Method List
-
#* DNN::Param
-
#* DNN::Tensor
-
#* Float
-
#* Integer
-
#** DNN::Param
-
#** DNN::Tensor
-
#+ DNN::Param
-
#+ Integer
-
#+ DNN::Tensor
-
#+ Float
-
#+@ DNN::Param
-
#+@ DNN::Tensor
-
#- DNN::Tensor
-
#- Float
-
#- Integer
-
#- DNN::Param
-
#-@ DNN::Tensor
-
#-@ DNN::Param
-
#/ DNN::Param
-
#/ Float
-
#/ Integer
-
#/ DNN::Tensor
-
#<< DNN::Layers::Layer
-
#>> DNN::Tensor
-
#_backward_cpu DNN::Layers::Reshape
-
#_backward_gpu DNN::Layers::Reshape
-
#_forward_cpu DNN::Layers::Reshape
-
#_forward_gpu DNN::Layers::Reshape
-
#activation DNN::Layers::SimpleRNN
-
#add DNN::Models::Sequential
-
#add_callback DNN::Models::Model
-
#add_lambda_callback DNN::Models::Model
-
#after_epoch DNN::Callbacks::CheckPoint
-
#after_epoch DNN::Callbacks::EarlyStopping
-
#after_epoch DNN::Callbacks::Logger
-
#after_train_on_batch DNN::Callbacks::EarlyStopping
-
#after_train_on_batch DNN::Callbacks::NaNStopping
-
#after_train_on_batch DNN::Callbacks::Logger
-
align_ndim DNN::Layers::MathUtils
-
#alpha DNN::Layers::LeakyReLU
-
#alpha DNN::Optimizers::Adam
-
#alpha DNN::Optimizers::RMSPropGraves
-
#alpha DNN::Optimizers::RMSProp
-
#alpha DNN::Layers::ELU
-
#amsgrad DNN::Optimizers::Adam
-
#axis DNN::Layers::BatchNormalization
-
#axis DNN::Layers::Mean
-
#axis DNN::Layers::Split
-
#axis DNN::Layers::Sum
-
#axis DNN::Layers::Concatenate
-
#backward DNN::Param
-
#backward DNN::Link
-
#backward DNN::Layers::GRUCell
-
#backward DNN::Layers::SimpleRNNCell
-
#backward DNN::Layers::LSTMCell
-
#backward_node DNN::Layers::Lasso
-
#backward_node DNN::Layers::Conv2D
-
#backward_node DNN::Layers::LeakyReLU
-
#backward_node DNN::Layers::Div
-
#backward_node DNN::Losses::Hinge
-
#backward_node DNN::Losses::MeanAbsoluteError
-
#backward_node DNN::Losses::HuberLoss
-
#backward_node DNN::Layers::Neg
-
#backward_node DNN::Layers::BatchNormalization
-
#backward_node DNN::Layers::Sum
-
#backward_node DNN::Losses::MeanSquaredError
-
#backward_node DNN::Layers::Embedding
-
#backward_node DNN::Layers::Exp
-
#backward_node DNN::Layers::Dropout
-
#backward_node DNN::Layers::Mean
-
#backward_node DNN::Layers::Log
-
#backward_node DNN::Layers::Sub
-
#backward_node DNN::Layers::Dense
-
#backward_node DNN::Layers::Sigmoid
-
#backward_node DNN::Layers::Dot
-
#backward_node DNN::Layers::LayerNode
-
#backward_node DNN::Layers::Softplus
-
#backward_node DNN::Layers::Swish
-
#backward_node DNN::Layers::Reshape
-
#backward_node DNN::Layers::ReLU
-
#backward_node DNN::Layers::Pow
-
#backward_node DNN::Losses::SoftmaxCrossEntropy
-
#backward_node DNN::Layers::Softsign
-
#backward_node DNN::Layers::Mul
-
#backward_node DNN::Layers::Conv2DTranspose
-
#backward_node DNN::Layers::AvgPool2D
-
#backward_node DNN::Layers::UnPool2D
-
#backward_node DNN::Layers::Sqrt
-
#backward_node DNN::Layers::Ridge
-
#backward_node DNN::Layers::Mish
-
#backward_node DNN::Layers::LSTM
-
#backward_node DNN::Layers::Tanh
-
#backward_node DNN::Losses::SigmoidCrossEntropy
-
#backward_node DNN::Layers::Concatenate
-
#backward_node DNN::Layers::MaxPool2D
-
