Class: Bignum

Inherits:
Integer show all
Defined in:
bignum.c

Overview

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created automatically when integer calculations would otherwise overflow a Fixnum. When a calculation involving Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and parameter passing work with references to objects, not the objects themselves.

Constant Summary collapse

GMP_VERSION =

The version of loaded GMP.

rb_sprintf("GMP %s", gmp_version)

Instance Method Summary collapse

Methods inherited from Integer

#ceil, #chr, #denominator, #downto, #floor, #gcd, #gcdlcm, #integer?, #lcm, #next, #numerator, #ord, #pred, #rationalize, #round, #succ, #times, #to_i, #to_int, #to_r, #truncate, #upto

Methods inherited from Numeric

#+@, #abs2, #angle, #arg, #ceil, #conj, #conjugate, #denominator, #floor, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #numerator, #phase, #polar, #quo, #real, #real?, #rect, #rectangular, #round, #singleton_method_added, #step, #to_c, #to_int, #truncate, #zero?

Methods included from Comparable

#between?

Instance Method Details

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
# File 'bignum.c', line 6080

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#&(numeric) ⇒ Integer

Performs bitwise and between big and numeric.

Returns:



6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
# File 'bignum.c', line 6370

VALUE
rb_big_and(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '&');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigand_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (!hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] & ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 & ds2[i];
    }
    twocomp2abs_bang(z, hibits1 && hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#*(other) ⇒ Numeric

Multiplies big and other, returning the result.

Returns:



5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
# File 'bignum.c', line 5888

VALUE
rb_big_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }

    return bignorm(bigmul0(x, y));
}

#**(exponent) ⇒ Numeric

Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float

123456789 ** 2      #=> 15241578750190521
123456789 ** 1.2    #=> 5126464716.09932
123456789 ** -2     #=> 6.5610001194102e-17

Returns:



6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
# File 'bignum.c', line 6254

VALUE
rb_big_pow(VALUE x, VALUE y)
{
    double d;
    SIGNED_VALUE yy;

  again:
    if (y == INT2FIX(0)) return INT2FIX(1);
    if (RB_FLOAT_TYPE_P(y)) {
	d = RFLOAT_VALUE(y);
	if ((!BIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
	    return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	y = bignorm(y);
	if (FIXNUM_P(y))
	    goto again;
	rb_warn("in a**b, b may be too big");
	d = rb_big2dbl(y);
    }
    else if (FIXNUM_P(y)) {
	yy = FIX2LONG(y);

	if (yy < 0)
	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
	else {
	    VALUE z = 0;
	    SIGNED_VALUE mask;
            const size_t xbits = rb_absint_numwords(x, 1, NULL);
	    const size_t BIGLEN_LIMIT = 32*1024*1024;

	    if (xbits == (size_t)-1 ||
                (xbits > BIGLEN_LIMIT) ||
                (xbits * yy > BIGLEN_LIMIT)) {
		rb_warn("in a**b, b may be too big");
		d = (double)yy;
	    }
	    else {
		for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
		    if (z) z = bigsq(z);
		    if (yy & mask) {
			z = z ? bigtrunc(bigmul0(z, x)) : x;
		    }
		}
		return bignorm(z);
	    }
	}
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("**"));
    }
    return DBL2NUM(pow(rb_big2dbl(x), d));
}

#+(other) ⇒ Numeric

Adds big and other, returning the result.

Returns:



5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
# File 'bignum.c', line 5758

VALUE
rb_big_plus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != BIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigsub_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigadd_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 1));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Numeric

Subtracts other from big, returning the result.

Returns:



5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
# File 'bignum.c', line 5794

VALUE
rb_big_minus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != BIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigadd_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigsub_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 0));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Integer

Unary minus (returns an integer whose value is 0-big)

Returns:



5469
5470
5471
5472
5473
5474
5475
5476
5477
# File 'bignum.c', line 5469

VALUE
rb_big_uminus(VALUE x)
{
    VALUE z = rb_big_clone(x);

    BIGNUM_SET_SIGN(z, !BIGNUM_SIGN(x));

    return bignorm(z);
}

#/(other) ⇒ Numeric

Performs division: the class of the resulting object depends on the class of numeric and on the magnitude of the result.

Returns:



6052
6053
6054
6055
6056
# File 'bignum.c', line 6052

VALUE
rb_big_div(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, '/');
}

#<(real) ⇒ Boolean

Returns true if the value of big is less than that of real.

