obj.name.to_s.split[0] range = obj.name.to_s.split.size - 3 range = obj.name.to_s.split.size - 5 if htg_flag for i in 1..range init_name += " #{obj.name.to_s.split[i]}" end return init_name end |
#get_lowest_floor_ext_wall_centroid_coords(storeys_clg_zcoords) ⇒ Object
Return x,y,z coordinates of exterior wall with largest area on the lowest floor
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 138 def get_lowest_floor_ext_wall_centroid_coords(storeys_clg_zcoords) ext_wall = nil ext_wall_x = nil ext_wall_y = nil ext_wall_z = nil storeys_clg_zcoords.keys.each do |storey| max_area = 0.0 sorted_spaces = storey.spaces.sort_by { |space| space.name.to_s } sorted_spaces.each do |space| ext_walls = space.surfaces.select { |surf| (surf.surfaceType.to_s.upcase == 'WALL') && (surf.outsideBoundaryCondition.to_s.upcase == 'OUTDOORS') } ext_walls = ext_walls.sort_by { |wall| wall.grossArea.to_f } if !ext_walls.empty? if ext_walls.last.grossArea.to_f > max_area max_area = ext_walls.last.grossArea.to_f ext_wall_x = ext_walls.last.centroid.x.to_f + space.xOrigin.to_f ext_wall_y = ext_walls.last.centroid.y.to_f + space.yOrigin.to_f ext_wall_z = ext_walls.last.centroid.z.to_f + space.zOrigin.to_f ext_wall = ext_walls.last end end end break unless !ext_wall end if !ext_wall OpenStudio.logFree(OpenStudio::Info, 'openstudiostandards.get_lowest_floor_ext_wall_centroid_coords', 'Did not find an exteior wall in the building!') end return ext_wall_x, ext_wall_y, ext_wall_z end |
#get_map_systems_to_zones(systems) ⇒ Object
Return map of systems to zones and set flag for dedicated outdoor air unit for each system
67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 67 def get_map_systems_to_zones(systems) map_systems_to_zones = {} system_doas_flags = {} systems.each do |system| zones = system.thermalZones map_systems_to_zones[system.name.to_s] = zones if system.sizingSystem.typeofLoadtoSizeOn.to_s == 'VentilationRequirement' system_doas_flags[system.name.to_s] = true else system_doas_flags[system.name.to_s] = false end end return map_systems_to_zones, system_doas_flags end |
#get_max_vrf_pipe_lengths(model) ⇒ Object
Determine maximum equivalent and net vertical pipe runs for VRF model
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 220 def get_max_vrf_pipe_lengths(model) # Get and sort floors average ceilings z-coordinates hash storeys_clg_zcoords = get_storey_avg_clg_zcoords(model) storeys_clg_zcoords = storeys_clg_zcoords.sort_by { |key, value| value[1] }.to_h # sort storeys hash based on ceiling/roof z-coordinate if storeys_clg_zcoords.values.last[0] # If the top floor is conditioned, then assume the top floor is not an attic floor and place the VRF outdoor unit at the roof centroid location_cent_x, location_cent_y, location_cent_z = get_roof_centroid_coords(storeys_clg_zcoords.keys.last) else # If the top floor is not conditioned, then assume it's an attic floor. In this case place the VRF outdoor unit next to the centroid # of the exterior wall with the largest area on the lowest floor. location_cent_x, location_cent_y, location_cent_z = get_lowest_floor_ext_wall_centroid_coords(storeys_clg_zcoords) end # Initialize distances max_equiv_distance = 0.0 max_vert_distance = 0.0 min_vert_distance = 0.0 storeys_clg_zcoords.keys.each do |storey| next unless storeys_clg_zcoords[storey][0] storey.spaces.each do |space| # Is there a VRF terminal unit in the space/zone? vrf_term_units = [] if space.thermalZone.is_initialized vrf_term_units = space.thermalZone.get.equipment.select { |eqpt| eqpt.to_ZoneHVACTerminalUnitVariableRefrigerantFlow.is_initialized } end next if vrf_term_units.empty? space_centroid_x, space_centroid_y, space_centroid_z = get_space_centroid_coords(space) # Update max horizontal and vertical distances if needed equiv_distance = (location_cent_x.to_f - space_centroid_x.to_f).abs + (location_cent_y.to_f - space_centroid_y.to_f).abs + (location_cent_z.to_f - space_centroid_z.to_f).abs if equiv_distance > max_equiv_distance then max_equiv_distance = equiv_distance end pos_vert_distance = [space_centroid_z.to_f - location_cent_z.to_f, 0.0].max if pos_vert_distance > max_vert_distance then max_vert_distance = pos_vert_distance end neg_vert_distance = [space_centroid_z.to_f - location_cent_z.to_f, 0.0].min if neg_vert_distance < min_vert_distance then min_vert_distance = neg_vert_distance end end end max_net_vert_distance = max_vert_distance + min_vert_distance return max_equiv_distance, max_net_vert_distance end |
#get_roof_centroid_coords(storey) ⇒ Object
Return x,y,z coordinates of the centroid of the roof of the storey
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 190 def get_roof_centroid_coords(storey) sum_x = 0.0 sum_y = 0.0 sum_z = 0.0 total_area = 0.0 cent_x = nil cent_y = nil cent_z = nil storey.spaces.each do |space| roof_surfaces = space.surfaces.select { |surf| (surf.surfaceType.to_s.upcase == 'ROOFCEILING') && (surf.outsideBoundaryCondition.to_s.upcase == 'OUTDOORS') } roof_surfaces.each do |surf| sum_x += (surf.centroid.x.to_f + space.xOrigin.to_f) * surf.grossArea.to_f sum_y += (surf.centroid.y.to_f + space.yOrigin.to_f) * surf.grossArea.to_f sum_z += (surf.centroid.z.to_f + space.zOrigin.to_f) * surf.grossArea.to_f total_area += surf.grossArea.to_f end end if total_area > 0.0 cent_x = sum_x / total_area cent_y = sum_y / total_area cent_z = sum_z / total_area else OpenStudio.logFree(OpenStudio::Info, 'openstudiostandards.get_roof_centroid_coords', 'Did not find a roof on the top floor!') end return cent_x, cent_y, cent_z end |
#get_space_centroid_coords(space) ⇒ Object
Return x,y,z coordinates of space centroid
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 170 def get_space_centroid_coords(space) total_area = 0.0 sum_x = 0.0 sum_y = 0.0 sum_z = 0.0 space.surfaces.each do |surf| total_area += surf.grossArea.to_f sum_x += (surf.centroid.x.to_f + space.xOrigin.to_f) * surf.grossArea.to_f sum_y += (surf.centroid.y.to_f + space.yOrigin.to_f) * surf.grossArea.to_f sum_z += (surf.centroid.z.to_f + space.zOrigin.to_f) * surf.grossArea.to_f end space_centroid_x = sum_x / total_area space_centroid_y = sum_y / total_area space_centroid_z = sum_z / total_area return space_centroid_x, space_centroid_y, space_centroid_z end |
#get_storey_avg_clg_zcoords(model) ⇒ Object
Return hash of flags for whether storey is conditioned and average ceiling z-coordinates of building storeys.
