Class: Encoding::Converter
Constant Summary collapse
- INVALID_MASK =
Mask for invalid byte sequences
INT2FIX(ECONV_INVALID_MASK)
- INVALID_REPLACE =
Replace invalid byte sequences
INT2FIX(ECONV_INVALID_REPLACE)
- UNDEF_MASK =
Mask for a valid character in the source encoding but no related character(s) in destination encoding.
INT2FIX(ECONV_UNDEF_MASK)
- UNDEF_REPLACE =
Replace byte sequences that are undefined in the destination encoding.
INT2FIX(ECONV_UNDEF_REPLACE)
- UNDEF_HEX_CHARREF =
Replace byte sequences that are undefined in the destination encoding with an XML hexadecimal character reference. This is valid for XML conversion.
INT2FIX(ECONV_UNDEF_HEX_CHARREF)
- PARTIAL_INPUT =
Indicates the source may be part of a larger string. See primitive_convert for an example.
INT2FIX(ECONV_PARTIAL_INPUT)
- AFTER_OUTPUT =
Stop converting after some output is complete but before all of the input was consumed. See primitive_convert for an example.
INT2FIX(ECONV_AFTER_OUTPUT)
- UNIVERSAL_NEWLINE_DECORATOR =
Decorator for converting CRLF and CR to LF
INT2FIX(ECONV_UNIVERSAL_NEWLINE_DECORATOR)
- CRLF_NEWLINE_DECORATOR =
Decorator for converting LF to CRLF
INT2FIX(ECONV_CRLF_NEWLINE_DECORATOR)
- CR_NEWLINE_DECORATOR =
Decorator for converting LF to CR
INT2FIX(ECONV_CR_NEWLINE_DECORATOR)
- XML_TEXT_DECORATOR =
Escape as XML CharData
INT2FIX(ECONV_XML_TEXT_DECORATOR)
- XML_ATTR_CONTENT_DECORATOR =
Escape as XML AttValue
INT2FIX(ECONV_XML_ATTR_CONTENT_DECORATOR)
- XML_ATTR_QUOTE_DECORATOR =
Escape as XML AttValue
INT2FIX(ECONV_XML_ATTR_QUOTE_DECORATOR)
Class Method Summary collapse
-
.asciicompat_encoding(arg) ⇒ Object
Returns the corresponding ASCII compatible encoding.
-
.search_convpath(*args) ⇒ Object
Returns a conversion path.
Instance Method Summary collapse
- #==(other) ⇒ Boolean
-
#convert(source_string) ⇒ Object
Convert source_string and return destination_string.
-
#convpath ⇒ Object
Returns the conversion path of ec.
-
#destination_encoding ⇒ Encoding
Returns the destination encoding as an Encoding object.
-
#finish ⇒ String
Finishes the converter.
-
#initialize(*args) ⇒ Object
constructor
possible options elements: hash form: :invalid => nil # raise error on invalid byte sequence (default) :invalid => :replace # replace invalid byte sequence :undef => nil # raise error on undefined conversion (default) :undef => :replace # replace undefined conversion :replace => string # replacement string (“?” or “uFFFD” if not specified) :newline => :universal # decorator for converting CRLF and CR to LF :newline => :crlf # decorator for converting LF to CRLF :newline => :cr # decorator for converting LF to CR :universal_newline => true # decorator for converting CRLF and CR to LF :crlf_newline => true # decorator for converting LF to CRLF :cr_newline => true # decorator for converting LF to CR :xml => :text # escape as XML CharData.
-
#insert_output(string) ⇒ nil
Inserts string into the encoding converter.
-
#inspect ⇒ String
Returns a printable version of ec.
-
#last_error ⇒ Exception?
Returns an exception object for the last conversion.
-
#primitive_convert(*args) ⇒ Object
possible opt elements: hash form: :partial_input => true # source buffer may be part of larger source :after_output => true # stop conversion after output before input integer form: Encoding::Converter::PARTIAL_INPUT Encoding::Converter::AFTER_OUTPUT.
-
#primitive_errinfo ⇒ Array
primitive_errinfo returns important information regarding the last error as a 5-element array:.
-
#putback(*args) ⇒ Object
call-seq ec.putback -> string ec.putback(max_numbytes) -> string.
-
#replacement ⇒ String
Returns the replacement string.
