Module: Enumerable
- Included in:
- Array, Dir, Enumerator, Enumerator::Generator, Hash, IO, ObjectSpace::WeakMap, Range, Struct
- Defined in:
- enum.c
Overview
The Enumerable mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method #each, which yields successive members of the collection. If Enumerable#max, #min, or #sort is used, the objects in the collection must also implement a meaningful <=>
operator, as these methods rely on an ordering between members of the collection.
Instance Method Summary collapse
-
#all?(*args) ⇒ Object
Passes each element of the collection to the given block.
-
#any?(*args) ⇒ Object
Passes each element of the collection to the given block.
-
#chain(*enums) ⇒ Object
Returns an enumerator object generated from this enumerator and given enumerables.
-
#chunk {|elt| ... } ⇒ Object
Enumerates over the items, chunking them together based on the return value of the block.
-
#chunk_while {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements.
-
#collect ⇒ Object
Returns a new array with the results of running block once for every element in enum.
-
#collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
-
#count(*args) ⇒ Object
Returns the number of items in
enum
through enumeration. -
#cycle(*args) ⇒ Object
Calls block for each element of enum repeatedly n times or forever if none or
nil
is given. -
#detect(*args) ⇒ Object
Passes each entry in enum to block.
-
#drop(n) ⇒ Array
Drops first n elements from enum, and returns rest elements in an array.
-
#drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns
nil
orfalse
and returns an array containing the remaining elements. -
#each_cons(n) ⇒ Object
Iterates the given block for each array of consecutive <n> elements.
-
#each_entry(*args) ⇒ Object
Calls block once for each element in
self
, passing that element as a parameter, converting multiple values from yield to an array. -
#each_slice(n) ⇒ Object
Iterates the given block for each slice of <n> elements.
-
#each_with_index(*args) ⇒ Object
Calls block with two arguments, the item and its index, for each item in enum.
-
#each_with_object(memo) ⇒ Object
Iterates the given block for each element with an arbitrary object given, and returns the initially given object.
-
#entries(*args) ⇒ Object
Returns an array containing the items in enum.
-
#filter ⇒ Object
Returns an array containing all elements of
enum
for which the givenblock
returns a true value. -
#filter_map ⇒ Object
Returns a new array containing the truthy results (everything except
false
ornil
) of running theblock
for every element inenum
. -
#find(*args) ⇒ Object
Passes each entry in enum to block.
-
#find_all ⇒ Object
Returns an array containing all elements of
enum
for which the givenblock
returns a true value. -
#find_index(*args) ⇒ Object
Compares each entry in enum with value or passes to block.
-
#first(*args) ⇒ Object
Returns the first element, or the first
n
elements, of the enumerable. -
#flat_map ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
-
#grep(pat) ⇒ Object
Returns an array of every element in enum for which
Pattern === element
. -
#grep_v(pat) ⇒ Object
Inverted version of Enumerable#grep.
-
#group_by ⇒ Object
Groups the collection by result of the block.
-
#include?(val) ⇒ Object
Returns
true
if any member of enum equals obj. -
#inject(*args) ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
-
#lazy ⇒ Object
Returns an Enumerator::Lazy, which redefines most Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.
-
#map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
-
#max(*args) ⇒ Object
Returns the object in enum with the maximum value.
-
#max_by(*args) ⇒ Object
Returns the object in enum that gives the maximum value from the given block.
-
#member?(val) ⇒ Object
Returns
true
if any member of enum equals obj. -
#min(*args) ⇒ Object
Returns the object in enum with the minimum value.
-
#min_by(*args) ⇒ Object
Returns the object in enum that gives the minimum value from the given block.
-
#minmax ⇒ Object
Returns a two element array which contains the minimum and the maximum value in the enumerable.
-
#minmax_by ⇒ Object
Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.
-
#none?(*args) ⇒ Object
Passes each element of the collection to the given block.
-
#one?(*args) ⇒ Object
Passes each element of the collection to the given block.
-
#partition ⇒ Object
Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.
-
#reduce(*args) ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
-
#reject ⇒ Object
Returns an array for all elements of
enum
for which the givenblock
returnsfalse
. -
#reverse_each(*args) ⇒ Object
Builds a temporary array and traverses that array in reverse order.
-
#select ⇒ Object
Returns an array containing all elements of
enum
for which the givenblock
returns a true value. -
#slice_after(*args) ⇒ Object
Creates an enumerator for each chunked elements.
-
#slice_before(*args) ⇒ Object
Creates an enumerator for each chunked elements.
-
#slice_when {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements.
-
#sort ⇒ Object
Returns an array containing the items in enum sorted.
-
#sort_by ⇒ Object
Sorts enum using a set of keys generated by mapping the values in enum through the given block.
-
#sum(*args) ⇒ Object
Returns the sum of elements in an Enumerable.
-
#take(n) ⇒ Array
Returns first n elements from enum.
-
#take_while ⇒ Object
Passes elements to the block until the block returns
nil
orfalse
, then stops iterating and returns an array of all prior elements. -
#tally ⇒ Hash
Tallies the collection, i.e., counts the occurrences of each element.
-
#to_a(*args) ⇒ Object
Returns an array containing the items in enum.
-
#to_h(*args) ⇒ Object
Returns the result of interpreting enum as a list of
[key, value]
pairs. -
#uniq ⇒ Object
Returns a new array by removing duplicate values in
self
. -
#zip(*args) ⇒ Object
Takes one element from enum and merges corresponding elements from each args.
Instance Method Details
#all? {|obj| ... } ⇒ Boolean #all?(pattern) ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block never returns false
or nil
. If the block is not given, Ruby adds an implicit block of { |obj| obj }
which will cause #all? to return true
when none of the collection members are false
or nil
.
If instead a pattern is supplied, the method returns whether pattern === element
for every collection member.
