Class: Spark::Mllib::SVMModel
- Inherits:
-
ClassificationModel
- Object
- ClassificationModel
- Spark::Mllib::SVMModel
- Defined in:
- lib/spark/mllib/classification/svm.rb
Overview
SVMModel
A support vector machine.
Examples:
Spark::Mllib.import
# Dense vectors
data = [
LabeledPoint.new(0.0, [0.0]),
LabeledPoint.new(1.0, [1.0]),
LabeledPoint.new(1.0, [2.0]),
LabeledPoint.new(1.0, [3.0])
]
svm = SVMWithSGD.train($sc.parallelize(data))
svm.predict([1.0])
# => 1
svm.clear_threshold
svm.predict([1.0])
# => 1.25...
# Sparse vectors
data = [
LabeledPoint.new(0.0, SparseVector.new(2, {0 => -1.0})),
LabeledPoint.new(1.0, SparseVector.new(2, {1 => 1.0})),
LabeledPoint.new(0.0, SparseVector.new(2, {0 => 0.0})),
LabeledPoint.new(1.0, SparseVector.new(2, {1 => 2.0}))
]
svm = SVMWithSGD.train($sc.parallelize(data))
svm.predict(SparseVector.new(2, {1 => 1.0}))
# => 1
svm.predict(SparseVector.new(2, {0 => -1.0}))
# => 0
Instance Attribute Summary
Attributes inherited from ClassificationModel
#intercept, #threshold, #weights
Instance Method Summary collapse
-
#initialize(*args) ⇒ SVMModel
constructor
A new instance of SVMModel.
-
#predict(vector) ⇒ Object
Predict values for a single data point or an RDD of points using the model trained.
Methods inherited from ClassificationModel
Constructor Details
#initialize(*args) ⇒ SVMModel
Returns a new instance of SVMModel.
44 45 46 47 |
# File 'lib/spark/mllib/classification/svm.rb', line 44 def initialize(*args) super @threshold = 0.0 end |
Instance Method Details
#predict(vector) ⇒ Object
Predict values for a single data point or an RDD of points using the model trained.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# File 'lib/spark/mllib/classification/svm.rb', line 51 def predict(vector) vector = Spark::Mllib::Vectors.to_vector(vector) margin = weights.dot(vector) + intercept if threshold.nil? return margin end if margin > threshold 1 else 0 end end |