-
#replacement=(string) ⇒ Object
Sets the replacement string.
-
#source_encoding ⇒ Encoding
Returns the source encoding as an Encoding object.
Constructor Details
#Encoding::Converter.new(source_encoding, destination_encoding) ⇒ Object #Encoding::Converter.new(source_encoding, destination_encoding, opt) ⇒ Object #Encoding::Converter.new(convpath) ⇒ Object
possible options elements:
hash form:
:invalid => nil # raise error on invalid byte sequence (default)
:invalid => :replace # replace invalid byte sequence
:undef => nil # raise error on undefined conversion (default)
:undef => :replace # replace undefined conversion
:replace => string # replacement string ("?" or "\uFFFD" if not specified)
:newline => :universal # decorator for converting CRLF and CR to LF
:newline => :crlf # decorator for converting LF to CRLF
:newline => :cr # decorator for converting LF to CR
:universal_newline => true # decorator for converting CRLF and CR to LF
:crlf_newline => true # decorator for converting LF to CRLF
:cr_newline => true # decorator for converting LF to CR
:xml => :text # escape as XML CharData.
:xml => :attr # escape as XML AttValue
integer form:
Encoding::Converter::INVALID_REPLACE
Encoding::Converter::UNDEF_REPLACE
Encoding::Converter::UNDEF_HEX_CHARREF
Encoding::Converter::UNIVERSAL_NEWLINE_DECORATOR
Encoding::Converter::CRLF_NEWLINE_DECORATOR
Encoding::Converter::CR_NEWLINE_DECORATOR
Encoding::Converter::XML_TEXT_DECORATOR
Encoding::Converter::XML_ATTR_CONTENT_DECORATOR
Encoding::Converter::XML_ATTR_QUOTE_DECORATOR
Encoding::Converter.new creates an instance of Encoding::Converter.
Source_encoding and destination_encoding should be a string or Encoding object.
opt should be nil, a hash or an integer.
convpath should be an array. convpath may contain
-
two-element arrays which contain encodings or encoding names, or
-
strings representing decorator names.
Encoding::Converter.new optionally takes an option. The option should be a hash or an integer. The option hash can contain :invalid => nil, etc. The option integer should be logical-or of constants such as Encoding::Converter::INVALID_REPLACE, etc.
- :invalid => nil
-
Raise error on invalid byte sequence. This is a default behavior.
- :invalid => :replace
-
Replace invalid byte sequence by replacement string.
- :undef => nil
-
Raise an error if a character in source_encoding is not defined in destination_encoding. This is a default behavior.
- :undef => :replace
-
Replace undefined character in destination_encoding with replacement string.
- :replace => string
-
Specify the replacement string. If not specified, “uFFFD” is used for Unicode encodings and “?” for others.
- :universal_newline => true
-
Convert CRLF and CR to LF.
- :crlf_newline => true
-
Convert LF to CRLF.
- :cr_newline => true
-
Convert LF to CR.
- :xml => :text
-
Escape as XML CharData. This form can be used as a HTML 4.0 #PCDATA.
-
‘&’ -> ‘&’
-
‘<’ -> ‘<’
-
‘>’ -> ‘>’
-
undefined characters in destination_encoding -> hexadecimal CharRef such as &#xHH;
-
- :xml => :attr
-
Escape as XML AttValue. The converted result is quoted as “…”. This form can be used as a HTML 4.0 attribute value.
-
‘&’ -> ‘&’
-
‘<’ -> ‘<’
-
‘>’ -> ‘>’
-
‘“’ -> ‘"’
-
undefined characters in destination_encoding -> hexadecimal CharRef such as &#xHH;
-
Examples:
# UTF-16BE to UTF-8
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
# Usually, decorators such as newline conversion are inserted last.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8", :universal_newline => true)
p ec.convpath #=> [[#<Encoding:UTF-16BE>, #<Encoding:UTF-8>],
# "universal_newline"]
# But, if the last encoding is ASCII incompatible,
# decorators are inserted before the last conversion.
ec = Encoding::Converter.new("UTF-8", "UTF-16BE", :crlf_newline => true)