#backward_node DNN::Layers::Split
-
#backward_node DNN::Layers::Add
-
#backward_node DNN::Layers::RNN
-
#backward_node DNN::Layers::ELU
-
#beta DNN::Layers::BatchNormalization
-
#beta1 DNN::Optimizers::Adam
-
#beta2 DNN::Optimizers::Adam
-
#bias DNN::Layers::Connection
-
#bias_initializer DNN::Layers::Connection
-
#bias_regularizer DNN::Layers::Connection
-
broadcast_to DNN::Layers::MathUtils
-
broadcast_to DNN::Utils
-
#build DNN::Layers::GRU
-
#build DNN::Layers::Dense
-
#build DNN::Layers::GlobalAvgPool2D
-
#build DNN::Layers::RNN
-
#build DNN::Layers::InputLayer
-
#build DNN::Layers::SimpleRNN
-
#build DNN::Layers::Conv2DTranspose
-
#build DNN::Layers::Conv2D
-
#build DNN::Layers::LSTM
-
#build DNN::Layers::UnPool2D
-
#build DNN::Layers::BatchNormalization
-
#build DNN::Layers::Pool2D
-
#build DNN::Layers::Layer
-
#build DNN::Layers::Embedding
-
#built? DNN::Models::Model
-
#built? DNN::Layers::Layer
-
calc_conv2d_out_size DNN::Layers::Conv2DUtils
-
calc_conv2d_padding_size DNN::Layers::Conv2DUtils
-
calc_conv2d_transpose_out_size DNN::Layers::Conv2DUtils
-
calc_conv2d_transpose_padding_size DNN::Layers::Conv2DUtils
-
#call DNN::Models::Model
-
#call DNN::Models::Chain
-
call DNN::Layers::Layer
-
#call DNN::Layers::MergeLayer
-
#call DNN::Losses::Loss
-
call DNN::Losses::Loss
-
call DNN::Layers::MergeLayer
-
#call DNN::Layers::Layer
-
#call_callbacks DNN::Models::Model
-
#cell DNN::Layers::LSTM
-
#check_early_stop_requested DNN::Models::Model
-
check_input_data_type DNN::Utils
-
#clean DNN::Losses::Loss
-
#clean DNN::Layers::Layer
-
#clean DNN::Layers::TrainableLayer
-
#clean_layers DNN::Models::Model
-
#clear_callbacks DNN::Models::Model
-
#clip_norm DNN::Optimizers::Optimizer
-
col2im DNN::Layers::Conv2DUtils
-
col2im_cpu DNN::Layers::Conv2DUtils
-
col2im_gpu DNN::Layers::Conv2DUtils
-
#compute_output_shape DNN::Layers::Conv2DTranspose
-
#compute_output_shape DNN::Layers::Reshape
-
#compute_output_shape DNN::Layers::UnPool2D
-
#compute_output_shape DNN::Layers::Conv2D
-
#compute_output_shape DNN::Layers::Flatten
-
#compute_output_shape DNN::Layers::Dense
-
#compute_output_shape DNN::Layers::Layer
-
#compute_output_shape DNN::Layers::Pool2D
-
#compute_output_shape DNN::Layers::RNN
-
#const DNN::Initializers::Const
-
convert DNN::Tensor
-
#convert KerasModelConvertor
-
#convert_layers KerasModelConvertor
-
#copy DNN::Models::Model
-
#create_hidden_layer DNN::Layers::SimpleRNN
-
#create_hidden_layer DNN::Layers::GRU
-
#create_hidden_layer DNN::Layers::LSTM
-
cudnn_available? DNN
-
cumo2numo DNN::Utils
-
#data DNN::Tensor
-
#data DNN::Param
-
#dim DNN::Layers::Split
-
#dnn__add Float
-
#dnn__add Integer
-
#dnn__div Integer
-
#dnn__div Float
-
#dnn__mul Integer
-
#dnn__mul Float
-
#dnn__sub Integer
-
#dnn__sub Float
-
#dnn__to_h Hash
-
#download DNN::Downloader
-
download DNN::Downloader
-
downloads DNN::STL10
-
downloads DNN::Iris
-
downloads DNN::CIFAR100
-
downloads DNN::CIFAR10
-
downloads DNN::FashionMNIST
-
downloads DNN::MNIST
-
#dropout_ratio DNN::Layers::Dropout
-
#dump_bin DNN::Savers::MarshalSaver