%w[ant bear cat].all? { |word| word.length >= 3 } #=> true
%w[ant bear cat].all? { |word| word.length >= 4 } #=> false
%w[ant bear cat].all?(/t/) #=> false
[1, 2i, 3.14].all?(Numeric) #=> true
[nil, true, 99].all? #=> false
[].all? #=> true
1348 1349 1350 1351 1352 1353 1354 1355 |
# File 'enum.c', line 1348
static VALUE
enum_all(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
return memo->v1;
}
|
#any? {|obj| ... } ⇒ Boolean #any?(pattern) ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block ever returns a value other than false
or nil
. If the block is not given, Ruby adds an implicit block of { |obj| obj }
that will cause #any? to return true
if at least one of the collection members is not false
or nil
.
If instead a pattern is supplied, the method returns whether pattern === element
for any collection member.
%w[ant bear cat].any? { |word| word.length >= 3 } #=> true
%w[ant bear cat].any? { |word| word.length >= 4 } #=> true
%w[ant bear cat].any?(/d/) #=> false
[nil, true, 99].any?(Integer) #=> true
[nil, true, 99].any? #=> true
[].any? #=> false
1390 1391 1392 1393 1394 1395 1396 1397 |
# File 'enum.c', line 1390
static VALUE
enum_any(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
return memo->v1;
}
|
#chain(*enums) ⇒ Object
Returns an enumerator object generated from this enumerator and given enumerables.
e = (1..3).chain([4, 5])
e.to_a #=> [1, 2, 3, 4, 5]
3279 3280 3281 3282 3283 3284 3285 3286 |
# File 'enumerator.c', line 3279
static VALUE
enum_chain(int argc, VALUE *argv, VALUE obj)
{
VALUE enums = rb_ary_new_from_values(1, &obj);
rb_ary_cat(enums, argv, argc);
return enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums);
}
|
#chunk {|elt| ... } ⇒ Object
Enumerates over the items, chunking them together based on the return value of the block.
Consecutive elements which return the same block value are chunked together.
For example, consecutive even numbers and odd numbers can be chunked as follows.
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
n.even?
}.each { |even, ary|
p [even, ary]
}
#=> [false, [3, 1]]
# [true, [4]]
# [false, [1, 5, 9]]
# [true, [2, 6]]
# [false, [5, 3, 5]]
This method is especially useful for sorted series of elements. The following example counts words for each initial letter.
open("/usr/share/dict/words", "r:iso-8859-1") { |f|
f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
}
#=> ["\n", 1]
# ["A", 1327]
# ["B", 1372]
# ["C", 1507]
# ["D", 791]
# ...
The following key values have special meaning:
-
nil
and:_separator
specifies that the elements should be dropped. -
:_alone
specifies that the element should be chunked by itself.
Any other symbols that begin with an underscore will raise an error:
items.chunk { |item| :_underscore }
#=> RuntimeError: symbols beginning with an underscore are reserved
nil
and :_separator
can be used to ignore some elements.
For example, the sequence of hyphens in svn log can be eliminated as follows:
sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
f.chunk { |line|
line != sep || nil
}.each { |_, lines|
pp lines
}
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
# "\n",
# "* README, README.ja: Update the portability section.\n",
# "\n"]
# ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
# "\n",
# "* README, README.ja: Add a note about default C flags.\n",
# "\n"]
# ...
Paragraphs separated by empty lines can be parsed as follows:
File.foreach("README").chunk { |line|
/\A\s*\z/ !~ line || nil
}.each { |_, lines|
pp lines
}
:_alone
can be used to force items into their own chunk. For example, you can put lines that contain a URL by themselves, and chunk the rest of the lines together, like this:
pattern = /http/
open(filename) { |f|
f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
pp lines
}
}
If no block is given, an enumerator to ‘chunk` is returned instead.
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 |
# File 'enum.c', line 3266
static VALUE
enum_chunk(VALUE enumerable)
{
VALUE enumerator;
RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
return enumerator;
}
|
#chunk_while {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.
This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns false
.
The block is called the length of the receiver enumerator minus one.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as to_a
, map
, etc., are also usable.
For example, one-by-one increasing subsequence can be chunked as follows:
a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.chunk_while {|i, j| i+1 == j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"
Increasing (non-decreasing) subsequence can be chunked as follows:
a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.chunk_while {|i, j| i <= j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)
a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.chunk_while {|i, j| i.even? == j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
Enumerable#slice_when does the same, except splitting when the block returns true
instead of false
.
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 |
# File 'enum.c', line 3824
static VALUE
enum_chunk_while(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
|
#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collect ⇒ Object #map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
(1..4).map { |i| i*i } #=> [1, 4, 9, 16]
(1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# File 'enum.c', line 577
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
int min_argc, max_argc;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
min_argc = rb_block_min_max_arity(&max_argc);
rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
return ary;
}
|
#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_map ⇒ Object #collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
626 627 628 629 630 631 632 633 634 635 636 637 |
# File 'enum.c', line 626
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
|
#count ⇒ Integer #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer
Returns the number of items in enum
through enumeration. If an argument is given, the number of items in enum
that are equal to item
are counted. If a block is given, it counts the number of elements yielding a true value.
ary = [1, 2, 4, 2]
ary.count #=> 4
ary.count(2) #=> 2
ary.count{ |x| x%2==0 } #=> 3
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# File 'enum.c', line 230
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE item = Qnil;
struct MEMO *memo;
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &item);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo = MEMO_NEW(item, 0, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return imemo_count_value(memo);
}
|
#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object
Calls block for each element of enum repeatedly n times or forever if none or nil
is given. If a non-positive number is given or the collection is empty, does nothing. Returns nil
if the loop has finished without getting interrupted.
Enumerable#cycle saves elements in an internal array so changes to enum after the first pass have no effect.
