Class: Range

Inherits:
Object show all
Includes:
Enumerable
Defined in:
range.c

Overview

A Range represents an interval—a set of values with a beginning and an end. Ranges may be constructed using the s..e and s...e literals, or with Range::new. Ranges constructed using .. run from the beginning to the end inclusively. Those created using ... exclude the end value. When used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a      #=> []
(-5..-1).to_a      #=> [-5, -4, -3, -2, -1]
('a'..'e').to_a    #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a   #=> ["a", "b", "c", "d"]

Beginless/Endless Ranges

A “beginless range” and “endless range” represents a semi-infinite range. Literal notation for a beginless range is:

(..1)
# or
(...1)

Literal notation for an endless range is:

(1..)
# or similarly
(1...)

Which is equivalent to

(1..nil)  # or similarly (1...nil)
Range.new(1, nil) # or Range.new(1, nil, true)

Beginless/endless ranges are useful, for example, for idiomatic slicing of arrays:

[1, 2, 3, 4, 5][...2]   # => [1, 2]
[1, 2, 3, 4, 5][2...]   # => [3, 4, 5]

Some implementation details:

  • begin of beginless range and end of endless range are nil;

  • each of beginless range raises an exception;

  • each of endless range enumerates infinite sequence (may be useful in combination with Enumerable#take_while or similar methods);

  • (1..) and (1...) are not equal, although technically representing the same sequence.

Custom Objects in Ranges

Ranges can be constructed using any objects that can be compared using the <=> operator. Methods that treat the range as a sequence (#each and methods inherited from Enumerable) expect the begin object to implement a succ method to return the next object in sequence. The #step and #include? methods require the begin object to implement succ or to be numeric.

In the Xs class below both <=> and succ are implemented so Xs can be used to construct ranges. Note that the Comparable module is included so the == method is defined in terms of <=>.

class Xs                # represent a string of 'x's
  include Comparable
  attr :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'x' * @length
  end
end

An example of using Xs to construct a range:

r = Xs.new(3)..Xs.new(6)   #=> xxx..xxxxxx
r.to_a                     #=> [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5))       #=> true

Instance Method Summary collapse

Methods included from Enumerable

#all?, #any?, #chain, #chunk, #chunk_while, #collect, #collect_concat, #cycle, #detect, #drop, #drop_while, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #filter, #filter_map, #find, #find_all, #find_index, #flat_map, #grep, #grep_v, #group_by, #inject, #lazy, #map, #max_by, #min_by, #minmax_by, #none?, #one?, #partition, #reduce, #reject, #reverse_each, #select, #slice_after, #slice_before, #slice_when, #sort, #sort_by, #sum, #take, #take_while, #tally, #to_h, #uniq, #zip

Constructor Details

#newObject

Constructs a range using the given begin and end. If the exclude_end parameter is omitted or is false, the range will include the end object; otherwise, it will be excluded.



79
80
81
82
83
84
85
86
87
88
# File 'range.c', line 79

static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Instance Method Details

#step(n = 1) {|obj| ... } ⇒ Object #step(n = 1) ⇒ Object #step(n = 1) ⇒ Object #%(n) ⇒ Object #%(n) ⇒ Object

Iterates over the range, passing each nth element to the block. If begin and end are numeric, n is added for each iteration. Otherwise #step invokes #succ to iterate through range elements.

If no block is given, an enumerator is returned instead. Especially, the enumerator is an Enumerator::ArithmeticSequence if begin and end of the range are numeric.

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}

produces:

 1 x
 3 xxx
 5 xxxxx
 7 xxxxxxx
 9 xxxxxxxxx

 1 x
 4 xxxx
 7 xxxxxxx
10 xxxxxxxxxx

See Range for the definition of class Xs.

Overloads:

  • #step(n = 1) {|obj| ... } ⇒ Object

    Yields:

    • (obj)


498
499
500
501
502
# File 'range.c', line 498

static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}

#==(obj) ⇒ Boolean

Returns true only if obj is a Range, has equivalent begin and end items (by comparing them with ==), and has the same #exclude_end? setting as the range.