-
#dump_bin DNN::Savers::JSONSaver
-
#dump_bin DNN::Savers::Saver
-
#eps DNN::Optimizers::RMSPropGraves
-
#eps DNN::Optimizers::AdaGrad
-
#eps DNN::Optimizers::Adam
-
#eps DNN::Layers::BatchNormalization
-
#eps DNN::Optimizers::RMSProp
-
#eps DNN::Optimizers::AdaDelta
-
#eps DNN::Losses::SigmoidCrossEntropy
-
#eps DNN::Losses::SoftmaxCrossEntropy
-
#evaluate DNN::Models::Model
-
#evaluate_by_iterator DNN::Models::Model
-
#evaluating? DNN::Models::ModelEvaluator
-
#filter_size DNN::Layers::Conv2D
-
#filter_size DNN::Layers::Conv2DTranspose
-
#filters DNN::Layers::Conv2DTranspose
-
#filters DNN::Layers::Conv2D
-
#filters= DNN::Layers::Conv2D
-
#filters= DNN::Layers::Conv2DTranspose
-
#final_lr DNN::Optimizers::AdaBound
-
#foreach DNN::Iterator
-
#forward DNN::Models::FixedModel
-
#forward DNN::Models::Sequential
-
#forward DNN::Layers::LayerNode
-
#forward DNN::Layers::Softmax
-
#forward DNN::Layers::Layer
-
#forward DNN::Layers::LSTMCell
-
#forward DNN::Layers::InputLayer
-
#forward DNN::Layers::SimpleRNNCell
-
#forward DNN::Regularizers::L1L2
-
#forward DNN::Layers::GlobalAvgPool2D
-
#forward DNN::Layers::Flatten
-
#forward DNN::Models::Chain
-
#forward DNN::Regularizers::Regularizer
-
#forward DNN::Losses::Loss
-
#forward DNN::Link
-
#forward DNN::Regularizers::L1
-
#forward DNN::Regularizers::L2
-
#forward DNN::Layers::GRUCell
-
#forward_node DNN::Layers::Sub
-
#forward_node DNN::Layers::Embedding
-
#forward_node DNN::Layers::Sqrt
-
#forward_node DNN::Layers::Sum
-
#forward_node DNN::Layers::Conv2D
-
#forward_node DNN::Layers::Mish
-
#forward_node DNN::Layers::Log
-
#forward_node DNN::Layers::Dropout
-
#forward_node DNN::Layers::LayerNode
-
#forward_node DNN::Layers::Exp
-
#forward_node DNN::Layers::Neg
-
#forward_node DNN::Layers::Pow
-
#forward_node DNN::Layers::Split
-
#forward_node DNN::Layers::Concatenate
-
#forward_node DNN::Layers::ReLU
-
#forward_node DNN::Losses::SigmoidCrossEntropy
-
#forward_node DNN::Layers::Add
-
#forward_node DNN::Layers::Reshape
-
#forward_node DNN::Layers::AvgPool2D
-
#forward_node DNN::Losses::MeanAbsoluteError
-
#forward_node DNN::Losses::Hinge
-
#forward_node DNN::Losses::HuberLoss
-
#forward_node DNN::Losses::SoftmaxCrossEntropy
-
#forward_node DNN::Losses::MeanSquaredError
-
#forward_node DNN::Layers::Mul
-
#forward_node DNN::Layers::Dot
-
#forward_node DNN::Layers::Sigmoid
-
#forward_node DNN::Layers::Mean
-
#forward_node DNN::Layers::Div
-
#forward_node DNN::Layers::LSTM
-
#forward_node DNN::Layers::RNN
-
#forward_node DNN::Layers::Softsign
-
#forward_node DNN::Layers::Ridge
-
#forward_node DNN::Layers::Lasso
-
#forward_node DNN::Layers::BatchNormalization
-
#forward_node DNN::Layers::LeakyReLU
-
#forward_node DNN::Layers::UnPool2D
-
#forward_node DNN::Layers::ELU
-
#forward_node DNN::Layers::Conv2DTranspose
-
#forward_node DNN::Layers::Softplus
-
#forward_node DNN::Layers::MaxPool2D
-
#forward_node DNN::Layers::Dense
-
#forward_node DNN::Layers::Swish
-
#forward_node DNN::Layers::Tanh
-
from_binary DNN::Image
-
from_hash DNN::Initializers::Initializer