p ec.convpath #=> ["crlf_newline",
# [#<Encoding:UTF-8>, #<Encoding:UTF-16BE>]]
# Conversion path can be specified directly.
ec = Encoding::Converter.new(["universal_newline", ["EUC-JP", "UTF-8"], ["UTF-8", "UTF-16BE"]])
p ec.convpath #=> ["universal_newline",
# [#<Encoding:EUC-JP>, #<Encoding:UTF-8>],
# [#<Encoding:UTF-8>, #<Encoding:UTF-16BE>]]
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 |
# File 'transcode.c', line 3370
static VALUE
econv_init(int argc, VALUE *argv, VALUE self)
{
VALUE ecopts;
volatile VALUE snamev, dnamev;
const char *sname, *dname;
rb_encoding *senc, *denc;
rb_econv_t *ec;
int ecflags;
VALUE convpath;
if (rb_check_typeddata(self, &econv_data_type)) {
rb_raise(rb_eTypeError, "already initialized");
}
if (argc == 1 && !NIL_P(convpath = rb_check_array_type(argv[0]))) {
ec = rb_econv_init_by_convpath(self, convpath, &sname, &dname, &senc, &denc);
ecflags = 0;
ecopts = Qnil;
}
else {
econv_args(argc, argv, &snamev, &dnamev, &sname, &dname, &senc, &denc, &ecflags, &ecopts);
ec = rb_econv_open_opts(sname, dname, ecflags, ecopts);
}
if (!ec) {
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
}
if (!DECORATOR_P(sname, dname)) {
if (!senc)
senc = make_dummy_encoding(sname);
if (!denc)
denc = make_dummy_encoding(dname);
}
ec->source_encoding = senc;
ec->destination_encoding = denc;
DATA_PTR(self) = ec;
return self;
}
|
Class Method Details
.Encoding::Converter.asciicompat_encoding(string) ⇒ Encoding? .Encoding::Converter.asciicompat_encoding(encoding) ⇒ Encoding?
Returns the corresponding ASCII compatible encoding.
Returns nil if the argument is an ASCII compatible encoding.
“corresponding ASCII compatible encoding” is an ASCII compatible encoding which can represents exactly the same characters as the given ASCII incompatible encoding. So, no conversion undefined error occurs when converting between the two encodings.
Encoding::Converter.asciicompat_encoding("ISO-2022-JP") #=> #<Encoding:stateless-ISO-2022-JP>
Encoding::Converter.asciicompat_encoding("UTF-16BE") #=> #<Encoding:UTF-8>
Encoding::Converter.asciicompat_encoding("UTF-8") #=> nil
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 |
# File 'transcode.c', line 2976
static VALUE
econv_s_asciicompat_encoding(VALUE klass, VALUE arg)
{
const char *arg_name, *result_name;
rb_encoding *arg_enc, *result_enc;
enc_arg(&arg, &arg_name, &arg_enc);
result_name = rb_econv_asciicompat_encoding(arg_name);
if (result_name == NULL)
return Qnil;
result_enc = make_encoding(result_name);
return rb_enc_from_encoding(result_enc);
}
|
.Encoding::Converter.search_convpath(source_encoding, destination_encoding) ⇒ Object .Encoding::Converter.search_convpath(source_encoding, destination_encoding, opt) ⇒ Object
Returns a conversion path.