(0..2) == (0..2)            #=> true
(0..2) == Range.new(0,2)    #=> true
(0..2) == (0...2)           #=> false

Returns:

  • (Boolean)


144
145
146
147
148
149
150
151
152
153
# File 'range.c', line 144

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
  return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
  return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}

#===(obj) ⇒ Boolean

Returns true if obj is between begin and end of range, false otherwise (same as #cover?). Conveniently, === is the comparison operator used by case statements.

case 79
when 1..50   then   puts "low"
when 51..75  then   puts "medium"
when 76..100 then   puts "high"
end
# Prints "high"

case "2.6.5"
when ..."2.4" then puts "EOL"
when "2.4"..."2.5" then puts "maintenance"
when "2.5"..."2.7" then puts "stable"
when "2.7".. then puts "upcoming"
end
# Prints "stable"

Returns:

  • (Boolean)


1405
1406
1407
1408
1409
1410
1411
# File 'range.c', line 1405

static VALUE
range_eqq(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 1);
    if (ret != Qundef) return ret;
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}

#beginObject

Returns the object that defines the beginning of the range.

(1..10).begin   #=> 1

Returns:



958
959
960
961
962
# File 'range.c', line 958

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}

#bsearch {|obj| ... } ⇒ Object

By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.

You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.

In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:

  • the block returns false for any value which is less than x, and

  • the block returns true for any value which is greater than or equal to x.

If x is within the range, this method returns the value x. Otherwise, it returns nil.

ary = [0, 4, 7, 10, 12]
(0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
(0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
(0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
(0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil

(0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0

In find-any mode (this behaves like libc’s bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:

  • the block returns a positive number for v if v < x,

  • the block returns zero for v if x <= v < y, and

  • the block returns a negative number for v if y <= v.

This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.

ary = [0, 100, 100, 100, 200]
(0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3
(0..4).bsearch {|i| 300 - ary[i] } #=> nil
(0..4).bsearch {|i|  50 - ary[i] } #=> nil

You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.

Yields:

  • (obj)


654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# File 'range.c', line 654

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits)
     * as well as the fact that -1/2 can be 0 or -1 in C89.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv) \
    do { \
  RETURN_ENUMERATOR(range, 0, 0); \
  if (EXCL(range)) high--; \
  org_high = high; \
  while (low < high) { \
      mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
    : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \
      BSEARCH_CHECK(conv(mid)); \
      if (smaller) { \
    high = mid; \
      } \
      else { \
    low = mid + 1; \
      } \
  } \
  if (low == org_high) { \
      BSEARCH_CHECK(conv(low)); \
      if (!smaller) return Qnil; \
  } \
  return satisfied; \
    } while (0)


    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
  long low = FIX2LONG(beg);
  long high = FIX2LONG(end);
  long mid, org_high;
  BSEARCH(INT2FIX);
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) {
  int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
  int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
  int64_t mid, org_high;
  BSEARCH(int64_as_double_to_num);
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
  RETURN_ENUMERATOR(range, 0, 0);
  return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
  VALUE diff = LONG2FIX(1);
  RETURN_ENUMERATOR(range, 0, 0);
  while (1) {
      VALUE mid = rb_funcall(beg, '+', 1, diff);
      BSEARCH_CHECK(mid);
      if (smaller) {
    return bsearch_integer_range(beg, mid, 0);
      }
      diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
  }
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
  VALUE diff = LONG2FIX(-1);
  RETURN_ENUMERATOR(range, 0, 0);
  while (1) {
      VALUE mid = rb_funcall(end, '+', 1, diff);
      BSEARCH_CHECK(mid);
      if (!smaller) {
    return bsearch_integer_range(mid, end, 0);
      }
      diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
  }
    }
    else {
  rb_raise(rb_eTypeError, "can't do binary search for s", rb_obj_classname(beg));
    }
    return range;
}

#countInteger #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer

Identical to Enumerable#count, except it returns Infinity for endless ranges.

Overloads:



1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
# File 'range.c', line 1630

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }
    else if (NIL_P(RANGE_END(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else if (NIL_P(RANGE_BEG(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else {
        return rb_call_super(argc, argv);
    }
}

#cover?(obj) ⇒ Boolean #cover?(range) ⇒ Boolean

Returns true if obj is between the begin and end of the range.

This tests begin <= obj <= end when #exclude_end? is false and begin <= obj < end when #exclude_end? is true.