If no block is given, an enumerator is returned instead.
a = ["a", "b", "c"]
a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 |
# File 'enum.c', line 3068
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
if (!argc || NIL_P(nv = argv[0])) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
RBASIC_CLEAR_CLASS(ary);
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; i<len; i++) {
enum_yield_array(RARRAY_AREF(ary, i));
}
}
return Qnil;
}
|
#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object
Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil
otherwise.
If no block is given, an enumerator is returned instead.
(1..100).detect #=> #<Enumerator: 1..100:detect>
(1..100).find #=> #<Enumerator: 1..100:find>
(1..10).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
(1..10).find { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
(1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
(1..10).find(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
(1..100).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
(1..100).find { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# File 'enum.c', line 298
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE if_none;
if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
RETURN_ENUMERATOR(obj, argc, argv);
memo = MEMO_NEW(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->v1;
}
if (!NIL_P(if_none)) {
return rb_funcallv(if_none, id_call, 0, 0);
}
return Qnil;
}
|
#drop(n) ⇒ Array
Drops first n elements from enum, and returns rest elements in an array.
a = [1, 2, 3, 4, 5, 0]
a.drop(3) #=> [4, 5, 0]
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 |
# File 'enum.c', line 2954
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE result;
struct MEMO *memo;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
result = rb_ary_new();
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
return result;
}
|
#drop_while {|obj| ... } ⇒ Array #drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns nil
or false
and returns an array containing the remaining elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 |
# File 'enum.c', line 3003
static VALUE
enum_drop_while(VALUE obj)
{
VALUE result;
struct MEMO *memo;
RETURN_ENUMERATOR(obj, 0, 0);
result = rb_ary_new();
memo = MEMO_NEW(result, 0, FALSE);
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
return result;
}
|
#each_cons(n) { ... } ⇒ nil #each_cons(n) ⇒ Object
Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.
e.g.:
(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 |
# File 'enum.c', line 2651
static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
arity = rb_block_arity();
if (enum_size_over_p(obj, size)) return Qnil;
memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
return Qnil;
}
|
#each_entry {|obj| ... } ⇒ Enumerator #each_entry ⇒ Object
Calls block once for each element in self
, passing that element as a parameter, converting multiple values from yield to an array.
If no block is given, an enumerator is returned instead.
class Foo
include Enumerable
def each
yield 1
yield 1, 2
yield
end
end
Foo.new.each_entry{ |o| p o }
produces:
1
[1, 2]
nil
2485 2486 2487 2488 2489 2490 2491 |
# File 'enum.c', line 2485
static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
return obj;
}
|
#each_slice(n) { ... } ⇒ nil #each_slice(n) ⇒ Object
Iterates the given block for each slice of <n> elements. If no block is given, returns an enumerator.
(1..10).each_slice(3) { |a| p a }
# outputs below
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 |
# File 'enum.c', line 2571
static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE ary;
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
size = limit_by_enum_size(obj, size);
ary = rb_ary_new2(size);
arity = rb_block_arity();
memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
ary = memo->v1;
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
return Qnil;
}
|
#each_with_index(*args) {|obj, i| ... } ⇒ Enumerator #each_with_index(*args) ⇒ Object
Calls block with two arguments, the item and its index, for each item in enum. Given arguments are passed through to #each().
If no block is given, an enumerator is returned instead.
hash = Hash.new
%w(cat dog wombat).each_with_index { |item, index|
hash[item] = index
}
hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 |
# File 'enum.c', line 2393
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
memo = MEMO_NEW(0, 0, 0);
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
return obj;
}
|
#each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object #each_with_object(obj) ⇒ Object
Iterates the given block for each element with an arbitrary object given, and returns the initially given object.
If no block is given, returns an enumerator.
evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
#=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
2689 2690 2691 2692 2693 2694 2695 2696 2697 |
# File 'enum.c', line 2689
static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
return memo;
}
|
#to_a(*args) ⇒ Array #entries(*args) ⇒ Array
Returns an array containing the items in enum.
(1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
require 'prime'
Prime.entries 10 #=> [2, 3, 5, 7]
652 653 654 655 656 657 658 659 660 |
# File 'enum.c', line 652
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
return ary;
}
|
#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_all ⇒ Object #select ⇒ Object #filter ⇒ Object
Returns an array containing all elements of enum
for which the given block
returns a true value.
The find_all and select methods are aliases. There is no performance benefit to either.
If no block is given, an Enumerator is returned instead.
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
[:foo, :bar].filter { |x| x == :foo } #=> [:foo]
See also Enumerable#reject, Enumerable#grep.
450 451 452 453 454 455 456 457 458 459 460 461 |
# File 'enum.c', line 450
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
|
#filter_map {|obj| ... } ⇒ Array #filter_map ⇒ Object
Returns a new array containing the truthy results (everything except false
or nil
) of running the block
for every element in enum
.
If no block is given, an Enumerator is returned instead.
(1..10).filter_map { |i| i * 2 if i.even? } #=> [4, 8, 12, 16, 20]
489 490 491 492 493 494 495 496 497 498 499 500 |
# File 'enum.c', line 489
static VALUE
enum_filter_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
return ary;
}
|
#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object
Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil
otherwise.
If no block is given, an enumerator is returned instead.
(1..100).detect #=> #<Enumerator: 1..100:detect>
(1..100).find #=> #<Enumerator: 1..100:find>
(1..10).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
(1..10).find { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
(1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
(1..10).find(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
(1..100).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
(1..100).find { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# File 'enum.c', line 298
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE if_none;
if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
RETURN_ENUMERATOR(obj, argc, argv);
memo = MEMO_NEW(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->v1;
}
if (!NIL_P(if_none)) {
return rb_funcallv(if_none, id_call, 0, 0);
}
return Qnil;
}
|
#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_all ⇒ Object #select ⇒ Object #filter ⇒ Object
Returns an array containing all elements of enum
for which the given block
returns a true value.
The find_all and select methods are aliases. There is no performance benefit to either.