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 99 def get_storey_avg_clg_zcoords(model) storey_avg_clg_zcoords = {} model.getBuildingStorys.each do |storey| storey_avg_clg_zcoords[storey] = [] storey_cond = false total_area = 0.0 sum = 0.0 raise("get_storey_avg_clg_zcoords: storey #{storey.name} has no spaces associated with it. Either delete the storey or " \ "assign spaces to it") if storey.spaces.empty? storey.spaces.each do |space| # Determine if any of the spaces/zones of the storey are conditioned? If yes then the floor is considered to be conditioned if space.thermalZone.is_initialized zone = space.thermalZone.get if zone.thermostat.is_initialized if zone.thermostat.get.to_ThermostatSetpointDualSetpoint.is_initialized if zone.thermostat.get.to_ThermostatSetpointDualSetpoint.get.heatingSetpointTemperatureSchedule.is_initialized || zone.thermostat.get.to_ThermostatSetpointDualSetpoint.get.coolingSetpointTemperatureSchedule.is_initialized storey_cond = true end end end end # Find average height of z-coordinates of ceiling/roof of floor space.surfaces.each do |surf| if surf.surfaceType.to_s.upcase == 'ROOFCEILING' sum += (surf.centroid.z.to_f + space.zOrigin.to_f) * surf.grossArea.to_f total_area += surf.grossArea.to_f end end end storey_avg_clg_zcoords[storey] << storey_cond storey_avg_clg_zcoords[storey] << (sum / total_area) end return storey_avg_clg_zcoords end |
#get_storey_zones_map(system_zones_map) ⇒ Object
Get a map of bldg storeys and zones
435 436 437 438 439 440 441 442 443 444 445 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 435 def get_storey_zones_map(system_zones_map) storey_zones_map = {} system_zones_map.each do |sys,zones| zones.each do |zone| storey = get_zone_storey(zone) storey_zones_map[storey.name.to_s] = [] if !storey_zones_map.has_key? storey.name.to_s storey_zones_map[storey.name.to_s] << zone end end return storey_zones_map end |
#get_zone_clg_eqpt_type(model) ⇒ Object
Return hash of zone and cooling equipment type in the zone
84 85 86 87 88 89 90 91 92 93 94 95 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 84 def get_zone_clg_eqpt_type(model) zone_clg_eqpt_type = {} model.getThermalZones.each do |zone| zone.equipment.each do |eqpt| if eqpt.to_ZoneHVACPackagedTerminalAirConditioner.is_initialized zone_clg_eqpt_type[zone.name.to_s] = 'ZoneHVACPackagedTerminalAirConditioner' break end end end return zone_clg_eqpt_type end |
#get_zone_storey(zone) ⇒ Object
Get building storey for a zone
419 420 421 422 423 424 425 426 427 428 429 430 431 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 419 def get_zone_storey(zone) zone_storey = nil zone.model.getBuildingStorys.each do |storey| storey.spaces.each do |space| if space.thermalZone.get.name.to_s == zone.name.to_s zone_storey = storey break end end break if !zone_storey.nil? end return zone_storey end |
#load_standards_database_new ⇒ Object
Combine the data from the JSON files into a single hash Load JSON files differently depending on whether loading from the OpenStudio CLI embedded filesystem or from typical gem installation
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# File 'lib/openstudio-standards/standards/necb/ECMS/ecms.rb', line 8 def load_standards_database_new @standards_data = {} @standards_data['tables'] = {} if __dir__[0] == ':' # Running from OpenStudio CLI ('data/', /.*\.json/).each do |file| data = JSON.parse(EmbeddedScripting.getFileAsString(file)) if !data['tables'].nil? && data['tables'].first['data_type'] == 'table' @standards_data['tables'] << data['tables'].first else @standards_data[data.keys.first] = data[data.keys.first] end end else files = Dir.glob("#{File.dirname(__FILE__)}/data/*.json").select { |e| File.file? e } files.each do |file| data = JSON.parse(File.read(file)) if !data['tables'].nil? @standards_data['tables'] = [*@standards_data['tables'], *data['tables']].to_h else @standards_data[data.keys.first] = data[data.keys.first] end end end return @standards_data end |
#modify_boiler_efficiency(model:, boiler_eff: nil) ⇒ Object
Apply boiler efficiency This model takes an OS model and a boiler efficiency string or hash sent to it with the following form:
"boiler_eff": {
"name" => "NECB 88% Efficient Condensing Boiler",
"efficiency" => 0.88,
"part_load_curve" => "BOILER-EFFPLR-COND-NECB2011",
"notes" => "From NECB 2011."
}
If boiler_eff is nill then it does nothing. If both “efficiency” and “part_load_curve” are nil then it does nothing. If a boiler_eff is passed as a string and not a hash then it looks for a “name” field in the boiler_set.json file that matches boiler_eff and gets the associated boiler performance details from the file. If an efficiency is set but is not between 0.01 and 1.0 it returns an error. Otherwise, it looks for plant loop supply components that match the “OS_BoilerHotWater” type. If it finds one it then calls the “reset_boiler_efficiency method which resets the the boiler efficiency and looks for the part load efficiency curve in the curves.json file. If it finds a curve it sets the part load curve to that, otherwise it returns an error. It also renames the boiler to include the ”boiler_eff“.
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3118 def modify_boiler_efficiency(model:, boiler_eff: nil) return if boiler_eff.nil? # If boiler_eff is a string rather than a hash then assume it is the name of a boiler efficiency package and look # for a package with that name in boiler_set.json. if boiler_eff.is_a?(String) eff_packages = @standards_data['tables']['boiler_eff_ecm']['table'] eff_package = eff_packages.select { |eff_pack_info| eff_pack_info['name'] == boiler_eff } raise "Cannot not find #{boiler_eff} in the ECMS boiler_set.json file. Please check that the name is correctly spelled in the ECMS class boiler_set.json and in the code calling (directly or through another method) the ECMS class modify_boiler_efficiency method." if eff_package.empty? raise "More than one boiler efficiency package with the name #{boiler_eff} was found. Please check the ECMS class boiler_set.json file and make sure that each boiler efficiency package has a unique name." if eff_package.size > 1 ecm_name = boiler_eff boiler_eff = { 'name' => ecm_name, 'efficiency' => eff_package[0]['efficiency'], 'part_load_curve' => eff_package[0]['part_load_curve'] } end # If nothing is passed in the boiler_eff hash then assume this was not supposed to be used and return without doing # anything. return if boiler_eff['name'].nil? && boiler_eff['efficiency'].nil? && boiler_eff['part_load_curve'].nil? # If no efficiency or partload curve are found (either passed directly or via the boiler_set.json file) then assume # that the current SHW setting should not be changed. Return without changing anything. return if boiler_eff['efficiency'].nil? && boiler_eff['part_load_curve'].nil? raise 'You attempted to set the efficiency of boilers in this model to nil. Please check the ECMS class boiler_set.json and make sure the efficiency is properly set' if boiler_eff['efficiency'].nil? raise "You attempted to set the efficiency of boilers in this model to: #{boiler_eff['efficiency']}. Please check the ECMS class boiler_set.json and make sure the efficiency you set is between 0.01 and 1.0." if boiler_eff['efficiency'] < 0.01 || boiler_eff['efficiency'] > 1.0 raise 'You attempted to set the part load curve of boilers in this model to nil. Please check the ECMS class boiler_set.json file and ensure that both the efficiency and part load curve are set.' if boiler_eff['part_load_curve'].nil? model.getBoilerHotWaters.sort.each do |mod_boiler| if mod_boiler.fuelType.to_s.downcase == 'electricity' OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.BoilerHotWater', "The boiler #{mod_boiler.name.to_s} is electrically powered. Only the efficiencies of fuel fired boilers are modified. The efficiency of this boiler will not be changed.") next end reset_boiler_efficiency(model: model, component: mod_boiler.to_BoilerHotWater.get, eff: boiler_eff) end end |
#modify_chiller_efficiency(model:, chiller_type:) ⇒ Object
Apply advanced chiller measure
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3539 def modify_chiller_efficiency(model:, chiller_type:) return if chiller_type.nil? || chiller_type == false || chiller_type == 'none' || chiller_type == 'NECB_Default' model.getChillerElectricEIRs.sort.each do |mod_chiller| ref_capacity_w = mod_chiller.referenceCapacity ref_capacity_w = ref_capacity_w.to_f ##### Look for a chiller set in chiller_set.json (with a capacity close to that of the existing chiller) chiller_set, chiller_min_cap, chiller_max_cap = find_chiller_set(chiller_type: chiller_type, ref_capacity_w: ref_capacity_w) ##### No need to replace any chillers with capacity = 0.001 W as per Kamel Haddad's comment if ref_capacity_w > 0.0011 reset_chiller_efficiency(model: model, component: mod_chiller.to_ChillerElectricEIR.get, cop: chiller_set) end end ##### Change fan power of single-speed Cooling towers from 'Hard Sized' to Autosized (Otherwise, E+ gives the fatal error 'Autosizing of cooling tower UA failed for tower') model.getCoolingTowerSingleSpeeds.sort.each(&:autosizeFanPoweratDesignAirFlowRate) end |
#modify_furnace_efficiency(model:, furnace_eff: nil) ⇒ Object
Apply Furnace efficiency This model takes an OS model and a furnace efficiency string or hash sent to it with the following form:
"furnace_eff": {
"name" => "NECB 85% Efficient Condensing Furnace",
"efficiency" => 0.85,
"part_load_curve" => "FURNACE-EFFPLR-COND-NECB2011",
"notes" => "From NECB 2011."