If called with a Range argument, returns true when the given range is covered by the receiver, by comparing the begin and end values. If the argument can be treated as a sequence, this method treats it that way. In the specific case of (a..b).cover?(c...d) with a <= c && b < d, the end of the sequence must be calculated, which may exhibit poor performance if c is non-numeric. Returns false if the begin value of the range is larger than the end value. Also returns false if one of the internal calls to <=> returns nil (indicating the objects are not comparable).

("a".."z").cover?("c")  #=> true
("a".."z").cover?("5")  #=> false
("a".."z").cover?("cc") #=> true
("a".."z").cover?(1)    #=> false
(1..5).cover?(2..3)     #=> true
(1..5).cover?(0..6)     #=> false
(1..5).cover?(1...6)    #=> true

Overloads:

  • #cover?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #cover?(range) ⇒ Boolean

    Returns:

    • (Boolean)


1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
# File 'range.c', line 1516

static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}

#each {|i| ... } ⇒ Object #eachObject

Iterates over the elements of range, passing each in turn to the block.

The each method can only be used if the begin object of the range supports the succ method. A TypeError is raised if the object does not have succ method defined (like Float).

If no block is given, an enumerator is returned instead.

(10..15).each {|n| print n, ' ' }
# prints: 10 11 12 13 14 15

(2.5..5).each {|n| print n, ' ' }
# raises: TypeError: can't iterate from Float

Overloads:

  • #each {|i| ... } ⇒ Object

    Yields:

    • (i)


841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# File 'range.c', line 841

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i, lim;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
      fixnum_endless:
  i = FIX2LONG(beg);
  while (FIXABLE(i)) {
      rb_yield(LONG2FIX(i++));
  }
  beg = LONG2NUM(i);
      bignum_endless:
  for (;; beg = rb_big_plus(beg, INT2FIX(1)))
      rb_yield(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
      fixnum_loop:
  lim = FIX2LONG(end);
  if (!EXCL(range))
      lim += 1;
  for (i = FIX2LONG(beg); i < lim; i++) {
      rb_yield(LONG2FIX(i));
  }
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
  if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
      if (!FIXNUM_P(beg)) {
    if (RBIGNUM_NEGATIVE_P(beg)) {
        do {
      rb_yield(beg);
        } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
        if (NIL_P(end)) goto fixnum_endless;
        if (FIXNUM_P(end)) goto fixnum_loop;
    }
    else {
        if (NIL_P(end)) goto bignum_endless;
        if (FIXNUM_P(end)) return range;
    }
      }
      if (FIXNUM_P(beg)) {
    i = FIX2LONG(beg);
    do {
        rb_yield(LONG2FIX(i));
    } while (POSFIXABLE(++i));
    beg = LONG2NUM(i);
      }
      ASSUME(!FIXNUM_P(beg));
      ASSUME(!SPECIAL_CONST_P(end));
  }
  if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
      if (EXCL(range)) {
    while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
        rb_yield(beg);
        beg = rb_big_plus(beg, INT2FIX(1));
    }
      }
      else {
    VALUE c;
    while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
        rb_yield(beg);
        if (c == INT2FIX(0)) break;
        beg = rb_big_plus(beg, INT2FIX(1));
    }
      }
  }
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
  beg = rb_sym2str(beg);
  if (NIL_P(end)) {
      rb_str_upto_endless_each(beg, sym_each_i, 0);
  }
  else {
      rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
  }
    }
    else {
  VALUE tmp = rb_check_string_type(beg);

  if (!NIL_P(tmp)) {
      if (!NIL_P(end)) {
    rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
      }
      else {
    rb_str_upto_endless_each(tmp, each_i, 0);
      }
  }
  else {
      if (!discrete_object_p(beg)) {
    rb_raise(rb_eTypeError, "can't iterate from %s",
       rb_obj_classname(beg));
      }
      if (!NIL_P(end))
    range_each_func(range, each_i, 0);
      else
    for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
        rb_yield(beg);
  }
    }
    return range;
}

#endObject

Returns the object that defines the end of the range.

(1..10).end    #=> 10
(1...10).end   #=> 10

Returns:



976
977
978
979
980
# File 'range.c', line 976

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}

#to_aArray #entriesArray

Returns an array containing the items in the range.

(1..7).to_a  #=> [1, 2, 3, 4, 5, 6, 7]
(1..).to_a   #=> RangeError: cannot convert endless range to an array

Overloads:



805
806
807
808
809
810
811
812
# File 'range.c', line 805

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
  rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Range, has equivalent begin and end items (by comparing them with eql?), and has the same #exclude_end? setting as the range.