If no block is given, an Enumerator is returned instead.
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
[:foo, :bar].filter { |x| x == :foo } #=> [:foo]
See also Enumerable#reject, Enumerable#grep.
450 451 452 453 454 455 456 457 458 459 460 461 |
# File 'enum.c', line 450
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
|
#find_index(value) ⇒ Integer? #find_index {|obj| ... } ⇒ Integer? #find_index ⇒ Object
Compares each entry in enum with value or passes to block. Returns the index for the first for which the evaluated value is non-false. If no object matches, returns nil
If neither block nor argument is given, an enumerator is returned instead.
(1..10).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
(1..100).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> 34
(1..100).find_index(50) #=> 49
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# File 'enum.c', line 364
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo; /* [return value, current index, ] */
VALUE condition_value = Qnil;
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &condition_value);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo = MEMO_NEW(Qnil, condition_value, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo->v1;
}
|
#first ⇒ Object? #first(n) ⇒ Array
Returns the first element, or the first n
elements, of the enumerable. If the enumerable is empty, the first form returns nil
, and the second form returns an empty array.
%w[foo bar baz].first #=> "foo"
%w[foo bar baz].first(2) #=> ["foo", "bar"]
%w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
[].first #=> nil
[].first(10) #=> []
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
# File 'enum.c', line 1055
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
rb_check_arity(argc, 0, 1);
if (argc > 0) {
return enum_take(obj, argv[0]);
}
else {
memo = MEMO_NEW(Qnil, 0, 0);
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
return memo->v1;
}
}
|
#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_map ⇒ Object #collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
626 627 628 629 630 631 632 633 634 635 636 637 |
# File 'enum.c', line 626
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
|
#grep(pattern) ⇒ Array #grep(pattern) {|obj| ... } ⇒ Array
Returns an array of every element in enum for which Pattern === element
. If the optional block is supplied, each matching element is passed to it, and the block’s result is stored in the output array.
(1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) { |v| IO.const_get(v) }
res #=> [0, 1, 2]
114 115 116 117 118 119 120 121 122 123 |
# File 'enum.c', line 114
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
|
#grep_v(pattern) ⇒ Array #grep_v(pattern) {|obj| ... } ⇒ Array
Inverted version of Enumerable#grep. Returns an array of every element in enum for which not Pattern === element
.
(1..10).grep_v 2..5 #=> [1, 6, 7, 8, 9, 10]
res =(1..10).grep_v(2..5) { |v| v * 2 }
res #=> [2, 12, 14, 16, 18, 20]
140 141 142 143 144 145 146 147 148 149 |
# File 'enum.c', line 140
static VALUE
enum_grep_v(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
|
#group_by {|obj| ... } ⇒ Hash #group_by ⇒ Object
Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and the values are arrays of elements in the collection that correspond to the key.
If no block is given an enumerator is returned.
(1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
975 976 977 978 979 980 981 |
# File 'enum.c', line 975
static VALUE
enum_group_by(VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
return enum_hashify(obj, 0, 0, group_by_i);
}
|
#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean
Returns true
if any member of enum equals obj. Equality is tested using ==
.
(1..10).include? 5 #=> true
(1..10).include? 15 #=> false
(1..10).member? 5 #=> true
(1..10).member? 15 #=> false
2355 2356 2357 2358 2359 2360 2361 2362 |
# File 'enum.c', line 2355
static VALUE
enum_member(VALUE obj, VALUE val)
{
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
|
#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
The inject and reduce methods are aliases. There is no performance benefit to either.
If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.
If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.
# Sum some numbers
(5..10).reduce(:+) #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n } #=> 45
# Multiply some numbers
(5..10).reduce(1, :*) #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
memo.length > word.length ? memo : word
end
longest #=> "sheep"
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
# File 'enum.c', line 851
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE init, op;
rb_block_call_func *iter = inject_i;
ID id;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
init = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
id = rb_check_id(&init);
op = id ? ID2SYM(id) : init;
init = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
id = rb_check_id(&op);
if (id) op = ID2SYM(id);
iter = inject_op_i;
break;
}
if (iter == inject_op_i &&
SYMBOL_P(op) &&
RB_TYPE_P(obj, T_ARRAY) &&
rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
return ary_inject_op(obj, init, op);
}
memo = MEMO_NEW(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo->v1 == Qundef) return Qnil;
return memo->v1;
}
|
#lazy ⇒ Object
Returns an Enumerator::Lazy, which redefines most Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.
Example
The following program finds pythagorean triples:
def pythagorean_triples
(1..Float::INFINITY).lazy.flat_map {|z|
(1..z).flat_map {|x|
(x..z).select {|y|
x**2 + y**2 == z**2
}.map {|y|
[x, y, z]
}
}
}
end
# show first ten pythagorean triples
p pythagorean_triples.take(10).force # take is lazy, so force is needed
p pythagorean_triples.first(10) # first is eager
# show pythagorean triples less than 100
p pythagorean_triples.take_while { |*, z| z < 100 }.force
1892 1893 1894 1895 1896 1897 1898 1899 |
# File 'enumerator.c', line 1892
static VALUE
enumerable_lazy(VALUE obj)
{
VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size, PASS_KW_SPLAT);
/* Qfalse indicates that the Enumerator::Lazy has no method name */
rb_ivar_set(result, id_method, Qfalse);
return result;
}
|
#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collect ⇒ Object #map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
(1..4).map { |i| i*i } #=> [1, 4, 9, 16]
(1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# File 'enum.c', line 577
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
int min_argc, max_argc;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
min_argc = rb_block_min_max_arity(&max_argc);
rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
return ary;
}
|
#max ⇒ Object #max {|a, b| ... } ⇒ Object #max(n) ⇒ Array #max(n) {|a, b| ... } ⇒ Array
Returns the object in enum with the maximum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.max #=> "horse"
a.max { |a, b| a.length <=> b.length } #=> "albatross"
If the n
argument is given, maximum n
elements are returned as an array, sorted in descending order.