}
If furnace_eff is nil then it does nothing. If both “efficiency” and “part_load_curve” are nil then it does nothing. If a furnace_eff is a string it looks for furnace_eff as a “name” in the furnace_set.json file to find the performance details. If an efficiency is set but is not between 0.01 and 1.0 it returns an error. Otherwise, it looks for air loop supply components that match the “OS_CoilHeatingGas” type. If it finds one it then calls the reset_furnace_efficiency method which resets the the furnace efficiency and looks for the part load efficiency curve in the curves.json file. If it finds a curve it sets the part load curve to that, otherwise it returns an error. It also renames the furnace to include the “furnace_eff”.
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3223 def modify_furnace_efficiency(model:, furnace_eff: nil) return if furnace_eff.nil? # If furnace_eff is a string rather than a hash then assume it is the name of a furnace efficiency package and look # for a package with that name in furnace_set.json. if furnace_eff.is_a?(String) eff_packages = @standards_data['tables']['furnace_eff_ecm']['table'] eff_package = eff_packages.select { |eff_pack_info| eff_pack_info['name'] == furnace_eff } raise "Cannot not find #{furnace_eff} in the ECMS furnace_set.json file. Please check that the name is correctly spelled in the ECMS class furnace_set.json and in the code calling (directly or through another method) the ECMS class modify_furnace_efficiency method." if eff_package.empty? raise "More than one furnace efficiency package with the name #{furnace_eff} was found. Please check the ECMS class furnace_set.json file and make sure that each furnace efficiency package has a unique name." if eff_package.size > 1 ecm_name = furnace_eff furnace_eff = { 'name' => ecm_name, 'efficiency' => eff_package[0]['efficiency'], 'part_load_curve' => eff_package[0]['part_load_curve'] } end # If nothing is passed in the furnace_eff hash then assume this was not supposed to be used and return without doing # anything. return if furnace_eff['name'].nil? && furnace_eff['efficiency'].nil? && furnace_eff['part_load_curve'].nil? # If no efficiency or partload curve are found (either passed directly or via the furnace_set.json file) then assume # that the current furance performance settings should not be changed. Return without changing anything. return if furnace_eff['efficiency'].nil? && furnace_eff['part_load_curve'].nil? raise 'You attempted to set the efficiency of furnaces in this model to nil. Please check the ECMS class furnace_set.json file and make sure the efficiency is set' if furnace_eff['efficiency'].nil? raise "You attempted to set the efficiency of furnaces in this model to: #{furnace_eff['efficiency']}. Please check the ECMS class furnace_set.json file and make sure the efficiency you set is between 0.01 and 1.0." if furnace_eff['efficiency'] < 0.01 || furnace_eff['efficiency'] > 1.0 raise 'You attempted to set the part load curve of furnaces in this model to nil. Please check the ECMS class furnace_set.json file and ensure that both the efficiency and part load curve are set.' if furnace_eff['part_load_curve'].nil? model.getCoilHeatingGass.sort.each do |mod_furnace| reset_furnace_efficiency(model: model, component: mod_furnace.to_CoilHeatingGas.get, eff: furnace_eff) end end |
#modify_shw_efficiency(model:, shw_eff: nil) ⇒ Object
Apply shw efficiency This model takes an OS model and a shw efficiency string or hash sent to it with the following form:
"shw_eff": {
"name" => "Natural Gas Power Vent with Electric Ignition",
"efficiency" => 0.94,
"part_load_curve" => "SWH-EFFFPLR-NECB2011"
"notes" => "From NECB 2011."
}
If shw_eff is nil then it does nothing. If both “efficiency” and “part_load_curve” are nil then it does nothing. If shw_eff is a string then it looks for shw_eff as a “name” in the shw_set.json file for the details on the tank. If an efficiency is set but is not between 0.01 and 1.0 it returns an error. Otherwise, it looks for mixed water heaters. If it finds any it then calls the reset_shw_efficiency method which resets the the shw efficiency and the part load curve. It also renames the shw tank with the following pattern:
{volume}Gal {eff_name} Water Heater - {Capacity}kBtu/hr {efficiency} Therm Eff
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3303 def modify_shw_efficiency(model:, shw_eff: nil) return if shw_eff.nil? # If shw_eff is a string rather than a hash then assume it is the name of a shw efficiency package and look # for a package with that name in shw_set.json. if shw_eff.is_a?(String) eff_packages = @standards_data['tables']['shw_eff_ecm']['table'] eff_package = eff_packages.select { |eff_pack_info| eff_pack_info['name'] == shw_eff } raise "Cannot not find #{shw_eff} in the ECMS shw_set.json file. Please check that the name is correctly spelled in the ECMS class shw_set.json and in the code calling (directly or through another method) the ECMS class modify_shw_efficiency method." if eff_package.empty? raise "More than one shw tank efficiency package with the name #{shw_eff} was found. Please check the ECMS class shw_set.json file and make sure that each shw tank efficiency package has a unique name." if eff_package.size > 1 ecm_name = shw_eff shw_eff = { 'name' => ecm_name, 'efficiency' => eff_package[0]['efficiency'], 'part_load_curve' => eff_package[0]['part_load_curve'] } end # If nothing is passed in the shw_eff hash then assume this was not supposed to be used and return without doing # anything. return if shw_eff['name'].nil? && shw_eff['efficiency'].nil? && shw_eff['part_load_curve'].nil? # If no efficiency or partload curve are found (either passed directly or via the shw_set.json file) then assume # that the current shw performance settings should not be changed. Return without changing anything. return if shw_eff['efficiency'].nil? && shw_eff['part_load_curve'].nil? raise 'You attempted to set the efficiency of shw tanks in this model to nil. Please check the ECMS class shw_set.json file and make sure the efficiency is set' if shw_eff['efficiency'].nil? raise "You attempted to set the efficiency of shw tanks in this model to: #{shw_eff['efficiency']}. Please check the ECMS class shw_set.json and make sure the efficiency you set is between 0.01 and 1.0." if shw_eff['efficiency'] < 0.01 || shw_eff['efficiency'] > 1.0 raise 'You attempted to set the part load curve of shw tanks in this model to nil. Please check the ECMS class shw_set.json file and ensure that both the efficiency and part load curve are set.' if shw_eff['part_load_curve'].nil? model.getWaterHeaterMixeds.sort.each do |shw_mod| reset_shw_efficiency(model: model, component: shw_mod, eff: shw_eff) end end |
#modify_unitary_cop(model:, unitary_cop:, sizing_done:, sql_db_vars_map:) ⇒ Object
Method to update the cop and/or the performance curves of unitary dx coils. The method input ‘unitary_cop’ can either be a string or a hash. When it’s a string it’s used to find a hash in the json table ‘unitary_cop_ecm’. When it’s a hash it holds the parameters needed to update the cop and/or the performance curves of the unitary coil.