-
from_hash DNN::Layers::Layer
-
from_hash DNN::Losses::Loss
-
from_hash DNN::Regularizers::Regularizer
-
from_hash DNN::Optimizers::Optimizer
-
from_hash_list DNN::Models::LayersList
-
from_na Numpy
-
#gamma DNN::Optimizers::AdaBound
-
#gamma DNN::Layers::BatchNormalization
-
#get_all_params_data DNN::Models::Model
-
#get_all_trainable_params DNN::Models::Model
-
#get_layer DNN::Models::Model
-
#get_log DNN::Callbacks::Logger
-
#get_params DNN::Layers::RNN
-
#get_params DNN::Layers::TrainableLayer
-
#get_params DNN::Layers::Embedding
-
#get_params DNN::Layers::BatchNormalization
-
#get_params DNN::Layers::LSTM
-
#get_params DNN::Layers::Connection
-
#grad DNN::Param
-
#has_next? DNN::Iterator
-
hash_to_obj DNN::Utils
-
#hidden DNN::Layers::RNN
-
im2col DNN::Layers::Conv2DUtils
-
im2col_cpu DNN::Layers::Conv2DUtils
-
im2col_gpu DNN::Layers::Conv2DUtils
-
#init_param DNN::Initializers::He
-
#init_param DNN::Initializers::Xavier
-
#init_param DNN::Initializers::RandomNormal
-
#init_param DNN::Initializers::Const
-
#init_param DNN::Initializers::Zeros
-
#init_param DNN::Initializers::RandomUniform
-
#init_param DNN::Initializers::Initializer
-
#initialize DNN::Initializers::He
-
#initialize DNN::Initializers::Xavier
-
#initialize DNN::Initializers::RandomNormal
-
#initialize DNN::Initializers::RandomUniform
-
#initialize DNN::Initializers::Const
-
#initialize DNN::Initializers::Initializer
-
#initialize DNN::Layers::RNNCell
-
#initialize DNN::Optimizers::AdaBound
-
#initialize DNN::Optimizers::Adam
-
#initialize DNN::Layers::RNN
-
#initialize DNN::Optimizers::RMSPropGraves
-
#initialize DNN::Optimizers::AdaDelta
-
#initialize DNN::Layers::Pow
-
#initialize DNN::Optimizers::RMSProp
-
#initialize DNN::Optimizers::AdaGrad
-
#initialize DNN::Optimizers::Nesterov
-
#initialize DNN::Layers::Ridge
-
#initialize DNN::Optimizers::SGD
-
#initialize DNN::Optimizers::Optimizer
-
#initialize DNN::Layers::InputLayer
-
#initialize DNN::Callbacks::LambdaCallback
-
#initialize DNN::Callbacks::CheckPoint
-
#initialize DNN::Callbacks::EarlyStopping
-
#initialize DNN::Callbacks::Logger
-
#initialize DNN::Iterator
-
#initialize DNN::Layers::Concatenate
-
#initialize DNN::Tensor
-
#initialize DNN::Savers::MarshalSaver
-
#initialize DNN::Savers::Saver
-
#initialize DNN::Models::FixedModel
-
#initialize DNN::Models::Sequential
-
#initialize DNN::Loaders::Loader
-
#initialize DNN::Layers::Conv2D
-
#initialize DNN::Layers::Connection
-
#initialize DNN::Models::ModelEvaluator
-
#initialize DNN::Layers::Mean
-
#initialize DNN::Models::ModelTrainer
-
#initialize DNN::Layers::ELU
-
#initialize DNN::Layers::Reshape
-
#initialize DNN::Models::Model
-
#initialize DNN::Layers::LSTMCell
-
#initialize DNN::Models::Chain
-
#initialize DNN::Losses::SigmoidCrossEntropy
-
#initialize DNN::Layers::Pool2D
-
#initialize DNN::Losses::SoftmaxCrossEntropy
-
#initialize DNN::Layers::BatchNormalization
-
#initialize DNN::Layers::Dense
-
#initialize DNN::Layers::SimpleRNNCell
-
#initialize DNN::Layers::Dropout
-
#initialize DNN::Layers::Sum
