Class: PerfectShape::Arc
- Includes:
- RectangularShape
- Defined in:
- lib/perfect_shape/arc.rb
Direct Known Subclasses
Constant Summary collapse
- TYPES =
[:open, :chord, :pie]
- DEFAULT_OUTLINE_RADIUS =
BigDecimal('0.001')
Instance Attribute Summary collapse
-
#extent ⇒ Object
Returns the value of attribute extent.
-
#start ⇒ Object
Returns the value of attribute start.
-
#type ⇒ Object
Returns the value of attribute type.
Instance Method Summary collapse
-
#btan(increment) ⇒ Object
btan computes the length (k) of the control segments at the beginning and end of a cubic bezier that approximates a segment of an arc with extent less than or equal to 90 degrees.
- #center_x ⇒ Object
- #center_x=(value) ⇒ Object
- #center_y ⇒ Object
- #center_y=(value) ⇒ Object
-
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if arc contains point (two-number Array or x, y args).
-
#contain_angle?(angle) ⇒ Boolean
Determines whether or not the specified angle is within the angular extents of the arc.
-
#end_point ⇒ Object
Returns the ending point of the arc.
- #height ⇒ Object
-
#height=(value) ⇒ Object
Sets height, normalizing to BigDecimal.
-
#initialize(type: :open, x: 0, y: 0, width: 1, height: 1, start: 0, extent: 360, center_x: nil, center_y: nil, radius_x: nil, radius_y: nil) ⇒ Arc
constructor
A new instance of Arc.
- #intersect?(rectangle) ⇒ Boolean
- #radius_x ⇒ Object
- #radius_x=(value) ⇒ Object
- #radius_y ⇒ Object
- #radius_y=(value) ⇒ Object
-
#start_point ⇒ Object
Returns the starting point of the arc.
-
#to_path_shapes ⇒ Object
Converts Arc into basic Path shapes made up of Points, Lines, and CubicBezierCurves Used by Path when adding an Arc to Path shapes.
- #width ⇒ Object
-
#width=(value) ⇒ Object
Sets width, normalizing to BigDecimal.
- #x ⇒ Object
-
#x=(value) ⇒ Object
Sets x, normalizing to BigDecimal.
- #y ⇒ Object
-
#y=(value) ⇒ Object
Sets y, normalizing to BigDecimal.
Methods included from RectangularShape
Methods included from PointLocation
Methods inherited from Shape
#==, #bounding_box, #center_point, #max_x, #max_y, #min_x, #min_y
Constructor Details
#initialize(type: :open, x: 0, y: 0, width: 1, height: 1, start: 0, extent: 360, center_x: nil, center_y: nil, radius_x: nil, radius_y: nil) ⇒ Arc
Returns a new instance of Arc.
37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/perfect_shape/arc.rb', line 37 def initialize(type: :open, x: 0, y: 0, width: 1, height: 1, start: 0, extent: 360, center_x: nil, center_y: nil, radius_x: nil, radius_y: nil) if center_x && center_y && radius_x && radius_y self.center_x = center_x self.center_y = center_y self.radius_x = radius_x self.radius_y = radius_y else super(x: x, y: y, width: width, height: height) end @type = type self.start = start self.extent = extent end |
Instance Attribute Details
#extent ⇒ Object
Returns the value of attribute extent.
35 36 37 |
# File 'lib/perfect_shape/arc.rb', line 35 def extent @extent end |
#start ⇒ Object
Returns the value of attribute start.
35 36 37 |
# File 'lib/perfect_shape/arc.rb', line 35 def start @start end |
#type ⇒ Object
Returns the value of attribute type.
34 35 36 |
# File 'lib/perfect_shape/arc.rb', line 34 def type @type end |
Instance Method Details
#btan(increment) ⇒ Object
btan computes the length (k) of the control segments at the beginning and end of a cubic bezier that approximates a segment of an arc with extent less than or equal to 90 degrees. This length (k) will be used to generate the 2 bezier control points for such a segment.
Assumptions:
a) arc is centered on 0,0 with radius of 1.0
b) arc extent is less than 90 degrees
c) control points should preserve tangent
d) control segments should have equal length
Initial data:
start angle: ang1
end angle: ang2 = ang1 + extent
start point: P1 = (x1, y1) = (cos(ang1), sin(ang1))
end point: P4 = (x4, y4) = (cos(ang2), sin(ang2))
Control points:
P2 = (x2, y2)
| x2 = x1 - k * sin(ang1) = cos(ang1) - k * sin(ang1)
| y2 = y1 + k * cos(ang1) = sin(ang1) + k * cos(ang1)
P3 = (x3, y3)
| x3 = x4 + k * sin(ang2) = cos(ang2) + k * sin(ang2)
| y3 = y4 - k * cos(ang2) = sin(ang2) - k * cos(ang2)
The formula for this length (k) can be found using the following derivations:
Midpoints:
a) bezier (t = 1/2)
bPm = P1 * (1-t)^3 +
3 * P2 * t * (1-t)^2 +
3 * P3 * t^2 * (1-t) +
P4 * t^3 =
= (P1 + 3P2 + 3P3 + P4)/8
b) arc
aPm = (cos((ang1 + ang2)/2), sin((ang1 + ang2)/2))
Let angb = (ang2 - ang1)/2; angb is half of the angle
between ang1 and ang2.
