Class: Complex

Inherits:
Numeric show all
Defined in:
complex.c

Overview

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

In ruby, you can create complex object with Complex, Complex::rect, Complex::polar or to_c method.

Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Constant Summary collapse

I =
f_complex_new_bang2(rb_cComplex, ZERO, ONE)

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #<=>, #ceil, #div, #divmod, #floor, #i, #initialize_copy, #integer?, #modulo, #nonzero?, #remainder, #round, #singleton_method_added, #step, #to_c, #to_int, #truncate, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?

Class Method Details

.polar(abs[, arg]) ⇒ Object

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)           #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)  #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)    #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)


# File 'complex.c'

static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
VALUE abs, arg;

switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
  case 1:
nucomp_real_check(abs);
arg = ZERO;
break;
  default:
nucomp_real_check(abs);
nucomp_real_check(arg);
break;
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.



# File 'complex.c'

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;

switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
  case 1:
nucomp_real_check(real);
imag = ZERO;
break;
  default:
nucomp_real_check(real);
nucomp_real_check(imag);
break;
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.



# File 'complex.c'

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;

switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
  case 1:
nucomp_real_check(real);
imag = ZERO;
break;
  default:
nucomp_real_check(real);
nucomp_real_check(imag);
break;
}

Instance Method Details

#*(numeric) ⇒ Object

Performs multiplication.



# File 'complex.c'

static VALUE
nucomp_mul(VALUE self, VALUE other)
{
if (k_complex_p(other)) {
VALUE real, imag;

get_dat2(self, other);

real = f_sub(f_mul(adat->real, bdat->real),
         f_mul(adat->imag, bdat->imag));
imag = f_add(f_mul(adat->real, bdat->imag),
         f_mul(adat->imag, bdat->real));

return f_complex_new2(CLASS_OF(self), real, imag);
}

#**(numeric) ⇒ Object

Performs exponentiation.

For example:

Complex('i') ** 2             #=> (-1+0i)
Complex(-8) ** Rational(1,3)  #=> (1.0000000000000002+1.7320508075688772i)


# File 'complex.c'

static VALUE
nucomp_expt(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_complex_new_bang1(CLASS_OF(self), ONE);

if (k_rational_p(other) && f_one_p(f_denominator(other)))
other = f_numerator(other); /* c14n */

if (k_complex_p(other)) {
get_dat1(other);

if (k_exact_zero_p(dat->imag))
    other = dat->real; /* c14n */
}

#+(numeric) ⇒ Object

Performs addition.



# File 'complex.c'

static VALUE
nucomp_add(VALUE self, VALUE other)
{
    return f_addsub(self, other, f_add, '+');
}

#-(numeric) ⇒ Object

Performs subtraction.



# File 'complex.c'

static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    return f_addsub(self, other, f_sub, '-');
}

#-Object

Returns negation of the value.



# File 'complex.c'

static VALUE
nucomp_negate(VALUE self)
{
  get_dat1(self);
  return f_complex_new2(CLASS_OF(self),
            f_negate(dat->real), f_negate(dat->imag));
}

#/(numeric) ⇒ Object #quo(numeric) ⇒ Object

Performs division.

For example:

Complex(10.0) / 3  #=> (3.3333333333333335+(0/1)*i)
Complex(10)   / 3  #=> ((10/3)+(0/1)*i)  # not (3+0i)


# File 'complex.c'

static VALUE
nucomp_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}

#==(object) ⇒ Boolean

Returns true if cmp equals object numerically.

Returns:

  • (Boolean)


# File 'complex.c'

static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
if (k_complex_p(other)) {
get_dat2(self, other);

return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
          f_eqeq_p(adat->imag, bdat->imag));
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.



# File 'complex.c'

static VALUE
nucomp_abs(VALUE self)
{
get_dat1(self);

if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (k_float_p(dat->real) && !k_float_p(dat->imag))
    a = f_to_f(a);
return a;
}

#abs2Object

Returns square of the absolute value.



# File 'complex.c'

static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
         f_mul(dat->imag, dat->imag));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966

Overloads:



# File 'complex.c'

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966

Overloads:



# File 'complex.c'

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#coerceObject

:nodoc:



# File 'complex.c'

static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && f_real_p(other))
    return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
    if (TYPE(other) == T_COMPLEX)
    return rb_assoc_new(other, self);

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
         rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}

#complex?Object

:nodoc:



# File 'complex.c'

static VALUE
nucomp_true(VALUE self)
{
    return Qtrue;
}

#conjObject #conjugateObject

Returns the complex conjugate.