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP")
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
# [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]]
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
# [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
# "universal_newline"]
p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
# "universal_newline",
# [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 |
# File 'transcode.c', line 3137
static VALUE
econv_s_search_convpath(int argc, VALUE *argv, VALUE klass)
{
volatile VALUE snamev, dnamev;
const char *sname, *dname;
rb_encoding *senc, *denc;
int ecflags;
VALUE ecopts;
VALUE convpath;
econv_args(argc, argv, &snamev, &dnamev, &sname, &dname, &senc, &denc, &ecflags, &ecopts);
convpath = Qnil;
transcode_search_path(sname, dname, search_convpath_i, &convpath);
if (NIL_P(convpath))
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
if (decorate_convpath(convpath, ecflags) == -1)
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
return convpath;
}
|
Instance Method Details
#==(other) ⇒ Boolean
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 |
# File 'transcode.c', line 3532
static VALUE
econv_equal(VALUE self, VALUE other)
{
rb_econv_t *ec1 = check_econv(self);
rb_econv_t *ec2;
int i;
if (!rb_typeddata_is_kind_of(other, &econv_data_type)) {
return Qnil;
}
ec2 = DATA_PTR(other);
if (!ec2) return Qfalse;
if (ec1->source_encoding_name != ec2->source_encoding_name &&
strcmp(ec1->source_encoding_name, ec2->source_encoding_name))
return Qfalse;
if (ec1->destination_encoding_name != ec2->destination_encoding_name &&
strcmp(ec1->destination_encoding_name, ec2->destination_encoding_name))
return Qfalse;
if (ec1->flags != ec2->flags) return Qfalse;
if (ec1->replacement_enc != ec2->replacement_enc &&
strcmp(ec1->replacement_enc, ec2->replacement_enc))
return Qfalse;
if (ec1->replacement_len != ec2->replacement_len) return Qfalse;
if (ec1->replacement_str != ec2->replacement_str &&
memcmp(ec1->replacement_str, ec2->replacement_str, ec2->replacement_len))
return Qfalse;
if (ec1->num_trans != ec2->num_trans) return Qfalse;
for (i = 0; i < ec1->num_trans; i++) {
if (ec1->elems[i].tc->transcoder != ec2->elems[i].tc->transcoder)
return Qfalse;
}
return Qtrue;
}
|
#convert(source_string) ⇒ Object
Convert source_string and return destination_string.
source_string is assumed as a part of source. i.e. :partial_input=>true is specified internally. finish method should be used last.
ec = Encoding::Converter.new("utf-8", "euc-jp")
puts ec.convert("\u3042").dump #=> "\xA4\xA2"
puts ec.finish.dump #=> ""
ec = Encoding::Converter.new("euc-jp", "utf-8")
puts ec.convert("\xA4").dump #=> ""
puts ec.convert("\xA2").dump #=> "\xE3\x81\x82"
puts ec.finish.dump #=> ""
ec = Encoding::Converter.new("utf-8", "iso-2022-jp")
puts ec.convert("\xE3").dump #=> "".force_encoding("ISO-2022-JP")
puts ec.convert("\x81").dump #=> "".force_encoding("ISO-2022-JP")
puts ec.convert("\x82").dump #=> "\e$B$\"".force_encoding("ISO-2022-JP")
puts ec.finish.dump #=> "\e(B".force_encoding("ISO-2022-JP")
If a conversion error occur, Encoding::UndefinedConversionError or Encoding::InvalidByteSequenceError is raised. Encoding::Converter#convert doesn’t supply methods to recover or restart from these exceptions. When you want to handle these conversion errors, use Encoding::Converter#primitive_convert.
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 |
# File 'transcode.c', line 3820
static VALUE
econv_convert(VALUE self, VALUE source_string)
{
VALUE ret, dst;
VALUE av[5];
int ac;
rb_econv_t *ec = check_econv(self);
StringValue(source_string);
dst = rb_str_new(NULL, 0);
av[0] = rb_str_dup(source_string);
av[1] = dst;
av[2] = Qnil;
av[3] = Qnil;
av[4] = INT2NUM(ECONV_PARTIAL_INPUT);
ac = 5;
ret = econv_primitive_convert(ac, av, self);
if (ret == sym_invalid_byte_sequence ||
ret == sym_undefined_conversion ||
ret == sym_incomplete_input) {
VALUE exc = make_econv_exception(ec);
rb_exc_raise(exc);
}
if (ret == sym_finished) {
rb_raise(rb_eArgError, "converter already finished");
}
if (ret != sym_source_buffer_empty) {
rb_bug("unexpected result of econv_primitive_convert");
}
return dst;
}
|
#convpath ⇒ Object
Returns the conversion path of ec.
The result is an array of conversions.
ec = Encoding::Converter.new("ISO-8859-1", "EUC-JP", crlf_newline: true)
p ec.convpath
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
# [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
# "crlf_newline"]
Each element of the array is a pair of encodings or a string. A pair means an encoding conversion. A string means a decorator.
In the above example, [#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>] means a converter from ISO-8859-1 to UTF-8. “crlf_newline” means newline converter from LF to CRLF.