(0..2).eql?(0..2)            #=> true
(0..2).eql?(Range.new(0,2))  #=> true
(0..2).eql?(0...2)           #=> false

Returns:

  • (Boolean)


198
199
200
201
202
203
204
205
206
# File 'range.c', line 198

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
  return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
  return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}

#exclude_end?Boolean

Returns true if the range excludes its end value.

(1..5).exclude_end?     #=> false
(1...5).exclude_end?    #=> true

Returns:

  • (Boolean)


109
110
111
112
113
# File 'range.c', line 109

static VALUE
range_exclude_end_p(VALUE range)
{
    return EXCL(range) ? Qtrue : Qfalse;
}

#firstObject #first(n) ⇒ Array

Returns the first object in the range, or an array of the first n elements.

(10..20).first     #=> 10
(10..20).first(3)  #=> [10, 11, 12]

Overloads:



1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
# File 'range.c', line 1010

static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}

#hashInteger

Compute a hash-code for this range. Two ranges with equal begin and end points (using eql?), and the same #exclude_end? value will generate the same hash-code.

See also Object#hash.

Returns:



219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# File 'range.c', line 219

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}

#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean

Returns true if obj is an element of the range, false otherwise.

("a".."z").include?("g")   #=> true
("a".."z").include?("A")   #=> false
("a".."z").include?("cc")  #=> false

If you need to ensure obj is between begin and end, use #cover?

("a".."z").cover?("cc")  #=> true

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true

Overloads:

  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


1435
1436
1437
1438
1439
1440
1441
# File 'range.c', line 1435

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 0);
    if (ret != Qundef) return ret;
    return rb_call_super(1, &val);
}

#initialize_copy(orig) ⇒ Object

:nodoc:



91
92
93
94
95
96
97
# File 'range.c', line 91

static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
    range_modify(range);
    rb_struct_init_copy(range, orig);
    return range;
}

#inspectString

Convert this range object to a printable form (using #inspect to convert the begin and end objects).

Returns:



1371
1372
1373
1374
1375
# File 'range.c', line 1371

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}

#lastObject #last(n) ⇒ Array

Returns the last object in the range, or an array of the last n elements.

Note that with no arguments last will return the object that defines the end of the range even if #exclude_end? is true.

(10..20).last      #=> 20
(10...20).last     #=> 20
(10..20).last(3)   #=> [18, 19, 20]
(10...20).last(3)  #=> [17, 18, 19]

Overloads:



1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
# File 'range.c', line 1098

static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object

Returns the maximum value in the range. Returns nil if the begin value of the range larger than the end value. Returns nil if the begin value of an exclusive range is equal to the end value.

Can be given an optional block to override the default comparison method a <=> b.

(10..20).max    #=> 20

Overloads:



1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
# File 'range.c', line 1181

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
  rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(RANGE_BEG(range))) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        struct cmp_opt_data cmp_opt = { 0, 0 };
        VALUE b = RANGE_BEG(range);
        int c = OPTIMIZED_CMP(b, e, cmp_opt);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}

#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean

Returns true if obj is an element of the range, false otherwise.

("a".."z").include?("g")   #=> true
("a".."z").include?("A")   #=> false
("a".."z").include?("cc")  #=> false

If you need to ensure obj is between begin and end, use #cover?

("a".."z").cover?("cc")  #=> true

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true

Overloads:

  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


1435
1436
1437
1438
1439
1440
1441
# File 'range.c', line 1435

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 0);
    if (ret != Qundef) return ret;
    return rb_call_super(1, &val);
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array

Returns the minimum value in the range. Returns nil if the begin value of the range is larger than the end value. Returns nil if the begin value of an exclusive range is equal to the end value.

Can be given an optional block to override the default comparison method a <=> b.

(10..20).min    #=> 10

Overloads:



1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
# File 'range.c', line 1136

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
  rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
  return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
  return range_first(argc, argv, range);
    }
    else {
  struct cmp_opt_data cmp_opt = { 0, 0 };
  VALUE b = RANGE_BEG(range);
  VALUE e = RANGE_END(range);
  int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt);

  if (c > 0 || (c == 0 && EXCL(range)))
      return Qnil;
  return b;
    }
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a two element array which contains the minimum and the maximum value in the range.