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3389 def modify_unitary_cop(model:, unitary_cop:, sizing_done:, sql_db_vars_map:) return if unitary_cop.nil? || (unitary_cop.to_s == 'NECB_Default') coils = model.getCoilCoolingDXSingleSpeeds.select {|coil| coil.name.to_s.include? '_dx'} coils += model.getCoilCoolingDXMultiSpeeds.select {|coil| coil.name.to_s.include? '_dx'} unitary_cop_copy = unitary_cop.dup coils.sort.each do |coil| coil_type = 'SingleSpeed' coil_type = 'MultiSpeed' if coil.class.name.to_s.include? 'CoilCoolingDXMultiSpeed' # if the parameter 'unitary_cop' is a string then get the information on the new parameters for the coils from # the json table 'unitary_cop_ecm' if unitary_cop_copy.is_a?(String) search_criteria = {} search_criteria['name'] = unitary_cop_copy coil_name = coil.name.to_s if (sql_db_vars_map.has_key? coil_name) && !sizing_done then coil.setName(sql_db_vars_map[coil_name]) end if coil_type == 'SingleSpeed' capacity_w = coil_cooling_dx_single_speed_find_capacity(coil) elsif coil_type == 'MultiSpeed' capacity_w = coil_cooling_dx_multi_speed_find_capacity(coil) end coil.setName(coil_name) cop_package = model_find_object(@standards_data['tables']['unitary_cop_ecm'], search_criteria, capacity_w) raise "Cannot find #{unitary_cop_ecm} in the ECMS unitary_acs.json file. Please check that the name is correctly spelled in the ECMS class unitary_acs.json file and in the code calling (directly or through another method) the ECMS class modify_unitary_eff method." if cop_package.empty? ecm_name = unitary_cop_copy unitary_cop = { 'name' => ecm_name, 'maximum_capacity' => cop_package['maximum_capacity'], 'minimum_energy_efficiency_ratio' => cop_package['minimum_energy_efficiency_ratio'], 'minimum_seasonal_energy_efficiency_ratio' => cop_package['minimum_seasonal_energy_efficiency_ratio'], 'minimum_coefficient_of_performance_cooling' => cop_package['minimum_coefficient_of_performance_cooling'], 'ref_flow_rate_m3_per_sec' => cop_package['ref_flow_rate_m3_per_sec'], 'cool_cap_ft' => cop_package['cool_cap_ft'], 'cool_cap_fflow' => cop_package['cool_cap_fflow'], 'cool_eir_ft' => cop_package['cool_eir_ft'], 'cool_eir_fflow' => cop_package['cool_eir_fflow'], 'cool_plf_fplr' => cop_package['cool_plf_fplr'] } end next if unitary_cop['minimum_energy_efficiency_ratio'].nil? && unitary_cop['minimum_seasonal_energy_efficiency_ratio'].nil? && unitary_cop['minimum_coefficient_of_performance_cooling'].nil? && unitary_cop['cool_cap_ft'].nil? && unitary_cop['cool_cap_fflow'].nil? && unitary_cop['cool_eir_ft'].nil? && unitary_cop['cool_eir_fflow'].nil? && unitary_cop['cool_plf_fplr'].nil? && unitary_cop['ref_flow_rate_m3_per_sec'].nil? # If the dx coil is on an air loop then update its cop and the performance curves when these are specified in the ecm data if (coil_type == 'SingleSpeed' && coil.airLoopHVAC.is_initialized && (!coil.name.to_s.include? "_ASHP")) || (coil_type == 'MultiSpeed' && coil.containingHVACComponent.get.airLoopHVAC.is_initialized) # Set COP if sizing run is done if sizing_done cop = nil if unitary_cop['minimum_energy_efficiency_ratio'] cop = eer_to_cop_no_fan(unitary_cop['minimum_energy_efficiency_ratio'].to_f) elsif unitary_cop['minimum_seasonal_energy_efficiency_ratio'] cop = seer_to_cop_no_fan(unitary_cop['minimum_seasonal_energy_efficiency_ratio'].to_f) elsif unitary_cop['minimum_coefficient_of_performance_cooling'] cop = unitary_cop['minimum_coefficient_of_performance_cooling'].to_f end if coil_type == 'SingleSpeed' coil.setRatedCOP(cop) if cop elsif coil_type == 'MultiSpeed' coil.stages.sort.each do |stage| stage.setGrossRatedCoolingCOP(cop) if cop end end coil.setName('CoilCoolingDXSingleSpeed_dx-adv') if coil_type == 'SingleSpeed' coil.setName('CoilCoolingDXMultiSpeed_dx-adv') if coil_type == 'MultiSpeed' else # Set performance curves before sizing run cool_cap_ft = nil cool_cap_ft = @standards_data['curves'].select { |curve| curve['name'] == unitary_cop['cool_cap_ft'] }[0] if unitary_cop['cool_cap_ft'] cool_cap_ft = model_add_curve(model, unitary_cop['cool_cap_ft']) if cool_cap_ft cool_cap_fflow = nil cool_cap_fflow = @standards_data['curves'].select { |curve| curve['name'] == unitary_cop['cool_cap_fflow'] }[0] if unitary_cop['cool_cap_fflow'] cool_cap_fflow = model_add_curve(model, unitary_cop['cool_cap_fflow']) if cool_cap_fflow cool_eir_ft = nil cool_eir_ft = @standards_data['curves'].select { |curve| curve['name'] == unitary_cop['cool_eir_ft'] }[0] if unitary_cop['cool_eir_ft'] cool_eir_ft = model_add_curve(model, unitary_cop['cool_eir_ft']) if cool_eir_ft cool_eir_fflow = nil cool_eir_fflow = @standards_data['curves'].select { |curve| curve['name'] == unitary_cop['cool_eir_fflow'] }[0] if unitary_cop['cool_eir_fflow'] cool_eir_fflow = model_add_curve(model, unitary_cop['cool_eir_fflow']) if cool_eir_fflow cool_plf_fplr = nil cool_plf_fplr = @standards_data['curves'].select { |curve| curve['name'] == unitary_cop['cool_plf_fplr'] }[0] if unitary_cop['cool_plf_fplr'] cool_plf_fplr = model_add_curve(model, unitary_cop['cool_plf_fplr']) if cool_plf_fplr rated_flow_rate = nil rated_flow_rate = unitary_cop['ref_flow_rate_m3_per_sec'] * (capacity_w / unitary_cop['maximum_capacity']) if unitary_cop['ref_flow_rate_m3_per_sec'] if coil_type == 'SingleSpeed' coil.setTotalCoolingCapacityFunctionOfTemperatureCurve(cool_cap_ft) if cool_cap_ft coil.setTotalCoolingCapacityFunctionOfFlowFractionCurve(cool_cap_fflow) if cool_cap_fflow coil.setEnergyInputRatioFunctionOfTemperatureCurve(cool_eir_ft) if cool_eir_ft coil.setEnergyInputRatioFunctionOfFlowFractionCurve(cool_eir_fflow) if cool_eir_fflow coil.setPartLoadFractionCorrelationCurve(cool_plf_fplr) if cool_plf_fplr coil.setRatedAirFlowRate(rated_flow_rate) if rated_flow_rate elsif coil_type == 'MultiSpeed' coil.stages.sort.each do |stage| stage.setTotalCoolingCapacityFunctionofTemperatureCurve(cool_cap_ft) if cool_cap_ft stage.setTotalCoolingCapacityFunctionofFlowFractionCurve(cool_cap_fflow) if cool_cap_fflow stage.setEnergyInputRatioFunctionofTemperatureCurve(cool_eir_ft) if cool_eir_ft stage.setEnergyInputRatioFunctionofFlowFractionCurve(cool_eir_fflow) if cool_eir_fflow stage.setPartLoadFractionCorrelationCurve(cool_plf_fplr) if cool_plf_fplr end end end end end end |