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 |
# File 'transcode.c', line 3508
static VALUE
econv_convpath(VALUE self)
{
rb_econv_t *ec = check_econv(self);
VALUE result;
int i;
result = rb_ary_new();
for (i = 0; i < ec->num_trans; i++) {
const rb_transcoder *tr = ec->elems[i].tc->transcoder;
VALUE v;
if (DECORATOR_P(tr->src_encoding, tr->dst_encoding))
v = rb_str_new_cstr(tr->dst_encoding);
else
v = rb_assoc_new(make_encobj(tr->src_encoding), make_encobj(tr->dst_encoding));
rb_ary_push(result, v);
}
return result;
}
|
#destination_encoding ⇒ Encoding
Returns the destination encoding as an Encoding object.
3477 3478 3479 3480 3481 3482 3483 3484 |
# File 'transcode.c', line 3477
static VALUE
econv_destination_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->destination_encoding)
return Qnil;
return rb_enc_from_encoding(ec->destination_encoding);
}
|
#finish ⇒ String
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 |
# File 'transcode.c', line 3870
static VALUE
econv_finish(VALUE self)
{
VALUE ret, dst;
VALUE av[5];
int ac;
rb_econv_t *ec = check_econv(self);
dst = rb_str_new(NULL, 0);
av[0] = Qnil;
av[1] = dst;
av[2] = Qnil;
av[3] = Qnil;
av[4] = INT2FIX(0);
ac = 5;
ret = econv_primitive_convert(ac, av, self);
if (ret == sym_invalid_byte_sequence ||
ret == sym_undefined_conversion ||
ret == sym_incomplete_input) {
VALUE exc = make_econv_exception(ec);
rb_exc_raise(exc);
}
if (ret != sym_finished) {
rb_bug("unexpected result of econv_primitive_convert");
}
return dst;
}
|
#insert_output(string) ⇒ nil
Inserts string into the encoding converter. The string will be converted to the destination encoding and output on later conversions.
If the destination encoding is stateful, string is converted according to the state and the state is updated.
This method should be used only when a conversion error occurs.
ec = Encoding::Converter.new("utf-8", "iso-8859-1")
src = "HIRAGANA LETTER A is \u{3042}."
dst = ""
p ec.primitive_convert(src, dst) #=> :undefined_conversion
puts "[#{dst.dump}, #{src.dump}]" #=> ["HIRAGANA LETTER A is ", "."]
ec.insert_output("<err>")
p ec.primitive_convert(src, dst) #=> :finished
puts "[#{dst.dump}, #{src.dump}]" #=> ["HIRAGANA LETTER A is <err>.", ""]
ec = Encoding::Converter.new("utf-8", "iso-2022-jp")
src = "\u{306F 3041 3068 2661 3002}" # U+2661 is not representable in iso-2022-jp
dst = ""
p ec.primitive_convert(src, dst) #=> :undefined_conversion
puts "[#{dst.dump}, #{src.dump}]" #=> ["\e$B$O$!$H".force_encoding("ISO-2022-JP"), "\xE3\x80\x82"]
ec.insert_output "?" # state change required to output "?".
p ec.primitive_convert(src, dst) #=> :finished
puts "[#{dst.dump}, #{src.dump}]" #=> ["\e$B$O$!$H\e(B?\e$B!#\e(B".force_encoding("ISO-2022-JP"), ""]
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 |
# File 'transcode.c', line 4036
static VALUE
econv_insert_output(VALUE self, VALUE string)
{
const char *insert_enc;
int ret;
rb_econv_t *ec = check_econv(self);
StringValue(string);
insert_enc = rb_econv_encoding_to_insert_output(ec);
string = rb_str_encode(string, rb_enc_from_encoding(rb_enc_find(insert_enc)), 0, Qnil);
ret = rb_econv_insert_output(ec, (const unsigned char *)RSTRING_PTR(string), RSTRING_LEN(string), insert_enc);
if (ret == -1) {
rb_raise(rb_eArgError, "too big string");
}
return Qnil;
}
|
#inspect ⇒ String
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 |
# File 'transcode.c', line 3424
static VALUE
econv_inspect(VALUE self)
{
const char *cname = rb_obj_classname(self);
rb_econv_t *ec;
TypedData_Get_Struct(self, rb_econv_t, &econv_data_type, ec);
if (!ec)
return rb_sprintf("#<%s: uninitialized>", cname);
else {
const char *sname = ec->source_encoding_name;
const char *dname = ec->destination_encoding_name;
VALUE str;
str = rb_sprintf("#<%s: ", cname);
econv_description(sname, dname, ec->flags, str);
rb_str_cat2(str, ">");
return str;
}
}
|
#last_error ⇒ Exception?
