Module: Spark::Mllib
- Defined in:
- lib/spark/mllib.rb,
lib/spark/mllib/matrix.rb,
lib/spark/mllib/matrix.rb,
lib/spark/mllib/matrix.rb,
lib/spark/mllib/matrix.rb,
lib/spark/mllib/vector.rb,
lib/spark/mllib/vector.rb,
lib/spark/mllib/vector.rb,
lib/spark/mllib/vector.rb,
lib/spark/mllib/regression/lasso.rb,
lib/spark/mllib/regression/ridge.rb,
lib/spark/mllib/clustering/kmeans.rb,
lib/spark/mllib/clustering/kmeans.rb,
lib/spark/mllib/regression/common.rb,
lib/spark/mllib/regression/common.rb,
lib/spark/mllib/regression/linear.rb,
lib/spark/mllib/classification/svm.rb,
lib/spark/mllib/classification/svm.rb,
lib/spark/mllib/classification/common.rb,
lib/spark/mllib/classification/common.rb,
lib/spark/mllib/regression/labeled_point.rb,
lib/spark/mllib/classification/naive_bayes.rb,
lib/spark/mllib/classification/naive_bayes.rb,
lib/spark/mllib/ruby_matrix/matrix_adapter.rb,
lib/spark/mllib/ruby_matrix/vector_adapter.rb,
lib/spark/mllib/clustering/gaussian_mixture.rb,
lib/spark/mllib/clustering/gaussian_mixture.rb,
lib/spark/mllib/classification/logistic_regression.rb,
lib/spark/mllib/classification/logistic_regression.rb,
lib/spark/mllib/classification/logistic_regression.rb
Overview
MLlib is Spark’s scalable machine learning library consisting of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives.
Defined Under Namespace
Modules: Matrices, Vectors
Classes: ClassificationMethodBase, ClassificationModel, DenseMatrix, DenseVector, GaussianMixture, GaussianMixtureModel, KMeans, KMeansModel, LabeledPoint, LassoModel, LassoWithSGD, LinearRegressionModel, LinearRegressionWithSGD, LogisticRegressionModel, LogisticRegressionWithLBFGS, LogisticRegressionWithSGD, MatrixAdapter, MatrixBase, NaiveBayes, NaiveBayesModel, RegressionMethodBase, RegressionModel, RidgeRegressionModel, RidgeRegressionWithSGD, SVMModel, SVMWithSGD, SparseMatrix, SparseVector, VectorAdapter, VectorBase
Class Method Summary
collapse
Class Method Details
.autoload(klass, location, import = true) ⇒ Object
7
8
9
10
11
12
13
14
|
# File 'lib/spark/mllib.rb', line 7
def self.autoload(klass, location, import=true)
if import
@for_importing ||= []
@for_importing << klass
end
super(klass, location)
end
|
.autoload_without_import(klass, location) ⇒ Object
16
17
18
|
# File 'lib/spark/mllib.rb', line 16
def self.autoload_without_import(klass, location)
autoload(klass, location, false)
end
|
.import(to = Object) ⇒ Object
83
84
85
86
87
88
|
# File 'lib/spark/mllib.rb', line 83
def self.import(to=Object)
@for_importing.each do |klass|
to.const_set(klass, const_get(klass))
end
nil
end
|
.mdarray? ⇒ Boolean
94
95
96
|
# File 'lib/spark/mllib.rb', line 94
def self.mdarray?
Gem::Specification::find_all_by_name('mdarray').any?
end
|
.narray? ⇒ Boolean
90
91
92
|
# File 'lib/spark/mllib.rb', line 90
def self.narray?
Gem::Specification::find_all_by_name('narray').any?
end
|
.prepare ⇒ Object
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
# File 'lib/spark/mllib.rb', line 62
def self.prepare
return if @prepared
require 'spark/mllib/ruby_matrix/vector_adapter'
require 'spark/mllib/ruby_matrix/matrix_adapter'
@prepared = true
nil
end
|