-
#initialize DNN::Param
-
#initialize DNN::Link
-
#initialize DNN::Layers::GRUCell
-
#initialize DNN::Layers::Split
-
#initialize DNN::Layers::Layer
-
#initialize DNN::Layers::SimpleRNN
-
#initialize DNN::Layers::LSTM
-
#initialize KerasModelConvertor
-
#initialize DNN::Layers::Embedding
-
#initialize DNN::Layers::UnPool2D
-
#initialize DNN::Layers::TrainableLayer
-
#initialize DNN::Layers::GRU
-
#initialize DNN::Layers::LeakyReLU
-
#initialize DNN::Downloader
-
#initialize DNN::Layers::Lasso
-
#initialize DNN::Regularizers::L1L2
-
#initialize DNN::Regularizers::L2
-
#initialize DNN::Regularizers::L1
-
#initialize DNN::Layers::Conv2DTranspose
-
#input_length DNN::Layers::Embedding
-
#input_shape DNN::Layers::Layer
-
#insert DNN::Models::Sequential
-
#keepdims DNN::Layers::Mean
-
#keepdims DNN::Layers::Sum
-
#l1_lambda DNN::Regularizers::L1L2
-
#l1_lambda DNN::Regularizers::L1
-
#l1_lambda DNN::Layers::Lasso
-
#l1_lambda= DNN::Regularizers::L1L2
-
#l1_lambda= DNN::Regularizers::L1
-
#l2_lambda DNN::Layers::Ridge
-
#l2_lambda DNN::Regularizers::L1L2
-
#l2_lambda DNN::Regularizers::L2
-
#l2_lambda= DNN::Regularizers::L2
-
#l2_lambda= DNN::Regularizers::L1L2
-
#last_log DNN::Models::Model
-
#last_round_down DNN::Iterator
-
#layer_node DNN::Link
-
#layers DNN::Models::FixedModel
-
#layers DNN::Models::Chain
-
#layers DNN::Models::LayersList
-
learning_phase DNN
-
learning_phase= DNN
-
#link DNN::Tensor
-
#load DNN::Loaders::Loader
-
load DNN::Models::Model
-
load DNN::Iris
-
load KerasModelConvertor
-
#load_bin DNN::Loaders::JSONLoader
-
#load_bin DNN::Loaders::Loader
-
#load_bin DNN::Loaders::MarshalLoader
-
#load_hash DNN::Initializers::RandomUniform
-
#load_hash DNN::Initializers::RandomNormal
-
#load_hash DNN::Layers::Reshape
-
#load_hash DNN::Initializers::Initializer
-
#load_hash DNN::Initializers::Const
-
#load_hash DNN::Optimizers::AdaBound
-
#load_hash DNN::Optimizers::Adam
-
#load_hash DNN::Layers::Lasso
-
#load_hash DNN::Optimizers::RMSPropGraves
-
#load_hash DNN::Optimizers::AdaDelta
-
#load_hash DNN::Optimizers::RMSProp
-
#load_hash DNN::Optimizers::SGD
-
#load_hash DNN::Optimizers::AdaGrad
-
#load_hash DNN::Optimizers::Optimizer
-
#load_hash DNN::Layers::Dropout
-
#load_hash DNN::Layers::Ridge
-
#load_hash DNN::Layers::Sum
-
#load_hash DNN::Layers::Split
-
#load_hash DNN::Layers::UnPool2D
-
#load_hash DNN::Models::Chain
-
#load_hash DNN::Losses::SigmoidCrossEntropy
-
#load_hash DNN::Losses::SoftmaxCrossEntropy
-
#load_hash DNN::Losses::Loss
-
#load_hash DNN::Layers::Concatenate
-
#load_hash DNN::Layers::ELU
-
#load_hash DNN::Layers::BatchNormalization
-
#load_hash DNN::Layers::Layer
-
#load_hash DNN::Layers::LeakyReLU
-
#load_hash DNN::Layers::Mean
-
#load_hash DNN::Layers::Pool2D
-
#load_hash DNN::Layers::Dense
-
#load_hash DNN::Layers::Conv2DTranspose
-
#load_hash DNN::Layers::InputLayer
-
#load_hash DNN::Layers::Conv2D
-
#load_hash DNN::Layers::Embedding
-
#load_hash DNN::Regularizers::L1L2
-
#load_hash DNN::Regularizers::L2
-
#load_hash DNN::Regularizers::L1
-