a = %w[albatross dog horse]
a.max(2) #=> ["horse", "dog"]
a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"]
[5, 1, 3, 4, 2].max(3) #=> [5, 4, 3]
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 |
# File 'enum.c', line 1873
static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
VALUE memo;
struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo);
VALUE result;
VALUE num;
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 0, 1, 0);
m->max = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
}
result = m->max;
if (result == Qundef) return Qnil;
return result;
}
|
#max_by {|obj| ... } ⇒ Object #max_by ⇒ Object #max_by(n) {|obj| ... } ⇒ Object #max_by(n) ⇒ Object
Returns the object in enum that gives the maximum value from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.max_by { |x| x.length } #=> "albatross"
If the n
argument is given, maximum n
elements are returned as an array. These n
elements are sorted by the value from the given block, in descending order.
a = %w[albatross dog horse]
a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
enum.max_by(n) can be used to implement weighted random sampling. Following example implements and use Enumerable#wsample.
module Enumerable
# weighted random sampling.
#
# Pavlos S. Efraimidis, Paul G. Spirakis
# Weighted random sampling with a reservoir
# Information Processing Letters
# Volume 97, Issue 5 (16 March 2006)
def wsample(n)
self.max_by(n) {|v| rand ** (1.0/yield(v)) }
end
end
e = (-20..20).to_a*10000
a = e.wsample(20000) {|x|
Math.exp(-(x/5.0)**2) # normal distribution
}
# a is 20000 samples from e.
p a.length #=> 20000
h = a.group_by {|x| x }
-10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
#=> *
# ***
# ******
# ***********
# ******************
# *****************************
# *****************************************
# ****************************************************
# ***************************************************************
# ********************************************************************
# ***********************************************************************
# ***********************************************************************
# **************************************************************
# ****************************************************
# ***************************************
# ***************************
# ******************
# ***********
# *******
# ***
# *
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 |
# File 'enum.c', line 2201
static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 1, 0);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo->v2;
}
|
#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean
Returns true
if any member of enum equals obj. Equality is tested using ==
.
(1..10).include? 5 #=> true
(1..10).include? 15 #=> false
(1..10).member? 5 #=> true
(1..10).member? 15 #=> false
2355 2356 2357 2358 2359 2360 2361 2362 |
# File 'enum.c', line 2355
static VALUE
enum_member(VALUE obj, VALUE val)
{
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
|
#min ⇒ Object #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array
Returns the object in enum with the minimum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.min #=> "albatross"
a.min { |a, b| a.length <=> b.length } #=> "dog"
If the n
argument is given, minimum n
elements are returned as a sorted array.
a = %w[albatross dog horse]
a.min(2) #=> ["albatross", "dog"]
a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"]
[5, 1, 3, 4, 2].min(3) #=> [1, 2, 3]
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 |
# File 'enum.c', line 1781
static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
VALUE memo;
struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo);
VALUE result;
VALUE num;
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 0, 0, 0);
m->min = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, min_ii, memo);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, memo);
}
result = m->min;
if (result == Qundef) return Qnil;
return result;
}
|
#min_by {|obj| ... } ⇒ Object #min_by ⇒ Object #min_by(n) {|obj| ... } ⇒ Array #min_by(n) ⇒ Object
Returns the object in enum that gives the minimum value from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.min_by { |x| x.length } #=> "dog"
If the n
argument is given, minimum n
elements are returned as an array. These n
elements are sorted by the value from the given block.
a = %w[albatross dog horse]
p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 |
# File 'enum.c', line 2094
static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 0, 0);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo->v2;
}
|
#minmax ⇒ Array #minmax {|a, b| ... } ⇒ Array
Returns a two element array which contains the minimum and the maximum value in the enumerable. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.minmax #=> ["albatross", "horse"]
a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 |
# File 'enum.c', line 2024
static VALUE
enum_minmax(VALUE obj)
{
VALUE memo;
struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo);
m->min = Qundef;
m->last = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
if (m->last != Qundef)
minmax_ii_update(m->last, m->last, m);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
if (m->last != Qundef)
minmax_i_update(m->last, m->last, m);
}
if (m->min != Qundef) {
return rb_assoc_new(m->min, m->max);
}
return rb_assoc_new(Qnil, Qnil);
}
|
#minmax_by {|obj| ... } ⇒ Array #minmax_by ⇒ Object
Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 |
# File 'enum.c', line 2307
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo;
struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
m->min_bv = Qundef;
m->max_bv = Qundef;
m->min = Qnil;
m->max = Qnil;
m->last_bv = Qundef;
m->last = Qundef;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
if (m->last_bv != Qundef)
minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
m = MEMO_FOR(struct minmax_by_t, memo);
return rb_assoc_new(m->min, m->max);
}
|
#none? {|obj| ... } ⇒ Boolean #none?(pattern) ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block never returns true
for all elements. If the block is not given, none?
will return true
only if none of the collection members is true.
If instead a pattern is supplied, the method returns whether pattern === element
for none of the collection members.
%w{ant bear cat}.none? { |word| word.length == 5 } #=> true
%w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
%w{ant bear cat}.none?(/d/) #=> true
[1, 3.14, 42].none?(Float) #=> false
[].none? #=> true
[nil].none? #=> true
[nil, false].none? #=> true
[nil, false, true].none? #=> false
1703 1704 1705 1706 1707 1708 1709 1710 1711 |
# File 'enum.c', line 1703
static VALUE
enum_none(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
return memo->v1;
}
|
#one? {|obj| ... } ⇒ Boolean #one?(pattern) ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block returns true
exactly once. If the block is not given, one?
will return true
only if exactly one of the collection members is true.
If instead a pattern is supplied, the method returns whether pattern === element
for exactly one collection member.