Returns an exception object for the last conversion. Returns nil if the last conversion did not produce an error.
“error” means that Encoding::InvalidByteSequenceError and Encoding::UndefinedConversionError for Encoding::Converter#convert and :invalid_byte_sequence, :incomplete_input and :undefined_conversion for Encoding::Converter#primitive_convert.
ec = Encoding::Converter.new("utf-8", "iso-8859-1")
p ec.primitive_convert(src="\xf1abcd", dst="") #=> :invalid_byte_sequence
p ec.last_error #=> #<Encoding::InvalidByteSequenceError: "\xF1" followed by "a" on UTF-8>
p ec.primitive_convert(src, dst, nil, 1) #=> :destination_buffer_full
p ec.last_error #=> nil
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 |
# File 'transcode.c', line 4130
static VALUE
econv_last_error(VALUE self)
{
rb_econv_t *ec = check_econv(self);
VALUE exc;
exc = make_econv_exception(ec);
if (NIL_P(exc))
return Qnil;
return exc;
}
|
#primitive_convert(source_buffer, destination_buffer) ⇒ Object #primitive_convert(source_buffer, destination_buffer, destination_byteoffset) ⇒ Object #primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize) ⇒ Object #primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize, opt) ⇒ Object
possible opt elements:
hash form:
:partial_input => true # source buffer may be part of larger source
:after_output => true # stop conversion after output before input
integer form:
Encoding::Converter::PARTIAL_INPUT
Encoding::Converter::AFTER_OUTPUT
possible results:
:invalid_byte_sequence
:incomplete_input
:undefined_conversion
:after_output
:destination_buffer_full
:source_buffer_empty
:finished
primitive_convert converts source_buffer into destination_buffer.
source_buffer should be a string or nil. nil means an empty string.
destination_buffer should be a string.
destination_byteoffset should be an integer or nil. nil means the end of destination_buffer. If it is omitted, nil is assumed.
destination_bytesize should be an integer or nil. nil means unlimited. If it is omitted, nil is assumed.
opt should be nil, a hash or an integer. nil means no flags. If it is omitted, nil is assumed.
primitive_convert converts the content of source_buffer from beginning and store the result into destination_buffer.
destination_byteoffset and destination_bytesize specify the region which the converted result is stored. destination_byteoffset specifies the start position in destination_buffer in bytes. If destination_byteoffset is nil, destination_buffer.bytesize is used for appending the result. destination_bytesize specifies maximum number of bytes. If destination_bytesize is nil, destination size is unlimited. After conversion, destination_buffer is resized to destination_byteoffset + actually produced number of bytes. Also destination_buffer’s encoding is set to destination_encoding.
primitive_convert drops the converted part of source_buffer. the dropped part is converted in destination_buffer or buffered in Encoding::Converter object.
primitive_convert stops conversion when one of following condition met.
-
invalid byte sequence found in source buffer (:invalid_byte_sequence)
primitive_errinfo
andlast_error
methods returns the detail of the error. -
unexpected end of source buffer (:incomplete_input) this occur only when :partial_input is not specified.
primitive_errinfo
andlast_error
methods returns the detail of the error. -
character not representable in output encoding (:undefined_conversion)
primitive_errinfo
andlast_error
methods returns the detail of the error. -
after some output is generated, before input is done (:after_output) this occur only when :after_output is specified.
-
destination buffer is full (:destination_buffer_full) this occur only when destination_bytesize is non-nil.
-
source buffer is empty (:source_buffer_empty) this occur only when :partial_input is specified.