Returns:

  • (Boolean)


5389
5390
5391
5392
5393
# File 'bignum.c', line 5389

static VALUE
big_lt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_lt);
}

#<<(numeric) ⇒ Integer

Shifts big left numeric positions (right if numeric is negative).

Returns:



6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
# File 'bignum.c', line 6651

VALUE
rb_big_lshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
	    if (0 <= l) {
		lshift_p = 1;
                shift = l;
            }
            else {
		lshift_p = 0;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 1, y));
	}
	y = rb_to_int(y);
    }
}

#<=(real) ⇒ Boolean

Returns true if the value of big is less than or equal to that of real.

Returns:

  • (Boolean)


5403
5404
5405
5406
5407
# File 'bignum.c', line 5403

static VALUE
big_le(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_le);
}

#<=>(numeric) ⇒ -1, ...

Comparison—Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable.

nil is returned if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
# File 'bignum.c', line 5275

VALUE
rb_big_cmp(VALUE x, VALUE y)
{
    int cmp;

    if (FIXNUM_P(y)) {
        x = bignorm(x);
        if (FIXNUM_P(x)) {
            if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
            if (FIX2LONG(x) < FIX2LONG(y)) return INT2FIX(-1);
            return INT2FIX(0);
        }
        else {
            if (BIGNUM_NEGATIVE_P(x)) return INT2FIX(-1);
            return INT2FIX(1);
        }
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_cmp(x, y);
    }
    else {
	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
    }

    if (BIGNUM_SIGN(x) > BIGNUM_SIGN(y)) return INT2FIX(1);
    if (BIGNUM_SIGN(x) < BIGNUM_SIGN(y)) return INT2FIX(-1);

    cmp = bary_cmp(BDIGITS(x), BIGNUM_LEN(x), BDIGITS(y), BIGNUM_LEN(y));
    if (BIGNUM_SIGN(x))
        return INT2FIX(cmp);
    else
        return INT2FIX(-cmp);
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
# File 'bignum.c', line 5420

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
# File 'bignum.c', line 5420

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#>(real) ⇒ Boolean

Returns true if the value of big is greater than that of real.

Returns:

  • (Boolean)


5361
5362
5363
5364
5365
# File 'bignum.c', line 5361

static VALUE
big_gt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_gt);
}

#>=(real) ⇒ Boolean

Returns true if the value of big is greater than or equal to that of real.

Returns:

  • (Boolean)


5375
5376
5377
5378
5379
# File 'bignum.c', line 5375

static VALUE
big_ge(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_ge);
}

#>>(numeric) ⇒ Integer

Shifts big right numeric positions (left if numeric is negative).

Returns:



6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
# File 'bignum.c', line 6689

VALUE
rb_big_rshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
            if (0 <= l) {
                lshift_p = 0;
                shift = l;
            }
            else {
                lshift_p = 1;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 0, y));
	}
	y = rb_to_int(y);
    }
}

#[](n) ⇒ 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.

a = 9**15
50.downto(0) do |n|
  print a[n]
end

produces:

000101110110100000111000011110010100111100010111001

Returns:

  • (0, 1)


6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
# File 'bignum.c', line 6738

static VALUE
rb_big_aref(VALUE x, VALUE y)
{
    BDIGIT *xds;
    size_t shift;
    size_t i, s1, s2;
    long l;
    BDIGIT bit;

    if (RB_BIGNUM_TYPE_P(y)) {
	if (!BIGNUM_SIGN(y))
	    return INT2FIX(0);
	bigtrunc(y);
	if (BIGSIZE(y) > sizeof(size_t)) {
	  out_of_range:
	    return BIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
	}
#if SIZEOF_SIZE_T <= SIZEOF_LONG
	shift = big2ulong(y, "long");
#else
	shift = big2ull(y, "long long");
#endif
    }
    else {
	l = NUM2LONG(y);
	if (l < 0) return INT2FIX(0);
	shift = (size_t)l;
    }
    s1 = shift/BITSPERDIG;
    s2 = shift%BITSPERDIG;
    bit = (BDIGIT)1 << s2;

    if (s1 >= BIGNUM_LEN(x)) goto out_of_range;

    xds = BDIGITS(x);
    if (BIGNUM_POSITIVE_P(x))
        return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
    if (xds[s1] & (bit-1))
        return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    for (i = 0; i < s1; i++)
        if (xds[i])
            return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
}

#^(numeric) ⇒ Integer

Performs bitwise exclusive or between big and numeric.