Solve the equation bPm == aPm
a) For xm coord:
x1 + 3*x2 + 3*x3 + x4 = 8*cos((ang1 + ang2)/2)
cos(ang1) + 3*cos(ang1) - 3*k*sin(ang1) +
3*cos(ang2) + 3*k*sin(ang2) + cos(ang2) =
= 8*cos((ang1 + ang2)/2)
4*cos(ang1) + 4*cos(ang2) + 3*k*(sin(ang2) - sin(ang1)) =
= 8*cos((ang1 + ang2)/2)
8*cos((ang1 + ang2)/2)*cos((ang2 - ang1)/2) +
6*k*sin((ang2 - ang1)/2)*cos((ang1 + ang2)/2) =
= 8*cos((ang1 + ang2)/2)
4*cos(angb) + 3*k*sin(angb) = 4
k = 4 / 3 * (1 - cos(angb)) / sin(angb)
b) For ym coord we derive the same formula.
Since this formula can generate “NaN” values for small angles, we will derive a safer form that does not involve dividing by very small values:
(1 - cos(angb)) / sin(angb) =
= (1 - cos(angb))*(1 + cos(angb)) / sin(angb)*(1 + cos(angb)) =
= (1 - cos(angb)^2) / sin(angb)*(1 + cos(angb)) =
= sin(angb)^2 / sin(angb)*(1 + cos(angb)) =
= sin(angb) / (1 + cos(angb))
461 462 463 464 465 |
# File 'lib/perfect_shape/arc.rb', line 461 def btan(increment) return 0 if increment.nan? increment /= BigDecimal('2.0') BigDecimal('4.0') / BigDecimal('3.0') * Math.sin(increment) / (BigDecimal('1.0') + Math.cos(increment)) end |
#center_x ⇒ Object
101 102 103 |
# File 'lib/perfect_shape/arc.rb', line 101 def center_x super || @center_x end |
#center_x=(value) ⇒ Object
117 118 119 120 121 |
# File 'lib/perfect_shape/arc.rb', line 117 def center_x=(value) @center_x = BigDecimal(value.to_s) @x = nil self.radius_x = radius_x if @width end |
#center_y ⇒ Object
105 106 107 |
# File 'lib/perfect_shape/arc.rb', line 105 def center_y super || @center_y end |
#center_y=(value) ⇒ Object
123 124 125 126 127 |
# File 'lib/perfect_shape/arc.rb', line 123 def center_y=(value) @center_y = BigDecimal(value.to_s) @y = nil self.radius_y = radius_y if @height end |
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if arc contains point (two-number Array or x, y args)
the arc, false if the point lies outside of the arc’s bounds.
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'lib/perfect_shape/arc.rb', line 147 def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y if outline if type == :pie && x == center_x && y == center_y true else distance_tolerance = BigDecimal(distance_tolerance.to_s) outside_inside_radius_difference = DEFAULT_OUTLINE_RADIUS + distance_tolerance * 2 outside_radius_difference = inside_radius_difference = outside_inside_radius_difference / 2 outside_shape = Arc.new(type: type, center_x: center_x, center_y: center_y, radius_x: radius_x + outside_radius_difference, radius_y: radius_y + outside_radius_difference, start: start, extent: extent) inside_shape = Arc.new(type: type, center_x: center_x, center_y: center_y, radius_x: radius_x - inside_radius_difference, radius_y: radius_y - inside_radius_difference, start: start, extent: extent) outside_shape.contain?(x, y, outline: false) and !inside_shape.contain?(x, y, outline: false) end else # Normalize the coordinates compared to the ellipse # having a center at 0,0 and a radius of 0.5. ellw = width return false if (ellw <= 0.0) normx = (x - self.x) / ellw - 0.5 ellh = height return false if (ellh <= 0.0) normy = (y - self.y) / ellh - 0.5 dist_sq = (normx * normx) + (normy * normy) return false if (dist_sq >= 0.25) ang_ext = self.extent.abs return true if (ang_ext >= 360.0) inarc = contain_angle?(-1*Math.radians_to_degrees(Math.atan2(normy, normx))) return inarc if type == :pie # CHORD and OPEN behave the same way if inarc return true if ang_ext >= 180.0 # point must be outside the "pie triangle" else return false if ang_ext <= 180.0 # point must be inside the "pie triangle" end # The point is inside the pie triangle iff it is on the same # side of the line connecting the ends of the arc as the center. angle = Math.degrees_to_radians(-start) x1 = Math.cos(angle) y1 = Math.sin(angle) angle += Math.degrees_to_radians(-extent) x2 = Math.cos(angle) y2 = Math.sin(angle) inside = (Line.relative_counterclockwise(x1, y1, x2, y2, 2*normx, 2*normy) * Line.relative_counterclockwise(x1, y1, x2, y2, 0, 0) >= 0) inarc ? !inside : inside end end |
#contain_angle?(angle) ⇒ Boolean
Determines whether or not the specified angle is within the angular extents of the arc.