#remove_air_loops(model) ⇒ Object
Remove air loops
60 61 62 63 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 60 def remove_air_loops(model) # remove air loops model.getAirLoopHVACs.each(&:remove) end |
#remove_all_zone_eqpt(sys_objs) ⇒ Object
Remove existing zone equipment
4 5 6 7 8 9 10 11 12 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 4 def remove_all_zone_eqpt(sys_objs) sys_objs.each do |isys| isys.thermalZones.each do |izone| if izone.equipment.empty? then next end izone.equipment.each(&:remove) end end end |
#remove_chw_loops(model) ⇒ Object
Remove chilled-water plant loops
31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 31 def remove_chw_loops(model) model.getPlantLoops.each do |iloop| chw_loop = false iloop.supplyComponents.each do |icomp| if icomp.to_ChillerElectricEIR.is_initialized chw_loop = true break end end if chw_loop then iloop.remove end end end |
#remove_cw_loops(model) ⇒ Object
Remove condenser-water plant loops
46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 46 def remove_cw_loops(model) model.getPlantLoops.each do |iloop| cw_loop = false iloop.supplyComponents.each do |icomp| if icomp.to_CoolingTowerSingleSpeed.is_initialized cw_loop = true end end if cw_loop then iloop.remove end end end |
#remove_hw_loops(model) ⇒ Object
Remove hot-water plant loops
16 17 18 19 20 21 22 23 24 25 26 27 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 16 def remove_hw_loops(model) model.getPlantLoops.each do |iloop| hw_loop = false iloop.supplyComponents.each do |icomp| if icomp.to_BoilerHotWater.is_initialized hw_loop = true break end end if hw_loop then iloop.remove end end end |
#reset_boiler_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_BoilerHotWater” type compenent, condensing efficiency limit and an efficiency hash which looks like:
"eff": {
"name": "NECB 88% Efficient Condensing Boiler",
"efficiency" => 0.88,
"part_load_curve" => "BOILER-EFFPLR-COND-NECB2011",
"notes" => "From NECB 2011."
}
This method sets efficiency of the boiler to whatever is entered in eff. It then looks for the “part_load_curve” value in the curves.json file. If it does not find one it returns an error. If it finds one it reset the part load curve to whatever was found. It then determines the nominal capacity of the boiler. If the nominal capacity is greater than 1W the boiler is considered a primary boiler (for the name only) if the capacity is less than 1W the boiler is considered a secondary boiler (for the name only). It then renames the boiler according to the following pattern: “Primary/Secondary eff capacity kBtu/hr”.
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3171 def reset_boiler_efficiency(model:, component:, eff:) component.setNominalThermalEfficiency(eff['efficiency']) part_load_curve_name = eff['part_load_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == part_load_curve_name } raise "No boiler with the name #{part_load_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class boiler_set.json and class curves.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? part_load_curve_data = (@standards_data['curves'].select { |curve| curve['name'] == part_load_curve_name })[0] if part_load_curve_data['independent_variable_1'].to_s.upcase == 'TEnteringBoiler'.upcase || part_load_curve_data['independent_variable_2'].to_s.upcase == 'TEnteringBoiler'.upcase component.setEfficiencyCurveTemperatureEvaluationVariable('EnteringBoiler') elsif part_load_curve_data['independent_variable_1'].to_s.upcase == 'TLeavingBoiler'.upcase || part_load_curve_data['independent_variable_2'].to_s.upcase == 'TLeavingBoiler'.upcase component.setEfficiencyCurveTemperatureEvaluationVariable('LeavingBoiler') end part_load_curve = model_add_curve(model, part_load_curve_name) raise "There was a problem setting the boiler part load curve named #{part_load_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json and boiler_set.json files." unless part_load_curve component.setNormalizedBoilerEfficiencyCurve(part_load_curve) if component.nominalCapacity.is_initialized boiler_size_w = component.nominalCapacity.to_f elsif component.isNominalCapacityAutosized boiler_size_w = component.autosizedNominalCapacity.get end boiler_size_kbtu_per_hour = OpenStudio.convert(boiler_size_w, 'W', 'kBtu/h').get boiler_primacy = 'Primary ' if boiler_size_w < 1.0 || component.name.to_s.upcase.include?("SECONDARY") boiler_primacy = 'Secondary ' end if eff['name'].nil? eff_measure_name = 'Revised Performance Boiler' else eff_measure_name = eff['name'] end old_boiler_name = component.name.to_s new_boiler_name = (boiler_primacy + eff_measure_name + " #{boiler_size_kbtu_per_hour.round(0)}kBtu/hr #{component.nominalThermalEfficiency} Thermal Eff").strip component.setName(new_boiler_name) end |
#reset_chiller_efficiency(model:, component:, cop:) ⇒ Object