# File 'complex.c'

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#conjObject #conjugateObject

Returns the complex conjugate.



# File 'complex.c'

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#denominatorInteger

Returns the denominator (lcm of both denominator - real and imag).

See numerator.

Returns:



# File 'complex.c'

static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}

#eql?Object

:nodoc:



# File 'complex.c'

static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
if (k_complex_p(other)) {
get_dat2(self, other);

return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
          (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
          f_eqeq_p(self, other));

}

#exact?Object

:nodoc:



# File 'complex.c'

static VALUE
nucomp_exact_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
}

#fdiv(numeric) ⇒ Object

Performs division as each part is a float, never returns a float.

For example:

Complex(11,22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)


# File 'complex.c'

static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}

#hashObject

:nodoc:



# File 'complex.c'

static VALUE
nucomp_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->real);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->imag);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#imagObject #imaginaryObject

Returns the imaginary part.



# File 'complex.c'

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#imagObject #imaginaryObject

Returns the imaginary part.



# File 'complex.c'

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#inexact?Object

:nodoc:



# File 'complex.c'

static VALUE
nucomp_inexact_p(VALUE self)
{
    return f_boolcast(!nucomp_exact_p(self));
}

#inspectString

Returns the value as a string for inspection.

Returns:



# File 'complex.c'

static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.



# File 'complex.c'

static VALUE
nucomp_abs(VALUE self)
{
get_dat1(self);

if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (k_float_p(dat->real) && !k_float_p(dat->imag))
    a = f_to_f(a);
return a;
}

#marshal_dumpObject

:nodoc:



# File 'complex.c'

static VALUE
nucomp_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->real, dat->imag);
    rb_copy_generic_ivar(a, self);
    return a;
}

#marshal_loadObject

:nodoc:



# File 'complex.c'

static VALUE
nucomp_marshal_load(VALUE self, VALUE a)
{
    get_dat1(self);
    Check_Type(a, T_ARRAY);
    if (RARRAY_LEN(a) != 2)
    rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
    dat->real = RARRAY_PTR(a)[0];
    dat->imag = RARRAY_PTR(a)[1];
    rb_copy_generic_ivar(self, a);
    return self;
}

#numeratorNumeric

Returns the numerator.

For example:

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns:



# File 'complex.c'

static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = f_denominator(self);
    return f_complex_new2(CLASS_OF(self),
              f_mul(f_numerator(dat->real),
                f_div(cd, f_denominator(dat->real))),
              f_mul(f_numerator(dat->imag),
                f_div(cd, f_denominator(dat->imag))));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966

Overloads:



# File 'complex.c'

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#polarArray

Returns an array; [cmp.abs, cmp.arg].

Returns:



# File 'complex.c'

static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}

#quoObject

#rationalize([eps]) ⇒ Object

If the imaginary part is exactly 0, returns the real part as a Rational, otherwise a RangeError is raised.



# File 'complex.c'

static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
get_dat1(self);

rb_scan_args(argc, argv, "01", NULL);

if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
   VALUE s = f_to_s(self);
   rb_raise(rb_eRangeError, "can't convert %s into Rational",
            StringValuePtr(s));
}

#realObject

Returns the real part.



# File 'complex.c'

static VALUE
nucomp_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}

#real?false

Returns false.

Returns:

  • (false)


# File 'complex.c'

static VALUE
nucomp_false(VALUE self)
{
    return Qfalse;
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Overloads:



# File 'complex.c'

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Overloads:



# File 'complex.c'

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#to_fFloat

Returns the value as a float if possible.

Returns:



# File 'complex.c'

static VALUE
nucomp_to_f(VALUE self)
{
get_dat1(self);

if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
VALUE s = f_to_s(self);
rb_raise(rb_eRangeError, "can't convert %s into Float",
     StringValuePtr(s));
}

#to_iInteger

Returns the value as an integer if possible.

Returns:



# File 'complex.c'

static VALUE
nucomp_to_i(VALUE self)
{
get_dat1(self);

if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
VALUE s = f_to_s(self);
rb_raise(rb_eRangeError, "can't convert %s into Integer",
     StringValuePtr(s));
}

#to_rObject

If the imaginary part is exactly 0, returns the real part as a Rational, otherwise a RangeError is raised.



# File 'complex.c'

static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);

if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
VALUE s = f_to_s(self);
rb_raise(rb_eRangeError, "can't convert %s into Rational",
     StringValuePtr(s));
}

#to_sString

Returns the value as a string.

Returns:



# File 'complex.c'

static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, f_to_s);
}

#conjObject #conjugateObject

Returns the complex conjugate.



# File 'complex.c'

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}