Class: Spark::Mllib::SVMWithSGD
- Inherits:
-
ClassificationMethodBase
- Object
- RegressionMethodBase
- ClassificationMethodBase
- Spark::Mllib::SVMWithSGD
- Defined in:
- lib/spark/mllib/classification/svm.rb
Constant Summary collapse
- DEFAULT_OPTIONS =
{ iterations: 100, step: 1.0, reg_param: 0.01, mini_batch_fraction: 1.0, initial_weights: nil, reg_type: 'l2', intercept: false, validate: true }
Class Method Summary collapse
-
.train(rdd, options = {}) ⇒ Object
Train a support vector machine on the given data.
Class Method Details
.train(rdd, options = {}) ⇒ Object
Train a support vector machine on the given data.
- rdd
-
The training data, an RDD of LabeledPoint.
- iterations
-
The number of iterations (default: 100).
- step
-
The step parameter used in SGD (default: 1.0).
- reg_param
-
The regularizer parameter (default: 0.01).
- mini_batch_fraction
-
Fraction of data to be used for each SGD iteration.
- initial_weights
-
The initial weights (default: nil).
- reg_type
-
The type of regularizer used for training our model (default: “l2”).
Allowed values:
-
“l1” for using L1 regularization
-
“l2” for using L2 regularization
-
nil for no regularization
-
- intercept
-
Boolean parameter which indicates the use or not of the augmented representation for training data (i.e. whether bias features are activated or not). (default: false)
- validateData
-
Boolean parameter which indicates if the algorithm should validate data before training. (default: true)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# File 'lib/spark/mllib/classification/svm.rb', line 125 def self.train(rdd, ={}) super weights, intercept = Spark.jb.call(RubyMLLibAPI.new, 'trainSVMModelWithSGD', rdd, [:iterations].to_i, [:step].to_f, [:reg_param].to_f, [:mini_batch_fraction].to_f, [:initial_weights], [:reg_type], [:intercept], [:validate]) SVMModel.new(weights, intercept) end |