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3597 def reset_chiller_efficiency(model:, component:, cop:) # Note that all parameters (except for the capacity) of an existing chiller are replaced with the ones of the VSD chiller, as per Kamel Haddad's comment. component.setName('ChillerElectricEIR_VSDCentrifugalWaterChiller') component.setReferenceCOP(cop['cop_w_by_w']) component.setReferenceLeavingChilledWaterTemperature(cop['ref_leaving_chilled_water_temp_c']) component.setReferenceEnteringCondenserFluidTemperature(cop['ref_entering_condenser_fluid_temp_c']) component.isReferenceChilledWaterFlowRateAutosized component.isReferenceCondenserFluidFlowRateAutosized component.setMinimumPartLoadRatio(cop['min_part_load_ratio']) component.setMaximumPartLoadRatio(cop['max_part_load_ratio']) component.setOptimumPartLoadRatio(cop['opt_part_load_ratio']) component.setMinimumUnloadingRatio(cop['min_unloading_ratio']) component.setCondenserType(cop['condenser_type']) component.setFractionofCompressorElectricConsumptionRejectedbyCondenser(cop['fraction_of_compressor_electric_consumption_rejected_by_condenser']) component.setLeavingChilledWaterLowerTemperatureLimit(cop['leaving_chilled_water_lower_temperature_limit_c']) component.setChillerFlowMode(cop['chiller_flow_mode']) component.setDesignHeatRecoveryWaterFlowRate(cop['design_heat_recovery_water_flow_rate_m3_s']) # set other fields of this object to nothing #Note that this could not be done for the 'Condenser Heat Recovery Relative Capacity Fraction' field as there is no 'reset' for this field. component.resetCondenserFanPowerRatio component.resetSizingFactor component.resetBasinHeaterCapacity component.resetBasinHeaterSetpointTemperature component.resetBasinHeaterSchedule component.resetHeatRecoveryInletHighTemperatureLimitSchedule component.resetHeatRecoveryLeavingTemperatureSetpointNode ##### Replace cooling_capacity_function_of_temperature (CAPFT) curve capft_curve_name = cop['capft_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == capft_curve_name } raise "No chiller with the name #{capft_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class chiller_set.json and curves.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? capft_curve_data = (@standards_data['curves'].select { |curve| curve['name'] == capft_curve_name })[0] capft_curve = model_add_curve(model, capft_curve_name) component.setCoolingCapacityFunctionOfTemperature(capft_curve) if capft_curve raise "There was a problem setting the CoolingCapacityFunctionOfTemperature curve named #{capft_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json and chiller_set.json files." if !capft_curve ##### Replace electric_input_to_cooling_output_ratio_function_of_temperature (EIRFT) curve eirft_curve_name = cop['eirft_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == eirft_curve_name } raise "No chiller with the name #{eirft_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class chiller_set.json and curves.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? eirft_curve_data = (@standards_data['curves'].select { |curve| curve['name'] == eirft_curve_name })[0] eirft_curve = model_add_curve(model, eirft_curve_name) component.setElectricInputToCoolingOutputRatioFunctionOfTemperature(eirft_curve) if eirft_curve raise "There was a problem setting the ElectricInputToCoolingOutputRatioFunctionOfTemperature curve named #{eirft_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json and chiller_set.json files." if !eirft_curve ##### Replace electric_input_to_cooling_output_ratio_function_of_part_load_ratio (EIRFPLR) curve eirfplr_curve_name = cop['eirfplr_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == eirfplr_curve_name } raise "No chiller with the name #{eirfplr_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class chiller_set.json and curves.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? eirfplr_curve_data = (@standards_data['curves'].select { |curve| curve['name'] == eirfplr_curve_name })[0] eirfplr_curve = model_add_curve(model, eirfplr_curve_name) component.setElectricInputToCoolingOutputRatioFunctionOfPLR(eirfplr_curve) if eirfplr_curve raise "There was a problem setting the ElectricInputToCoolingOutputRatioFunctionOfPLR curve named #{eirfplr_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json and chiller_set.json files." if !eirfplr_curve end |
#reset_furnace_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_CoilHeatingGas” type compenent, and an efficiency hash which looks like:
"eff": {
"name": "NECB 85% Efficient Condensing Furnace",
"efficiency" => 0.85,
"part_load_curve" => "FURNACE-EFFPLR-COND-NECB2011",
"notes" => "From NECB 2011."
}
This method sets the efficiency of the furnace to whatever is entered in eff. It then looks for the “part_load_curve” value in the curves.json file. If it does not find one it returns an error. If it finds one it reset the part load curve to whatever was found. It then renames the furnace according to the following pattern: “eff + <furnace number (whatever was there before)>”.
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3268 def reset_furnace_efficiency(model:, component:, eff:) component.setGasBurnerEfficiency(eff['efficiency']) part_load_curve_name = eff['part_load_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == part_load_curve_name } raise "No furnace part load curve with the name #{part_load_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class curves.json and the measure furnace_set.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? part_load_curve = model_add_curve(model, part_load_curve_name) raise "There was a problem setting the furnace part load curve named #{part_load_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json or measure furnace_set.json files." unless part_load_curve component.setPartLoadFractionCorrelationCurve(part_load_curve) if eff['name'].nil? ecm_package_name = 'Revised Performance Furnace' else ecm_package_name = eff['name'] end furnace_num = component.name.to_s.gsub(/[^0-9]/, '') new_furnace_name = (ecm_package_name + " #{furnace_num}").strip component.setName(new_furnace_name) end |
#reset_shw_efficiency(model:, component:, eff:) ⇒ Object
This method takes an OS model, a “OS_WaterHeaterMixed” type compenent, and an efficiency hash which looks like:
"eff": {
"name": "Natural Gas Power Vent with Electric Ignition",
"efficiency" => 0.94,
"part_load_curve" => "SWH-EFFFPLR-NECB2011",
"notes" => "From NECB 2011."