#load_hash DNN::Regularizers::Regularizer
-
#load_hash DNN::Layers::SimpleRNN
-
#load_hash DNN::Layers::RNN
-
#load_params DNN::Models::Model
-
load_test DNN::CIFAR10
-
load_test DNN::FashionMNIST
-
load_test DNN::STL10
-
load_test DNN::MNIST
-
load_test DNN::CIFAR100
-
load_train DNN::CIFAR10
-
load_train DNN::STL10
-
load_train DNN::MNIST
-
load_train DNN::CIFAR100
-
load_train DNN::FashionMNIST
-
load_unlabeled DNN::STL10
-
#loss DNN::Losses::Loss
-
#loss_func DNN::Models::Model
-
#loss_func= DNN::Models::Model
-
#loss_weights DNN::Models::Model
-
#lr DNN::Optimizers::RMSPropGraves
-
#lr DNN::Optimizers::RMSProp
-
#lr DNN::Optimizers::AdaGrad
-
#lr DNN::Optimizers::SGD
-
#mask_zero DNN::Layers::Embedding
-
#max DNN::Initializers::RandomUniform
-
#max_steps DNN::Iterator
-
#mean DNN::Initializers::RandomNormal
-
#min DNN::Initializers::RandomUniform
-
#model DNN::Callbacks::Callback
-
#momentum DNN::Optimizers::SGD
-
#momentum DNN::Layers::BatchNormalization
-
#next DNN::Link
-
#next_batch DNN::Iterator
-
#num_datas DNN::Iterator
-
#num_filters DNN::Layers::Conv2DTranspose
-
#num_filters DNN::Layers::Conv2D
-
#num_outputs DNN::Link
-
#num_units DNN::Layers::RNN
-
#num_units DNN::Layers::Dense
-
#num_usable_datas DNN::Iterator
-
numerical_grad DNN::Utils
-
numo2cumo DNN::Utils
-
#optimizer DNN::Models::Model
-
#output_shape DNN::Layers::Layer
-
#padding DNN::Layers::Pool2D
-
#padding DNN::Layers::Conv2DTranspose
-
#padding DNN::Layers::Conv2D
-
#param DNN::Regularizers::Regularizer
-
#pool_size DNN::Layers::Pool2D
-
#predict DNN::Models::Model
-
#predict1 DNN::Models::Model
-
#prevs DNN::Link
-
read DNN::Image
-
#recurrent_weight DNN::Layers::RNN
-
#recurrent_weight_initializer DNN::Layers::RNN
-
#recurrent_weight_regularizer DNN::Layers::RNN
-
#regularizers DNN::Layers::RNN
-
#regularizers DNN::Layers::Embedding
-
#regularizers DNN::Layers::Connection
-
#regularizers_forward DNN::Losses::Loss
-
#remove DNN::Models::Sequential
-
#request_early_stop DNN::Models::Model
-
#reset DNN::Iterator
-
#reset_state DNN::Layers::LSTM
-
#reset_state DNN::Layers::RNN
-
resize DNN::Image
-
#return_sequences DNN::Layers::RNN
-
#rho DNN::Optimizers::AdaDelta
-
#running_mean DNN::Layers::BatchNormalization
-
#running_var DNN::Layers::BatchNormalization
-
#save DNN::Savers::Saver
-
#save DNN::Models::Model
-
#save_params DNN::Models::Model
-
#set_all_params_data DNN::Models::Model
-
#setup DNN::Models::Model
-
#shape DNN::Tensor
-
#shape DNN::Param
-
sigmoid DNN::Losses::SigmoidCrossEntropy
-
sigmoid DNN::Utils
-
softmax DNN::Losses::SoftmaxCrossEntropy
-
softmax DNN::Utils
-
#stack DNN::Models::Sequential
-
#start_evaluate DNN::Models::ModelEvaluator
-
#start_evaluate_by_iterator DNN::Models::ModelEvaluator
-
#start_train DNN::Models::ModelTrainer
-
#start_train_by_iterator DNN::Models::ModelTrainer
-
#stateful DNN::Layers::RNN
-
#status DNN::Optimizers::Optimizer
-
stbi_load DNN::Stb
-
stbi_write_bmp DNN::Stb
-
stbi_write_hdr DNN::Stb
-
stbi_write_jpg DNN::Stb
-
stbi_write_png DNN::Stb
-
stbi_write_tga DNN::Stb
-