203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/perfect_shape/arc.rb', line 203 def contain_angle?(angle) ang_ext = self.extent backwards = ang_ext < 0.0 ang_ext = -ang_ext if backwards return true if ang_ext >= 360.0 angle = Math.normalize_degrees(angle) - Math.normalize_degrees(start) angle = -angle if backwards angle += 360.0 if angle < 0.0 (angle >= 0.0) && (angle < ang_ext) end |
#end_point ⇒ Object
Returns the ending point of the arc. This point is the intersection of the ray from the center defined by the starting angle plus the angular extent of the arc and the elliptical boundary of the arc.
x,y coordinates of the ending point of the arc.
309 310 311 312 313 314 |
# File 'lib/perfect_shape/arc.rb', line 309 def end_point angle = Math.degrees_to_radians(-self.start - self.extent) x = self.x + (Math.cos(angle) * 0.5 + 0.5) * self.width y = self.y + (Math.sin(angle) * 0.5 + 0.5) * self.height [x, y] end |
#height ⇒ Object
71 72 73 |
# File 'lib/perfect_shape/arc.rb', line 71 def height @radius_y ? @radius_y * BigDecimal('2.0') : super end |
#height=(value) ⇒ Object
Sets height, normalizing to BigDecimal
96 97 98 99 |
# File 'lib/perfect_shape/arc.rb', line 96 def height=(value) super @radius_y = nil end |
#intersect?(rectangle) ⇒ Boolean
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# File 'lib/perfect_shape/arc.rb', line 216 def intersect?(rectangle) x = rectangle.x y = rectangle.y w = rectangle.width h = rectangle.height aw = self.width ah = self.height return false if w <= 0 || h <= 0 || aw <= 0 || ah <= 0 ext = self.extent return false if ext == 0 ax = self.x ay = self.y axw = ax + aw ayh = ay + ah xw = x + w yh = y + h # check bbox return false if x >= axw || y >= ayh || xw <= ax || yh <= ay # extract necessary data axc = self.center_x ayc = self.center_y sx, sy = self.start_point ex, ey = self.end_point # Try to catch rectangles that intersect arc in areas # outside of rectagle with left top corner coordinates # (min(center x, start point x, end point x), # min(center y, start point y, end point y)) # and rigth bottom corner coordinates # (max(center x, start point x, end point x), # max(center y, start point y, end point y)). # So we'll check axis segments outside of rectangle above. if ayc >= y && ayc <= yh # 0 and 180 return true if (sx < xw && ex < xw && axc < xw && axw > x && contain_angle?(0)) || (sx > x && ex > x && axc > x && ax < xw && contain_angle?(180)) end if axc >= x && axc <= xw # 90 and 270 return true if (sy > y && ey > y && ayc > y && ay < yh && contain_angle?(90)) || (sy < yh && ey < yh && ayc < yh && ayh > y && contain_angle?(270)) end # For PIE we should check intersection with pie slices # also we should do the same for arcs with extent is greater # than 180, because we should cover case of rectangle, which # situated between center of arc and chord, but does not # intersect the chord. rect = PerfectShape::Rectangle.new(x: x, y: y, width: w, height: h) if type == :pie || ext.abs > 180 # for PIE: try to find intersections with pie slices line1 = PerfectShape::Line.new(points: [[axc, ayc], [sx, sy]]) line2 = PerfectShape::Line.new(points: [[axc, ayc], [ex, ey]]) return true if line1.intersect?(rect) || line2.intersect?(rect) else # for CHORD and OPEN: try to find intersections with chord line = PerfectShape::Line.new(points: [[sx, sy], [ex, ey]]) return true if line.intersect?(rect) end # finally check the rectangle corners inside the arc return true if contain?(x, y) || contain?(x + w, y) || contain?(x, y + h) || contain?(x + w, y + h) false end |
#radius_x ⇒ Object
109 110 111 |
# File 'lib/perfect_shape/arc.rb', line 109 def radius_x @width ? @width/BigDecimal('2.0') : @radius_x end |
#radius_x=(value) ⇒ Object
129 130 131 132 |
# File 'lib/perfect_shape/arc.rb', line 129 def radius_x=(value) @radius_x = BigDecimal(value.to_s) @width = nil end |
#radius_y ⇒ Object
113 114 115 |
# File 'lib/perfect_shape/arc.rb', line 113 def radius_y @height ? @height/BigDecimal('2.0') : @radius_y end |
#radius_y=(value) ⇒ Object
134 135 136 137 |
# File 'lib/perfect_shape/arc.rb', line 134 def radius_y=(value) @radius_y = BigDecimal(value.to_s) @height = nil end |
#start_point ⇒ Object
Returns the starting point of the arc. This point is the intersection of the ray from the center defined by the starting angle and the elliptical boundary of the arc.