}
This method sets the efficiency of the shw heater to whatever is entered in eff. It then looks for the “part_load_curve” value in the curves.json file. If it does not find one it returns an error. If it finds one it resets the part load curve to whatever was found. It then renames the shw tank according to the following pattern:
{volume}Gal {eff_name} Water Heater - {Capacity}kBtu/hr {efficiency} Therm Eff
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 3348 def reset_shw_efficiency(model:, component:, eff:) return if component.heaterFuelType.to_s.upcase == 'ELECTRICITY' eff_result = component.setHeaterThermalEfficiency(eff['efficiency'].to_f) raise "There was a problem setting the efficiency of the SHW #{component.name}. Please check the ECMS class shw_set.json file or the model." unless eff_result part_load_curve_name = eff['part_load_curve'].to_s existing_curve = @standards_data['curves'].select { |curve| curve['name'] == part_load_curve_name } raise "No shw tank part load curve with the name #{part_load_curve_name} could be found in the ECMS class curves.json file. Please check both the ECMS class curves.json and the measure shw_set.json files to ensure the curve is entered and referenced correctly." if existing_curve.empty? part_load_curve = model_add_curve(model, part_load_curve_name) raise "There was a problem setting the shw tank part load curve named #{part_load_curve_name} for #{component.name}. Please ensure that the curve is entered and referenced correctly in the ECMS class curves.json and shw_set.json files." unless part_load_curve component.setPartLoadFactorCurve(part_load_curve) # Get the volume and capacity of the SHW tank. if component.tankVolume.is_initialized shw_vol_m3 = component.tankVolume.to_f shw_vol_gal = OpenStudio.convert(shw_vol_m3, 'm^3', 'gal').get.to_f.round(0) elsif component.isTankVolumeAutosized shw_vol_gal = 'auto_size' end if component.heaterMaximumCapacity.is_initialized shw_capacity_W = component.heaterMaximumCapacity.to_f shw_capacity_kBtu_hr = OpenStudio.convert(shw_capacity_W, 'W', 'kBtu/h').get.to_f.round(0) elsif component.isHeaterMaximumCapacityAutosized shw_capacity_kBtu_hr = 'auto_cap' end # Set a default revised shw tank name if no name is present in the eff hash. if eff['name'].nil? shw_ecm_package_name = 'Revised' else shw_ecm_package_name = eff['name'] end shw_name = ("#{shw_vol_gal} Gal #{shw_ecm_package_name} Water Heater - #{shw_capacity_kBtu_hr}kBtu/hr #{eff['efficiency']} Therm Eff").strip component.setName(shw_name) end |
#scale_electrical_loads(model:, scale: 'NECB_Default') ⇒ Object
Electrical
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/openstudio-standards/standards/necb/ECMS/loads.rb', line 25 def scale_electrical_loads(model:, scale: 'NECB_Default') ##### Remove leading or trailing whitespace in case users add them in inputs if scale.instance_of?(String) scale = scale.strip end return model if (scale == 'NECB_Default') || scale.nil? ##### Convert a string to a float if scale.instance_of?(String) scale = scale.to_f end if scale == 0.0 model.getElectricEquipments.sort.each(&:remove) model.getElectricEquipmentDefinitions.sort.each(&:remove) else model.getElectricEquipments.sort.each do |item| item.setMultiplier(item.multiplier * scale) end end end |
#scale_infiltration_loads(model:, scale: 'NECB_Default') ⇒ Object
Infiltration
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# File 'lib/openstudio-standards/standards/necb/ECMS/loads.rb', line 71 def scale_infiltration_loads(model:, scale: 'NECB_Default') ##### Remove leading or trailing whitespace in case users add them in inputs if scale.instance_of?(String) scale = scale.strip end return model if (scale == 'NECB_Default') || scale.nil? ##### Convert a string to a float if scale.instance_of?(String) scale = scale.to_f end if scale == 0.0 model.getSpaceInfiltrationDesignFlowRates.sort.each(&:remove) else model.getSpaceInfiltrationDesignFlowRates.sort.each do |infiltration_load| infiltration_load.setDesignFlowRate(infiltration_load.designFlowRate.get * scale) unless infiltration_load.designFlowRate.empty? infiltration_load.setFlowperSpaceFloorArea(infiltration_load.flowperSpaceFloorArea.get * scale) unless infiltration_load.flowperSpaceFloorArea.empty? infiltration_load.setFlowperExteriorSurfaceArea(infiltration_load.flowperExteriorSurfaceArea.get * scale) unless infiltration_load.flowperExteriorSurfaceArea.empty? infiltration_load.setAirChangesperHour(infiltration_load.airChangesperHour.get * scale) unless infiltration_load.airChangesperHour.empty? end end end |
#scale_oa_loads(model:, scale: 'NECB_Default') ⇒ Object
Outdoor Air
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# File 'lib/openstudio-standards/standards/necb/ECMS/loads.rb', line 47 def scale_oa_loads(model:, scale: 'NECB_Default') ##### Remove leading or trailing whitespace in case users add them in inputs if scale.instance_of?(String) scale = scale.strip end return model if (scale == 'NECB_Default') || scale.nil? ##### Convert a string to a float if scale.instance_of?(String) scale = scale.to_f end if scale == 0.0 model.getDesignSpecificationOutdoorAirs.sort.each(&:remove) else model.getDesignSpecificationOutdoorAirs.sort.each do |oa_def| oa_def.setOutdoorAirFlowperPerson(oa_def.outdoorAirFlowperPerson * scale) unless oa_def.isOutdoorAirFlowperPersonDefaulted oa_def.setOutdoorAirFlowperFloorArea(oa_def.outdoorAirFlowperFloorArea * scale) unless oa_def.isOutdoorAirFlowperFloorAreaDefaulted oa_def.setOutdoorAirFlowRate(oa_def.outdoorAirFlowRate * scale) unless oa_def.isOutdoorAirFlowRateDefaulted oa_def.setOutdoorAirFlowAirChangesperHour(oa_def.outdoorAirFlowAirChangesperHour * scale) unless oa_def.isOutdoorAirFlowAirChangesperHourDefaulted end end end |
#scale_occupancy_loads(model:, scale: 'NECB_Default') ⇒ Object
Occupancy
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
# File 'lib/openstudio-standards/standards/necb/ECMS/loads.rb', line 3 def scale_occupancy_loads(model:, scale: 'NECB_Default') ##### Remove leading or trailing whitespace in case users add them in inputs if scale.instance_of?(String) scale = scale.strip end return model if (scale == 'NECB_Default') || scale.nil? ##### Convert a string to a float if scale.instance_of?(String) scale = scale.to_f end if scale == 0.0 model.getPeoples.sort.each(&:remove) model.getPeopleDefinitions.sort.each(&:remove) else model.getPeoples.sort.each do |item| item.setMultiplier(item.multiplier * scale) end end end |
#set_ghx_loop_district_cap(model) ⇒ Object
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 1951 def set_ghx_loop_district_cap(model) # The autosized values for the district heating and cooling objects on a condenser loop are the sum of the peak heating and # cooling loads. Here the capacity of the district heating object of the condenser loop is set to the maximum district heating # rate on the winter design day. Similarily the capacity of the district cooling object of the condenser loop is set to the # maximum district cooling rate on the summer design day. cw_loops = model.getPlantLoops.select{|loop| loop.sizingPlant.loopType.to_s.downcase == 'condenser'} ghx_loops = cw_loops.select { |loop| loop.name.to_s.downcase.include? 'glhx' } return if ghx_loops.empty? ghx_loop = ghx_loops[0] dist_htg_eqpts = ghx_loop.supplyComponents.select { |comp| comp.iddObjectType.valueName.to_s.include?