%w{ant bear cat}.one? { |word| word.length == 4 } #=> true
%w{ant bear cat}.one? { |word| word.length > 4 } #=> false
%w{ant bear cat}.one? { |word| word.length < 4 } #=> false
%w{ant bear cat}.one?(/t/) #=> false
[ nil, true, 99 ].one? #=> false
[ nil, true, false ].one? #=> true
[ nil, true, 99 ].one?(Integer) #=> true
[].one? #=> false
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 |
# File 'enum.c', line 1659
static VALUE
enum_one(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
VALUE result;
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
result = memo->v1;
if (result == Qundef) return Qfalse;
return result;
}
|
#partition {|obj| ... } ⇒ Array #partition ⇒ Object
Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.
If no block is given, an enumerator is returned instead.
(1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
927 928 929 930 931 932 933 934 935 936 937 938 |
# File 'enum.c', line 927
static VALUE
enum_partition(VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
return rb_assoc_new(memo->v1, memo->v2);
}
|
#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
The inject and reduce methods are aliases. There is no performance benefit to either.
If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.
If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.
# Sum some numbers
(5..10).reduce(:+) #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n } #=> 45
# Multiply some numbers
(5..10).reduce(1, :*) #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
memo.length > word.length ? memo : word
end
longest #=> "sheep"
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
# File 'enum.c', line 851
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE init, op;
rb_block_call_func *iter = inject_i;
ID id;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
init = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
id = rb_check_id(&init);
op = id ? ID2SYM(id) : init;
init = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
id = rb_check_id(&op);
if (id) op = ID2SYM(id);
iter = inject_op_i;
break;
}
if (iter == inject_op_i &&
SYMBOL_P(op) &&
RB_TYPE_P(obj, T_ARRAY) &&
rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
return ary_inject_op(obj, init, op);
}
memo = MEMO_NEW(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo->v1 == Qundef) return Qnil;
return memo->v1;
}
|
#reject {|obj| ... } ⇒ Array #reject ⇒ Object
Returns an array for all elements of enum
for which the given block
returns false
.
If no block is given, an Enumerator is returned instead.
(1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
[1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
See also Enumerable#find_all.
531 532 533 534 535 536 537 538 539 540 541 542 |
# File 'enum.c', line 531
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
|
#reverse_each(*args) {|item| ... } ⇒ Enumerator #reverse_each(*args) ⇒ Object
Builds a temporary array and traverses that array in reverse order.
If no block is given, an enumerator is returned instead.
(1..3).reverse_each { |v| p v }
produces:
3
2
1
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 |
# File 'enum.c', line 2424
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long len;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
ary = enum_to_a(argc, argv, obj);
len = RARRAY_LEN(ary);
while (len--) {
long nlen;
rb_yield(RARRAY_AREF(ary, len));
nlen = RARRAY_LEN(ary);
if (nlen < len) {
len = nlen;
}
}
return obj;
}
|
#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_all ⇒ Object #select ⇒ Object #filter ⇒ Object
Returns an array containing all elements of enum
for which the given block
returns a true value.
The find_all and select methods are aliases. There is no performance benefit to either.
If no block is given, an Enumerator is returned instead.
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
[:foo, :bar].filter { |x| x == :foo } #=> [:foo]
See also Enumerable#reject, Enumerable#grep.
450 451 452 453 454 455 456 457 458 459 460 461 |
# File 'enum.c', line 450
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
|
#slice_after(pattern) ⇒ Object #slice_after {|elt| ... } ⇒ Object
Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.
If pattern === elt
returns true
or the block returns true
for the element, the element is end of a chunk.
The ===
and block is called from the first element to the last element of enum.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as map
, etc., are also usable.
For example, continuation lines (lines end with backslash) can be concatenated as follows:
lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 |
# File 'enum.c', line 3601
static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
VALUE pat = Qnil, pred = Qnil;
if (rb_block_given_p()) {
if (0 < argc)
rb_raise(rb_eArgError, "both pattern and block are given");
pred = rb_block_proc();
}
else {
rb_scan_args(argc, argv, "1", &pat);
}
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
return enumerator;
}
|
#slice_before(pattern) ⇒ Object #slice_before {|elt| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by pattern and the block.
If pattern === elt
returns true
or the block returns true
for the element, the element is beginning of a chunk.
The ===
and block is called from the first element to the last element of enum. The result for the first element is ignored.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_before(pattern).each { |ary| ... }
enum.slice_before { |elt| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as to_a
, map
, etc., are also usable.
For example, iteration over ChangeLog entries can be implemented as follows:
# iterate over ChangeLog entries.
open("ChangeLog") { |f|
f.slice_before(/\A\S/).each { |e| pp e }
}
# same as above. block is used instead of pattern argument.
open("ChangeLog") { |f|
f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
}
“svn proplist -R” produces multiline output for each file. They can be chunked as follows:
IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
f.lines.slice_before(/\AProp/).each { |lines| p lines }
}
#=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
# ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
# ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
# ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
# ...
If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows (see chunk_while
for a better way):
a = [0, 2, 3, 4, 6, 7, 9]
prev = a[0]
p a.slice_before { |e|
prev, prev2 = e, prev
prev2 + 1 != e
}.map { |es|
es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
}.join(",")
#=> "0,2-4,6,7,9"
However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new can be used to do it.
# Word wrapping. This assumes all characters have same width.
def wordwrap(words, maxwidth)
Enumerator.new {|y|
# cols is initialized in Enumerator.new.
cols = 0
words.slice_before { |w|
cols += 1 if cols != 0
cols += w.length
if maxwidth < cols
cols = w.length
true
else
false
end
}.each {|ws| y.yield ws }
}
end
text = (1..20).to_a.join(" ")
enum = wordwrap(text.split(/\s+/), 10)
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # first enumeration.