Returns:



6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
# File 'bignum.c', line 6596

VALUE
rb_big_xor(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '^');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigxor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] ^ ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibitsx ^ ds2[i];
    }
    twocomp2abs_bang(z, (hibits1 ^ hibits2) != 0);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6838
6839
6840
6841
6842
6843
6844
6845
6846
# File 'bignum.c', line 6838

static VALUE
rb_big_abs(VALUE x)
{
    if (!BIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	BIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#bit_lengthInteger

Returns the number of bits of the value of int.

“the number of bits” means that the bit position of the highest bit which is different to the sign bit. (The bit position of the bit 2**n is n+1.) If there is no such bit (zero or minus one), zero is returned.

I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).

(-2**10000-1).bit_length  #=> 10001
(-2**10000).bit_length    #=> 10000
(-2**10000+1).bit_length  #=> 10000

(-2**1000-1).bit_length   #=> 1001
(-2**1000).bit_length     #=> 1000
(-2**1000+1).bit_length   #=> 1000

(2**1000-1).bit_length    #=> 1000
(2**1000).bit_length      #=> 1001
(2**1000+1).bit_length    #=> 1001

(2**10000-1).bit_length   #=> 10000
(2**10000).bit_length     #=> 10001
(2**10000+1).bit_length   #=> 10001

This method can be used to detect overflow in Array#pack as follows.

if n.bit_length < 32
  [n].pack("l") # no overflow
else
  raise "overflow"
end

Returns:



6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
# File 'bignum.c', line 6904

static VALUE
rb_big_bit_length(VALUE big)
{
    int nlz_bits;
    size_t numbytes;

    static const BDIGIT char_bit[1] = { CHAR_BIT };
    BDIGIT numbytes_bary[bdigit_roomof(sizeof(size_t))];
    BDIGIT nlz_bary[1];
    BDIGIT result_bary[bdigit_roomof(sizeof(size_t)+1)];

    numbytes = rb_absint_size(big, &nlz_bits);

    if (numbytes == 0)
        return LONG2FIX(0);

    if (BIGNUM_NEGATIVE_P(big) && rb_absint_singlebit_p(big)) {
        if (nlz_bits != CHAR_BIT-1) {
            nlz_bits++;
        }
        else {
            nlz_bits = 0;
            numbytes--;
        }
    }

    if (numbytes <= SIZE_MAX / CHAR_BIT) {
        return SIZET2NUM(numbytes * CHAR_BIT - nlz_bits);
    }

    nlz_bary[0] = nlz_bits;

    bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
            INTEGER_PACK_NATIVE_BYTE_ORDER);
    BARY_SHORT_MUL(result_bary, numbytes_bary, char_bit);
    BARY_SUB(result_bary, result_bary, nlz_bary);

    return rb_integer_unpack(result_bary, numberof(result_bary), sizeof(BDIGIT), 0,
            INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a big represented as Bignum objects.

This is achieved by converting numeric to a Bignum.

A TypeError is raised if the numeric is not a Fixnum or Bignum type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]

Returns:



6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
# File 'bignum.c', line 6815

static VALUE
rb_big_coerce(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
		 rb_obj_classname(y));
    }
    return rb_assoc_new(y, x);
}

#div(other) ⇒ Integer

Performs integer division: returns integer value.

Returns:



6065
6066
6067
6068
6069
# File 'bignum.c', line 6065

VALUE
rb_big_idiv(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, rb_intern("div"));
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

Returns:



6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
# File 'bignum.c', line 6128

VALUE
rb_big_divmod(VALUE x, VALUE y)
{
    VALUE div, mod;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
    }
    bigdivmod(x, y, &div, &mod);

    return rb_assoc_new(bignorm(div), bignorm(mod));
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Bignum with the same value as big. Contrast this with Bignum#==, which performs type conversions.

68719476736.eql?(68719476736.0)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5452
5453
5454
5455
5456
5457
5458
5459
5460
# File 'bignum.c', line 5452

VALUE
rb_big_eql(VALUE x, VALUE y)
{
    if (!RB_BIGNUM_TYPE_P(y)) return Qfalse;
    if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
    if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#even?Boolean

Returns true if big is an even number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


6968
6969
6970
6971
6972
6973
6974
6975
# File 'bignum.c', line 6968

static VALUE
rb_big_even_p(VALUE num)
{
    if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qfalse;
    }
    return Qtrue;
}

#fdiv(numeric) ⇒ Float

Returns the floating point result of dividing big by numeric.