('DistrictHeating') } if !dist_htg_eqpts.empty? case dist_htg_eqpts[0].iddObjectType.valueName.to_s when 'OS_DistrictHeating' dist_htg_eqpt = dist_htg_eqpts[0].to_DistrictHeating.get when 'OS_DistrictHeating_Water' dist_htg_eqpt = dist_htg_eqpts[0].to_DistrictHeatingWater.get when 'OS_DistrictHeating_Steam' dist_htg_eqpt = dist_htg_eqpts[0].to_DistrictHeatingSteam.get end end dist_clg_eqpts = ghx_loop.supplyComponents.select {|comp| comp.to_DistrictCooling.is_initialized} dist_clg_eqpt = dist_clg_eqpts[0].to_DistrictCooling.get if !dist_clg_eqpts.empty? raise("set_cond_loop_district_cap: condenser loop doesn't have a district heating and district cooling objects") if dist_htg_eqpts.empty? || dist_clg_eqpts.empty? # District Heating sql_command = "SELECT ReportVariableDataDictionaryIndex FROM ReportVariableDataDictionary WHERE VariableName='District Heating Water Rate'" dhtg_index = model.sqlFile.get.execAndReturnFirstString(sql_command).get raise("set_ghx_loop_district_cap: EnergyPlus sql results file has no data for district heating hot water rate") if dhtg_index.nil? sql_command = "SELECT Value FROM ReportVariableWithTime WHERE ReportDataDictionaryIndex=#{dhtg_index} AND DayType='WinterDesignDay'" dist_htg_w = model.sqlFile.get.execAndReturnVectorOfString(sql_command).get sql_command = "SELECT Value FROM ReportVariableWithTime WHERE ReportDataDictionaryIndex=#{dhtg_index} AND DayType='SummerDesignDay'" dist_htg_s = model.sqlFile.get.execAndReturnVectorOfString(sql_command).get # District Cooling sql_command = "SELECT ReportVariableDataDictionaryIndex FROM ReportVariableDataDictionary WHERE VariableName='District Cooling Water Rate'" dclg_index = model.sqlFile.get.execAndReturnFirstString(sql_command).get raise("set_ghx_loop_district_cap: EnergyPlus sql results file has no data for district cooling chilled water rate") if dclg_index.nil? sql_command = "SELECT Value FROM ReportVariableWithTime WHERE ReportDataDictionaryIndex=#{dclg_index} AND DayType='SummerDesignDay'" dist_clg_s = model.sqlFile.get.execAndReturnVectorOfString(sql_command).get sql_command = "SELECT Value FROM ReportVariableWithTime WHERE ReportDataDictionaryIndex=#{dclg_index} AND DayType='WinterDesignDay'" dist_clg_w = model.sqlFile.get.execAndReturnVectorOfString(sql_command).get # Assign peak heating and cooling loads to capacities of district objects max_htg_load = 0.0 max_clg_load = 0.0 for hour in 1..24 htg_load = [dist_htg_w[hour-1].to_f-dist_clg_w[hour-1].to_f,0.0].max clg_load = [dist_clg_s[hour-1].to_f-dist_htg_s[hour-1].to_f,0.0].max max_htg_load = [max_htg_load,htg_load].max max_clg_load = [max_clg_load,clg_load].max end dist_htg_eqpt.setNominalCapacity(max_htg_load) dist_clg_eqpt.setNominalCapacity(max_clg_load) end |
#update_system_zones_map(model, system_zones_map, system_zones_map_option, system_key) ⇒ Object
Update the map between systems and zones
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 449 def update_system_zones_map(model,system_zones_map,system_zones_map_option,system_key) updated_system_zones_map = {} if system_zones_map_option == 'one_sys_per_bldg' system_zones_map.each do |sname,zones| updated_system_zones_map[system_key] = [] if !updated_system_zones_map.has_key? system_key updated_system_zones_map[system_key] += zones end elsif system_zones_map_option == 'one_sys_per_floor' storey_zones_map = get_storey_zones_map(system_zones_map) storey_zones_map.each do |storey_name,zones| sys_name = "#{system_key}_#{storey_name.gsub(' ','_')}" updated_system_zones_map[sys_name] = [] if !updated_system_zones_map.has_key? sys_name updated_system_zones_map[sys_name] += zones end end return updated_system_zones_map end |
#update_system_zones_map_keys(system_zones_map, sys_abbr) ⇒ Object
The first 5 letters of the air loop name designate the system type (sys_abbr). This method updates the system type designation in the air loop name. At the same time the chosen air loop names are checked to avoid duplicate names from being used in the hash for system to zones.
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 472 def update_system_zones_map_keys(system_zones_map,sys_abbr) updated_system_zones_map = {} system_zones_map.each do |sname,zones| updated_sys_name = "#{sys_abbr}#{sname[5..-1]}" if !updated_system_zones_map.has_key? updated_sys_name updated_system_zones_map[updated_sys_name] = zones else updated_sys_name_set = false index = 1 while !updated_sys_name_set updated_sys_name = "#{sys_abbr}#{sname[5..-1]}" updated_sys_name.chop! if updated_sys_name.split.size > 1 updated_sys_name = updated_sys_name + index.to_s if !updated_system_zones_map.has_key? updated_sys_name updated_sys_name_set = true updated_system_zones_map[updated_sys_name] = zones end index += 1 end end end return updated_system_zones_map end |
#zone_with_no_vrf_eqpt?(zone) ⇒ Boolean
Method to determine whether zone can have terminal vrf equipment. Zones with no vrf terminal equipment are characterized by transient occupancy such is the case for corridors, stairwells, storage, …
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# File 'lib/openstudio-standards/standards/necb/ECMS/hvac_systems.rb', line 314 def zone_with_no_vrf_eqpt?(zone) space_types_to_skip = {} space_types_to_skip['NECB2011'] = ['Atrium - H < 13m', 'Atrium - H > 13m', 'Audience - auditorium', 'Corr. < 2.4m wide', 'Corr. >= 2.4m wide', 'Electrical/Mechanical', 'Hospital corr. < 2.4m', 'Hospital corr. >= 2.4m', 'Mfg - corr. < 2.4m', 'Mfg - corr. >= 2.4m', 'Lobby - elevator', 'Lobby - hotel', 'Lobby - motion picture', 'Lobby - other', 'Lobby - performance arts', 'Locker room', 'Parking garage space', 'Stairway', 'Storage area', 'Storage area - occsens', 'Storage area - refrigerated', 'Storage area - refrigerated - occsens', 'Washroom', 'Warehouse - fine', 'Warehouse - fine - refrigerated', 'Warehouse - med/blk', 'Warehouse - med/blk - refrigerated', 'Warehouse - med/blk2', 'Warehouse - med/blk2 - refrigerated', 'Hotel/Motel - lobby'] space_types_to_skip['NECB2015'] = ['Atrium (height < 6m)', 'Atrium (6 =< height <= 12m)', 'Atrium (height > 12m)', 'Computer/Server room-sch-A', 'Copy/Print room', 'Corridor/Transition area - hospital', 'Corridor/Transition area - manufacturing facility', 'Corridor/Transition area - space designed to ANSI/IES RP-28', 'Corridor/Transition area other', 'Electrical/Mechanical room', 'Emergency vehicle garage', 'Lobby - elevator', 'Lobby - hotel', 'Lobby - motion picture theatre', 'Lobby - performing arts theatre', 'Lobby - space designed to ANSI/IES RP-28', 'Lobby - other', 'Locker room', 'Storage garage interior', 'Storage room < 5 m2', 'Storage room <= 5 m2 <= 100 m2', 'Storage room > 100 m2', 'Washroom - space designed to ANSI/IES RP-28', 'Washroom - other', 'Warehouse storage area medium to bulky palletized items', 'Warehouse storage area small hand-carried items(4)'] space_types_to_skip['NECB2017'] = ['Atrium (height < 6m)', 'Atrium (6 =< height <= 12m)', 'Atrium (height > 12m)', 'Computer/Server room', 'Copy/Print room', 'Corridor/Transition area - hospital', 'Corridor/Transition area - manufacturing facility', 'Corridor/Transition area - space designed to ANSI/IES RP-28', 'Corridor/Transition area other', 'Electrical/Mechanical room', 'Emergency vehicle garage', 'Lobby - elevator', 'Lobby - hotel', 'Lobby - motion picture theatre', 'Lobby - performing arts theatre', 'Lobby - space designed to ANSI/IES RP-28', 'Lobby - other', 'Locker room', 'Stairway/Stairwell', 'Storage garage interior', 'Storage room < 5 m2', 'Storage room <= 5 m2 <= 100 m2', 'Storage room > 100 m2', 'Washroom - space designed to ANSI/IES RP-28', 'Washroom - other', 'Warehouse storage area medium to bulky palletized items', 'Warehouse storage area small hand-carried items(4)'] zone_does_not_have_vrf_eqpt = false zone.spaces.each do |space| space_types_to_skip.each do |std, spfs| spfs.each do |spf| if space.spaceType.get.name.to_s.downcase.include? spf.downcase zone_does_not_have_vrf_eqpt = true break end end break if zone_does_not_have_vrf_eqpt end break if zone_does_not_have_vrf_eqpt end end |