-
conversion is finished (:finished)
example:
ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
ret = ec.primitive_convert(src="pi", dst="", nil, 100)
p [ret, src, dst] #=> [:finished, "", "\x00p\x00i"]
ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
ret = ec.primitive_convert(src="pi", dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "i", "\x00"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "", "p"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "", "\x00"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:finished, "", "i"]
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 |
# File 'transcode.c', line 3676
static VALUE
econv_primitive_convert(int argc, VALUE *argv, VALUE self)
{
VALUE input, output, output_byteoffset_v, output_bytesize_v, opt, flags_v;
rb_econv_t *ec = check_econv(self);
rb_econv_result_t res;
const unsigned char *ip, *is;
unsigned char *op, *os;
long output_byteoffset, output_bytesize;
unsigned long output_byteend;
int flags;
argc = rb_scan_args(argc, argv, "23:", &input, &output, &output_byteoffset_v, &output_bytesize_v, &flags_v, &opt);
if (NIL_P(output_byteoffset_v))
output_byteoffset = 0; /* dummy */
else
output_byteoffset = NUM2LONG(output_byteoffset_v);
if (NIL_P(output_bytesize_v))
output_bytesize = 0; /* dummy */
else
output_bytesize = NUM2LONG(output_bytesize_v);
if (!NIL_P(flags_v)) {
if (!NIL_P(opt)) {
rb_error_arity(argc + 1, 2, 5);
}
flags = NUM2INT(rb_to_int(flags_v));
}
else if (!NIL_P(opt)) {
VALUE v;
flags = 0;
v = rb_hash_aref(opt, sym_partial_input);
if (RTEST(v))
flags |= ECONV_PARTIAL_INPUT;
v = rb_hash_aref(opt, sym_after_output);
if (RTEST(v))
flags |= ECONV_AFTER_OUTPUT;
}
else {
flags = 0;
}
StringValue(output);
if (!NIL_P(input))
StringValue(input);
rb_str_modify(output);
if (NIL_P(output_bytesize_v)) {
output_bytesize = RSTRING_EMBED_LEN_MAX;
if (!NIL_P(input) && output_bytesize < RSTRING_LEN(input))
output_bytesize = RSTRING_LEN(input);
}
retry:
if (NIL_P(output_byteoffset_v))
output_byteoffset = RSTRING_LEN(output);
if (output_byteoffset < 0)
rb_raise(rb_eArgError, "negative output_byteoffset");
if (RSTRING_LEN(output) < output_byteoffset)
rb_raise(rb_eArgError, "output_byteoffset too big");
if (output_bytesize < 0)
rb_raise(rb_eArgError, "negative output_bytesize");
output_byteend = (unsigned long)output_byteoffset +
(unsigned long)output_bytesize;
if (output_byteend < (unsigned long)output_byteoffset ||
LONG_MAX < output_byteend)
rb_raise(rb_eArgError, "output_byteoffset+output_bytesize too big");
if (rb_str_capacity(output) < output_byteend)
rb_str_resize(output, output_byteend);
if (NIL_P(input)) {
ip = is = NULL;
}
else {
ip = (const unsigned char *)RSTRING_PTR(input);
is = ip + RSTRING_LEN(input);
}
op = (unsigned char *)RSTRING_PTR(output) + output_byteoffset;
os = op + output_bytesize;
res = rb_econv_convert(ec, &ip, is, &op, os, flags);
rb_str_set_len(output, op-(unsigned char *)RSTRING_PTR(output));
if (!NIL_P(input))
rb_str_drop_bytes(input, ip - (unsigned char *)RSTRING_PTR(input));
if (NIL_P(output_bytesize_v) && res == econv_destination_buffer_full) {
if (LONG_MAX / 2 < output_bytesize)
rb_raise(rb_eArgError, "too long conversion result");
output_bytesize *= 2;
output_byteoffset_v = Qnil;
goto retry;
}
if (ec->destination_encoding) {
rb_enc_associate(output, ec->destination_encoding);
}
return econv_result_to_symbol(res);
}
|
#primitive_errinfo ⇒ Array
primitive_errinfo returns important information regarding the last error as a 5-element array:
[result, enc1, enc2, error_bytes, readagain_bytes]
result is the last result of primitive_convert.
Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.
enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].
error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.
Example:
# \xff is invalid as EUC-JP.
ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
ec.primitive_convert(src="\xff", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""]
# HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
# Since this error is occur in UTF-8 to ISO-8859-1 conversion,
# error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]
# partial character is invalid
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]
# Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
# partial characters.
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT)
p ec.primitive_errinfo
#=> [:source_buffer_empty, nil, nil, nil, nil]
# \xd8\x00\x00@ is invalid as UTF-16BE because
# no low surrogate after high surrogate (\xd8\x00).
# It is detected by 3rd byte (\00) which is part of next character.
# So the high surrogate (\xd8\x00) is discarded and
# the 3rd byte is read again later.
# Since the byte is buffered in ec, it is dropped from src.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"]
p src
#=> "@"
# Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE.