-1234567890987654321.fdiv(13731)      #=> -89910996357705.5
-1234567890987654321.fdiv(13731.24)   #=> -89909424858035.7

Returns:



6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
# File 'bignum.c', line 6212

VALUE
rb_big_fdiv(VALUE x, VALUE y)
{
    double dx, dy;

    dx = big2dbl(x);
    if (FIXNUM_P(y)) {
	dy = (double)FIX2LONG(y);
	if (isinf(dx))
	    return big_fdiv_int(x, rb_int2big(FIX2LONG(y)));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	dy = rb_big2dbl(y);
	if (isinf(dx) || isinf(dy))
	    return big_fdiv_int(x, y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	dy = RFLOAT_VALUE(y);
	if (isnan(dy))
	    return y;
	if (isinf(dx))
	    return big_fdiv_float(x, y);
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
    }
    return DBL2NUM(dx / dy);
}

#hashFixnum

Compute a hash based on the value of big.

See also Object#hash.

Returns:



6792
6793
6794
6795
6796
6797
6798
6799
# File 'bignum.c', line 6792

static VALUE
rb_big_hash(VALUE x)
{
    st_index_t hash;

    hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*BIGNUM_LEN(x)) ^ BIGNUM_SIGN(x);
    return INT2FIX(hash);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6838
6839
6840
6841
6842
6843
6844
6845
6846
# File 'bignum.c', line 6838

static VALUE
rb_big_abs(VALUE x)
{
    if (!BIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	BIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
# File 'bignum.c', line 6080

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#odd?Boolean

Returns true if big is an odd number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


6952
6953
6954
6955
6956
6957
6958
6959
# File 'bignum.c', line 6952

static VALUE
rb_big_odd_p(VALUE num)
{
    if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qtrue;
    }
    return Qfalse;
}

#remainder(numeric) ⇒ Numeric

Returns the remainder after dividing big by numeric.

-1234567890987654321.remainder(13731)      #=> -6966
-1234567890987654321.remainder(13731.24)   #=> -9906.22531493148

Returns:



6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
# File 'bignum.c', line 6105

static VALUE
rb_big_remainder(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("remainder"));
    }
    bigdivrem(x, y, 0, &z);

    return bignorm(z);
}

#sizeInteger

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size   #=> 12
(256**20 - 1).size   #=> 20
(256**40 - 1).size   #=> 40

Returns:



6860
6861
6862
6863
6864
# File 'bignum.c', line 6860

static VALUE
rb_big_size(VALUE big)
{
    return SIZET2NUM(BIGSIZE(big));
}

#to_fFloat

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

Returns:



5175
5176
5177
5178
5179
# File 'bignum.c', line 5175

static VALUE
rb_big_to_f(VALUE x)
{
    return DBL2NUM(rb_big2dbl(x));
}

#to_s(base = 10) ⇒ String Also known as: inspect

Returns a string containing the representation of big radix base (2 through 36).

12345654321.to_s         #=> "12345654321"
12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
12345654321.to_s(8)      #=> "133766736061"
12345654321.to_s(16)     #=> "2dfdbbc31"
78546939656932.to_s(36)  #=> "rubyrules"

Returns:



4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
# File 'bignum.c', line 4926

static VALUE
rb_big_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;

    if (argc == 0) base = 10;
    else {
	VALUE b;

	rb_scan_args(argc, argv, "01", &b);
	base = NUM2INT(b);
    }
    return rb_big2str(x, base);
}

#|(numeric) ⇒ Integer

Performs bitwise or between big and numeric.

Returns:



6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
# File 'bignum.c', line 6496

VALUE
rb_big_or(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '|');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] | ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 | ds2[i];
    }
    twocomp2abs_bang(z, hibits1 || hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#~Integer

Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.

sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"

Returns:



5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
# File 'bignum.c', line 5491

static VALUE
rb_big_neg(VALUE x)
{
    VALUE z = rb_big_clone(x);
    BDIGIT *ds = BDIGITS(z);
    long n = BIGNUM_LEN(z);

    if (!n) return INT2FIX(-1);

    if (BIGNUM_POSITIVE_P(z)) {
        if (bary_add_one(ds, n)) {
            big_extend_carry(z);
        }
        BIGNUM_SET_NEGATIVE_SIGN(z);
    }
    else {
        bary_neg(ds, n);
        if (bary_add_one(ds, n))
            return INT2FIX(-1);
        bary_neg(ds, n);
        BIGNUM_SET_POSITIVE_SIGN(z);
    }

    return bignorm(z);
}