x,y coordinates of the starting point of the arc.
295 296 297 298 299 300 |
# File 'lib/perfect_shape/arc.rb', line 295 def start_point angle = Math.degrees_to_radians(-self.start) x = self.x + (Math.cos(angle) * 0.5 + 0.5) * self.width y = self.y + (Math.sin(angle) * 0.5 + 0.5) * self.height [x, y] end |
#to_path_shapes ⇒ Object
Converts Arc into basic Path shapes made up of Points, Lines, and CubicBezierCurves Used by Path when adding an Arc to Path shapes
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# File 'lib/perfect_shape/arc.rb', line 318 def to_path_shapes w = BigDecimal(self.width.to_s) / 2 h = BigDecimal(self.height.to_s) / 2 x = self.x + w y = self.x + h ang_st_rad = -Math.degrees_to_radians(self.start) ext = -self.extent if ext >= 360.0 || ext <= -360 arc_segs = 4 increment = Math::PI / 2 cv = 0.5522847498307933 if ext < 0 increment = -increment cv = -cv end else arc_segs = (ext.abs / 90.0).ceil increment = Math.degrees_to_radians(ext / arc_segs) cv = btan(increment) arc_segs = 0 if cv == 0 end line_segs = nil case self.type when :open line_segs = 0 when :chord line_segs = 1 when :pie line_segs = 2 end arc_segs = line_segs = -1 if w < 0 || h < 0 first_point_x = first_point_y = nil (arc_segs + line_segs + 1).to_i.times.map do |index| coords = [] angle = ang_st_rad if index == 0 first_point_x = coords[0] = x + Math.cos(angle) * w first_point_y = coords[1] = y + Math.sin(angle) * h Point.new(*coords) elsif (index > arc_segs) && (extent - start) != 0 && ((extent - start)%360 == 0) nil elsif (index > arc_segs) && (index < arc_segs + line_segs) && (extent - start) == 0 nil elsif (index > arc_segs) && (index == arc_segs + line_segs) Line.new(points: [[first_point_x, first_point_y]]) elsif index > arc_segs coords[0] = x coords[1] = y Line.new(points: coords) else angle += increment * (index - 1) relx = Math.cos(angle) rely = Math.sin(angle) coords[0] = x + (relx - cv * rely) * w coords[1] = y + (rely + cv * relx) * h angle += increment relx = Math.cos(angle) rely = Math.sin(angle) coords[2] = x + (relx + cv * rely) * w coords[3] = y + (rely - cv * relx) * h coords[4] = x + relx * w coords[5] = y + rely * h CubicBezierCurve.new(points: coords) end end.compact end |
#width ⇒ Object
67 68 69 |
# File 'lib/perfect_shape/arc.rb', line 67 def width @radius_x ? @radius_x * BigDecimal('2.0') : super end |
#width=(value) ⇒ Object
Sets width, normalizing to BigDecimal
90 91 92 93 |
# File 'lib/perfect_shape/arc.rb', line 90 def width=(value) super @radius_x = nil end |
#x ⇒ Object
59 60 61 |
# File 'lib/perfect_shape/arc.rb', line 59 def x @center_x && @radius_x ? @center_x - @radius_x : super end |
#x=(value) ⇒ Object
Sets x, normalizing to BigDecimal
76 77 78 79 80 |
# File 'lib/perfect_shape/arc.rb', line 76 def x=(value) super @center_x = nil self.width = width if @radius_x end |
#y ⇒ Object
63 64 65 |
# File 'lib/perfect_shape/arc.rb', line 63 def y @center_y && @radius_y ? @center_y - @radius_y : super end |
#y=(value) ⇒ Object
Sets y, normalizing to BigDecimal
83 84 85 86 87 |
# File 'lib/perfect_shape/arc.rb', line 83 def y=(value) super @center_y = nil self.height = height if @radius_y end |