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
puts "-"*10
#=> ----------
# 1 2 3 4 5
# 6 7 8 9 10
# 11 12 13
# 14 15 16
# 17 18 19
# 20
# ----------
# 1 2 3 4 5
# 6 7 8 9 10
# 11 12 13
# 14 15 16
# 17 18 19
# 20
# ----------
mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.
# parse mbox
open("mbox") { |f|
f.slice_before { |line|
line.start_with? "From "
}.each { |mail|
unix_from = mail.shift
i = mail.index("\n")
header = mail[0...i]
body = mail[(i+1)..-1]
body.pop if body.last == "\n"
fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
p unix_from
pp fields
pp body
}
}
# split mails in mbox (slice before Unix From line after an empty line)
open("mbox") { |f|
emp = true
f.slice_before { |line|
prevemp = emp
emp = line == "\n"
prevemp && line.start_with?("From ")
}.each { |mail|
mail.pop if mail.last == "\n"
pp mail
}
}
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 |
# File 'enum.c', line 3479
static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
if (rb_block_given_p()) {
if (argc != 0)
rb_error_arity(argc, 0, 0);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
}
else {
VALUE sep_pat;
rb_scan_args(argc, argv, "1", &sep_pat);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
}
rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
return enumerator;
}
|
#slice_when {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.
This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true
.
The block is called the length of the receiver enumerator minus one.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as to_a
, map
, etc., are also usable.
For example, one-by-one increasing subsequence can be chunked as follows:
a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.slice_when {|i, j| i+1 != j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"
Near elements (threshold: 6) in sorted array can be chunked as follows:
a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
p a.slice_when {|i, j| 6 < j - i }.to_a
#=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
Increasing (non-decreasing) subsequence can be chunked as follows:
a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.slice_when {|i, j| i > j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)
a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.slice_when {|i, j| i.even? != j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk to ignore empty lines.)
lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
#=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
Enumerable#chunk_while does the same, except splitting when the block returns false
instead of true
.
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 |
# File 'enum.c', line 3758
static VALUE
enum_slice_when(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
|
#sort ⇒ Array #sort {|a, b| ... } ⇒ Array
Returns an array containing the items in enum sorted.
Comparisons for the sort will be done using the items’ own <=>
operator or using an optional code block.
The block must implement a comparison between a
and b
and return an integer less than 0 when b
follows a
, 0
when a
and b
are equivalent, or an integer greater than 0 when a
follows b
.
The result is not guaranteed to be stable. When the comparison of two elements returns 0
, the order of the elements is unpredictable.
%w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
(1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
See also Enumerable#sort_by. It implements a Schwartzian transform which is useful when key computation or comparison is expensive.
1095 1096 1097 1098 1099 |
# File 'enum.c', line 1095
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort_bang(enum_to_a(0, 0, obj));
}
|
#sort_by {|obj| ... } ⇒ Array #sort_by ⇒ Object
Sorts enum using a set of keys generated by mapping the values in enum through the given block.
The result is not guaranteed to be stable. When two keys are equal, the order of the corresponding elements is unpredictable.
If no block is given, an enumerator is returned instead.
%w{apple pear fig}.sort_by { |word| word.length }
#=> ["fig", "pear", "apple"]
The current implementation of #sort_by generates an array of tuples containing the original collection element and the mapped value. This makes #sort_by fairly expensive when the keysets are simple.
require 'benchmark'
a = (1..100000).map { rand(100000) }
Benchmark.bm(10) do |b|
b.report("Sort") { a.sort }
b.report("Sort by") { a.sort_by { |a| a } }
end
produces:
user system total real
Sort 0.180000 0.000000 0.180000 ( 0.175469)
Sort by 1.980000 0.040000 2.020000 ( 2.013586)
However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic #sort method.
files = Dir["*"]
sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
sorted #=> ["mon", "tues", "wed", "thurs"]
This sort is inefficient: it generates two new File objects during every comparison. A slightly better technique is to use the Kernel#test method to generate the modification times directly.
files = Dir["*"]
sorted = files.sort { |a, b|
test(?M, a) <=> test(?M, b)
}
sorted #=> ["mon", "tues", "wed", "thurs"]
This still generates many unnecessary Time objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.
sorted = Dir["*"].collect { |f|
[test(?M, f), f]
}.sort.collect { |f| f[1] }
sorted #=> ["mon", "tues", "wed", "thurs"]
This is exactly what #sort_by does internally.
sorted = Dir["*"].sort_by { |f| test(?M, f) }
sorted #=> ["mon", "tues", "wed", "thurs"]
To produce the reverse of a specific order, the following can be used:
ary.sort_by { ... }.reverse!
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 |
# File 'enum.c', line 1232
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary, buf;
struct MEMO *memo;
long i;
struct sort_by_data *data;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
ary = rb_ary_new2(RARRAY_LEN(obj)*2);
}
else {
ary = rb_ary_new();
}
RBASIC_CLEAR_CLASS(ary);
buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
memo = MEMO_NEW(0, 0, 0);
data = (struct sort_by_data *)&memo->v1;
RB_OBJ_WRITE(memo, &data->ary, ary);
RB_OBJ_WRITE(memo, &data->buf, buf);
data->n = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
ary = data->ary;
buf = data->buf;
if (data->n) {
rb_ary_resize(buf, data->n*2);
rb_ary_concat(ary, buf);
}
if (RARRAY_LEN(ary) > 2) {
RARRAY_PTR_USE(ary, ptr,
ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
sort_by_cmp, (void *)ary));
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=1; i<RARRAY_LEN(ary); i+=2) {
RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
}
rb_ary_resize(ary, RARRAY_LEN(ary)/2);
RBASIC_SET_CLASS_RAW(ary, rb_cArray);
return ary;
}
|
#sum(init = 0) ⇒ Numeric #sum(init = 0) {|e| ... } ⇒ Numeric
Returns the sum of elements in an Enumerable.
If a block is given, the block is applied to each element before addition.
If enum is empty, it returns init.