Can be given an optional block to override the default comparison method a <=> b.

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



1233
1234
1235
1236
1237
1238
1239
1240
# File 'range.c', line 1233

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(range_min(0, NULL, range), range_max(0, NULL, range));
}

#sizeNumeric

Returns the number of elements in the range. Both the begin and the end of the Range must be Numeric, otherwise nil is returned.

(10..20).size    #=> 11
('a'..'z').size  #=> nil
(-Float::INFINITY..Float::INFINITY).size #=> Infinity

Returns:



775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
# File 'range.c', line 775

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);
    if (rb_obj_is_kind_of(b, rb_cNumeric)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
      return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }
    else if (NIL_P(b)) {
        return DBL2NUM(HUGE_VAL);
    }

    return Qnil;
}

#step(n = 1) {|obj| ... } ⇒ Object #step(n = 1) ⇒ Object #step(n = 1) ⇒ Object #%(n) ⇒ Object #%(n) ⇒ Object

Iterates over the range, passing each nth element to the block. If begin and end are numeric, n is added for each iteration. Otherwise #step invokes #succ to iterate through range elements.

If no block is given, an enumerator is returned instead. Especially, the enumerator is an Enumerator::ArithmeticSequence if begin and end of the range are numeric.

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}

produces:

 1 x
 3 xxx
 5 xxxxx
 7 xxxxxxx
 9 xxxxxxxxx

 1 x
 4 xxxx
 7 xxxxxxx
10 xxxxxxxxxx

See Range for the definition of class Xs.

Overloads:

  • #step(n = 1) {|obj| ... } ⇒ Object

    Yields:

    • (obj)


390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# File 'range.c', line 390

static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, step, tmp;

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]);

    if (!rb_block_given_p()) {
        const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
        const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
        if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
    }

    step = check_step_domain(step);

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
  long i = FIX2LONG(b), unit = FIX2LONG(step);
  do {
      rb_yield(LONG2FIX(i));
      i += unit;          /* FIXABLE+FIXABLE never overflow */
  } while (FIXABLE(i));
  b = LONG2NUM(i);

  for (;; b = rb_big_plus(b, step))
      rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
  long end = FIX2LONG(e);
  long i, unit = FIX2LONG(step);

  if (!EXCL(range))
      end += 1;
  i = FIX2LONG(b);
  while (i < end) {
      rb_yield(LONG2NUM(i));
      if (i + unit < i) break;
      i += unit;
  }

    }
    else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */
  VALUE iter[2];
  iter[0] = INT2FIX(1);
  iter[1] = step;

  b = rb_sym2str(b);
  if (NIL_P(e)) {
      rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter);
  }
  else {
      rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
  }
    }
    else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) {
  /* done */
    }
    else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
       !NIL_P(rb_check_to_integer(b, "to_int")) ||
       !NIL_P(rb_check_to_integer(e, "to_int"))) {
  ID op = EXCL(range) ? '<' : idLE;
  VALUE v = b;
  int i = 0;

  while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) {
      rb_yield(v);
      i++;
      v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
  }
    }
    else {
  tmp = rb_check_string_type(b);

  if (!NIL_P(tmp)) {
      VALUE iter[2];

      b = tmp;
      iter[0] = INT2FIX(1);
      iter[1] = step;

      if (NIL_P(e)) {
    rb_str_upto_endless_each(b, step_i, (VALUE)iter);
      }
      else {
    rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter);
      }
  }
  else {
      VALUE args[2];

      if (!discrete_object_p(b)) {
    rb_raise(rb_eTypeError, "can't iterate from %s",
       rb_obj_classname(b));
      }
      args[0] = INT2FIX(1);
      args[1] = step;
      range_each_func(range, step_i, (VALUE)args);
  }
    }
    return range;
}

#to_aArray #entriesArray

Returns an array containing the items in the range.

(1..7).to_a  #=> [1, 2, 3, 4, 5, 6, 7]
(1..).to_a   #=> RangeError: cannot convert endless range to an array

Overloads:



805
806
807
808
809
810
811
812
# File 'range.c', line 805

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
  rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#to_sString

Convert this range object to a printable form (using #to_s to convert the begin and end objects).

Returns:



1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
# File 'range.c', line 1325

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}