stbir_resize_uint8 DNN::Stb
-
stbir_resize_uint8_srgb DNN::Stb
-
stbir_resize_uint8_srgb_edgemode DNN::Stb
-
#std DNN::Initializers::RandomNormal
-
#strides DNN::Layers::Pool2D
-
#strides DNN::Layers::Conv2DTranspose
-
#strides DNN::Layers::Conv2D
-
sum_to DNN::Layers::MathUtils
-
#test_on_batch DNN::Models::Model
-
#test_step DNN::Models::Model
-
to_categorical DNN::Utils
-
#to_cpu DNN::Models::Model
-
to_f DNN::Utils
-
#to_gpu DNN::Models::Model
-
to_gray_scale DNN::Image
-
#to_h Hash
-
#to_hash DNN::Layers::SimpleRNN
-
#to_hash DNN::Layers::RNN
-
#to_hash DNN::Layers::UnPool2D
-
#to_hash DNN::Layers::Ridge
-
#to_hash DNN::Layers::Pool2D
-
#to_hash DNN::Layers::Conv2D
-
#to_hash DNN::Layers::Conv2DTranspose
-
#to_hash DNN::Layers::Embedding
-
#to_hash DNN::Regularizers::L1L2
-
#to_hash DNN::Regularizers::L2
-
#to_hash DNN::Regularizers::L1
-
#to_hash DNN::Regularizers::Regularizer
-
#to_hash DNN::Initializers::RandomUniform
-
#to_hash DNN::Initializers::RandomNormal
-
#to_hash DNN::Initializers::Const
-
#to_hash DNN::Initializers::Initializer
-
#to_hash DNN::Optimizers::AdaBound
-
#to_hash DNN::Optimizers::Adam
-
#to_hash DNN::Optimizers::AdaDelta
-
#to_hash DNN::Optimizers::RMSPropGraves
-
#to_hash DNN::Optimizers::RMSProp
-
#to_hash DNN::Optimizers::AdaGrad
-
#to_hash DNN::Optimizers::SGD
-
#to_hash DNN::Optimizers::Optimizer
-
#to_hash DNN::Layers::BatchNormalization
-
#to_hash DNN::Layers::Split
-
#to_hash DNN::Models::Chain
-
#to_hash DNN::Losses::SigmoidCrossEntropy
-
#to_hash DNN::Losses::SoftmaxCrossEntropy
-
#to_hash DNN::Losses::Loss
-
#to_hash DNN::Layers::Lasso
-
#to_hash DNN::Layers::Reshape
-
#to_hash DNN::Layers::Dense
-
#to_hash DNN::Layers::Connection
-
#to_hash DNN::Layers::InputLayer
-
#to_hash DNN::Layers::Layer
-
#to_hash DNN::Layers::Mean
-
#to_hash DNN::Layers::ELU
-
#to_hash DNN::Layers::LeakyReLU
-
#to_hash DNN::Layers::Sum
-
#to_hash DNN::Layers::Concatenate
-
#to_hash DNN::Layers::Dropout
-
#to_hash_list DNN::Models::LayersList
-
to_na Numpy
-
#to_proc DNN::Layers::InputLayer
-
to_rgb DNN::Image
-
to_rgba DNN::Image
-
#train DNN::Models::Model
-
#train_by_iterator DNN::Models::Model
-
#train_on_batch DNN::Models::Model
-
#train_step DNN::Models::Model
-
#trainable DNN::Layers::RNNCell
-
#trainable DNN::Param
-
#trainable DNN::Layers::TrainableLayer
-
#trainable_layers DNN::Models::Model
-
#training? DNN::Models::ModelTrainer
-
trim DNN::Image
-
#unpool_size DNN::Layers::UnPool2D
-
#update DNN::Optimizers::Optimizer
-
#update DNN::Models::ModelTrainer
-
#update DNN::Models::ModelEvaluator
-
#update_layers DNN::Optimizers::Optimizer
-
#use_bias DNN::Layers::Connection
-
use_cudnn? DNN
-
use_cumo? DNN
-
#use_scale DNN::Layers::Dropout
-
#weight DNN::Layers::Embedding
-
#weight DNN::Layers::Connection
-
#weight_initializer DNN::Layers::Embedding
-
#weight_initializer DNN::Layers::Connection
-
#weight_regularizer DNN::Layers::Embedding
-
#weight_regularizer DNN::Layers::Connection
-
write DNN::Image
-
zero_padding DNN::Layers::Conv2DUtils
-
zero_padding_bwd DNN::Layers::Conv2DUtils