For example:
{ 1 => 10, 2 => 20 }.sum {|k, v| k * v } #=> 50
(1..10).sum #=> 55
(1..10).sum {|v| v * 2 } #=> 110
('a'..'z').sum #=> TypeError
This method can be used for non-numeric objects by explicit init argument.
{ 1 => 10, 2 => 20 }.sum([]) #=> [1, 10, 2, 20]
"a\nb\nc".each_line.lazy.map(&:chomp).sum("") #=> "abc"
If the method is applied to an Integer range without a block, the sum is not done by iteration, but instead using Gauss’s summation formula.
Enumerable#sum method may not respect method redefinition of “+” methods such as Integer#+, or “each” methods such as Range#each.
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 |
# File 'enum.c', line 4045
static VALUE
enum_sum(int argc, VALUE* argv, VALUE obj)
{
struct enum_sum_memo memo;
VALUE beg, end;
int excl;
memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
memo.block_given = rb_block_given_p();
memo.n = 0;
memo.r = Qundef;
if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
memo.f = RFLOAT_VALUE(memo.v);
memo.c = 0.0;
}
else {
memo.f = 0.0;
memo.c = 0.0;
}
if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
if (!memo.block_given && !memo.float_value &&
(FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) &&
(FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) {
return int_range_sum(beg, end, excl, memo.v);
}
}
if (RB_TYPE_P(obj, T_HASH) &&
rb_method_basic_definition_p(CLASS_OF(obj), id_each))
hash_sum(obj, &memo);
else
rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
if (memo.float_value) {
return DBL2NUM(memo.f + memo.c);
}
else {
if (memo.n != 0)
memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
if (memo.r != Qundef) {
/* r can be an Integer when mathn is loaded */
if (FIXNUM_P(memo.r))
memo.v = rb_fix_plus(memo.r, memo.v);
else if (RB_TYPE_P(memo.r, T_BIGNUM))
memo.v = rb_big_plus(memo.r, memo.v);
else
memo.v = rb_rational_plus(memo.r, memo.v);
}
return memo.v;
}
}
|
#take(n) ⇒ Array
Returns first n elements from enum.
a = [1, 2, 3, 4, 5, 0]
a.take(3) #=> [1, 2, 3]
a.take(30) #=> [1, 2, 3, 4, 5, 0]
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 |
# File 'enum.c', line 2876
static VALUE
enum_take(VALUE obj, VALUE n)
{
struct MEMO *memo;
VALUE result;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
result = rb_ary_new2(len);
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
|
#take_while {|obj| ... } ⇒ Array #take_while ⇒ Object
Passes elements to the block until the block returns nil
or false
, then stops iterating and returns an array of all prior elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 } #=> [1, 2]
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 |
# File 'enum.c', line 2918
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
return ary;
}
|
#tally ⇒ Hash
Tallies the collection, i.e., counts the occurrences of each element. Returns a hash with the elements of the collection as keys and the corresponding counts as values.
["a", "b", "c", "b"].tally #=> {"a"=>1, "b"=>2, "c"=>1}
1018 1019 1020 1021 1022 |
# File 'enum.c', line 1018
static VALUE
enum_tally(VALUE obj)
{
return enum_hashify(obj, 0, 0, tally_i);
}
|
#to_a(*args) ⇒ Array #entries(*args) ⇒ Array
Returns an array containing the items in enum.
(1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
require 'prime'
Prime.entries 10 #=> [2, 3, 5, 7]
652 653 654 655 656 657 658 659 660 |
# File 'enum.c', line 652
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
return ary;
}
|
#to_h(*args) ⇒ Hash #to_h(*args) { ... } ⇒ Hash
Returns the result of interpreting enum as a list of [key, value]
pairs.
%i[hello world].each_with_index.to_h
# => {:hello => 0, :world => 1}
If a block is given, the results of the block on each element of the enum will be used as pairs.
(1..5).to_h {|x| [x, x ** 2]}
#=> {1=>1, 2=>4, 3=>9, 4=>16, 5=>25}
701 702 703 704 705 706 |
# File 'enum.c', line 701
static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
return enum_hashify(obj, argc, argv, iter);
}
|
#uniq ⇒ Array #uniq {|item| ... } ⇒ Array
Returns a new array by removing duplicate values in self
.
See also Array#uniq.
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 |
# File 'enum.c', line 4125
static VALUE
enum_uniq(VALUE obj)
{
VALUE hash, ret;
rb_block_call_func *const func =
rb_block_given_p() ? uniq_iter : uniq_func;
hash = rb_obj_hide(rb_hash_new());
rb_block_call(obj, id_each, 0, 0, func, hash);
ret = rb_hash_values(hash);
rb_hash_clear(hash);
return ret;
}
|
#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil
Takes one element from enum and merges corresponding elements from each args. This generates a sequence of n-element arrays, where n is one more than the count of arguments. The length of the resulting sequence will be enum#size
. If the size of any argument is less than enum#size
, nil
values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.
a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
a.zip(b) #=> [[4, 7], [5, 8], [6, 9]]
[1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
c = []
a.zip(b) { |x, y| c << x + y } #=> nil
c #=> [11, 13, 15]
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 |
# File 'enum.c', line 2814
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
struct MEMO *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = TRUE;
argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
VALUE ary = rb_check_array_type(argv[i]);
if (NIL_P(ary)) {
allary = FALSE;
break;
}
argv[i] = ary;
}
if (!allary) {
static const VALUE sym_each = STATIC_ID2SYM(id_each);
CONST_ID(conv, "to_enum");
for (i=0; i<argc; i++) {
if (!rb_respond_to(argv[i], id_each)) {
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
rb_obj_class(argv[i]));
}
argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
}
}
if (!rb_block_given_p()) {
result = rb_ary_new();
}
/* TODO: use NODE_DOT2 as memo(v, v, -) */
memo = MEMO_NEW(result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
}
|