# The problem is detected by 4th byte.
ec = Encoding::Converter.new("UTF-16LE", "UTF-8")
ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"]
p src
#=> ""
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 |
# File 'transcode.c', line 3978
static VALUE
econv_primitive_errinfo(VALUE self)
{
rb_econv_t *ec = check_econv(self);
VALUE ary;
ary = rb_ary_new2(5);
rb_ary_store(ary, 0, econv_result_to_symbol(ec->last_error.result));
rb_ary_store(ary, 4, Qnil);
if (ec->last_error.source_encoding)
rb_ary_store(ary, 1, rb_str_new2(ec->last_error.source_encoding));
if (ec->last_error.destination_encoding)
rb_ary_store(ary, 2, rb_str_new2(ec->last_error.destination_encoding));
if (ec->last_error.error_bytes_start) {
rb_ary_store(ary, 3, rb_str_new((const char *)ec->last_error.error_bytes_start, ec->last_error.error_bytes_len));
rb_ary_store(ary, 4, rb_str_new((const char *)ec->last_error.error_bytes_start + ec->last_error.error_bytes_len, ec->last_error.readagain_len));
}
return ary;
}
|
#putback(*args) ⇒ Object
call-seq
ec.putback -> string
ec.putback(max_numbytes) -> string
Put back the bytes which will be converted.
The bytes are caused by invalid_byte_sequence error. When invalid_byte_sequence error, some bytes are discarded and some bytes are buffered to be converted later. The latter bytes can be put back. It can be observed by Encoding::InvalidByteSequenceError#readagain_bytes and Encoding::Converter#primitive_errinfo.
ec = Encoding::Converter.new("utf-16le", "iso-8859-1")
src = "\x00\xd8\x61\x00"
dst = ""
p ec.primitive_convert(src, dst) #=> :invalid_byte_sequence
p ec.primitive_errinfo #=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "a\x00"]
p ec.putback #=> "a\x00"
p ec.putback #=> "" # no more bytes to put back
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 |
# File 'transcode.c', line 4081
static VALUE
econv_putback(int argc, VALUE *argv, VALUE self)
{
rb_econv_t *ec = check_econv(self);
int n;
int putbackable;
VALUE str, max;
rb_scan_args(argc, argv, "01", &max);
if (NIL_P(max))
n = rb_econv_putbackable(ec);
else {
n = NUM2INT(max);
putbackable = rb_econv_putbackable(ec);
if (putbackable < n)
n = putbackable;
}
str = rb_str_new(NULL, n);
rb_econv_putback(ec, (unsigned char *)RSTRING_PTR(str), n);
if (ec->source_encoding) {
rb_enc_associate(str, ec->source_encoding);
}
return str;
}
|
#replacement ⇒ String
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 |
# File 'transcode.c', line 4154
static VALUE
econv_get_replacement(VALUE self)
{
rb_econv_t *ec = check_econv(self);
int ret;
rb_encoding *enc;
ret = make_replacement(ec);
if (ret == -1) {
rb_raise(rb_eUndefinedConversionError, "replacement character setup failed");
}
enc = rb_enc_find(ec->replacement_enc);
return rb_enc_str_new((const char *)ec->replacement_str, (long)ec->replacement_len, enc);
}
|
#replacement=(string) ⇒ Object
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 |
# File 'transcode.c', line 4180
static VALUE
econv_set_replacement(VALUE self, VALUE arg)
{
rb_econv_t *ec = check_econv(self);
VALUE string = arg;
int ret;
rb_encoding *enc;
StringValue(string);
enc = rb_enc_get(string);
ret = rb_econv_set_replacement(ec,
(const unsigned char *)RSTRING_PTR(string),
RSTRING_LEN(string),
rb_enc_name(enc));
if (ret == -1) {
/* xxx: rb_eInvalidByteSequenceError? */
rb_raise(rb_eUndefinedConversionError, "replacement character setup failed");
}
return arg;
}
|
#source_encoding ⇒ Encoding
Returns the source encoding as an Encoding object.
3462 3463 3464 3465 3466 3467 3468 3469 |
# File 'transcode.c', line 3462
static VALUE
econv_source_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->source_encoding)
return Qnil;
return rb_enc_from_encoding(ec->source_encoding);
}
|