Module: Process

Defined in:
process.c,
process.c

Overview

The module contains several groups of functionality for handling OS processes:

  • Low-level property introspection and management of the current process, like Process.argv0, Process.pid;

  • Low-level introspection of other processes, like Process.getpgid, Process.getpriority;

  • Management of the current process: Process.abort, Process.exit, Process.daemon, etc. (for convenience, most of those are also available as global functions and module functions of Kernel);

  • Creation and management of child processes: Process.fork, Process.spawn, and related methods;

  • Management of low-level system clock: Process.times and Process.clock_gettime, which could be important for proper benchmarking and other elapsed time measurement tasks.

Defined Under Namespace

Modules: GID, Sys, UID Classes: Status, Waiter

Constant Summary collapse

WNOHANG =

see Process.wait

INT2FIX(0)
WUNTRACED =

see Process.wait

INT2FIX(0)
PRIO_PROCESS =

see Process.setpriority

INT2FIX(PRIO_PROCESS)
PRIO_PGRP =

see Process.setpriority

INT2FIX(PRIO_PGRP)
PRIO_USER =

see Process.setpriority

INT2FIX(PRIO_USER)
RLIM_SAVED_MAX =

see Process.setrlimit

v
RLIM_INFINITY =

see Process.setrlimit

inf
RLIM_SAVED_CUR =

see Process.setrlimit

v
RLIMIT_AS =

Maximum size of the process’s virtual memory (address space) in bytes.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_AS)
RLIMIT_CORE =

Maximum size of the core file.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_CORE)
RLIMIT_CPU =

CPU time limit in seconds.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_CPU)
RLIMIT_DATA =

Maximum size of the process’s data segment.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_DATA)
RLIMIT_FSIZE =

Maximum size of files that the process may create.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_FSIZE)
RLIMIT_MEMLOCK =

Maximum number of bytes of memory that may be locked into RAM.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_MEMLOCK)
RLIMIT_MSGQUEUE =

Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_MSGQUEUE)
RLIMIT_NICE =

Specifies a ceiling to which the process’s nice value can be raised.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NICE)
RLIMIT_NOFILE =

Specifies a value one greater than the maximum file descriptor number that can be opened by this process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NOFILE)
RLIMIT_NPROC =

The maximum number of processes that can be created for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NPROC)
RLIMIT_RSS =

Specifies the limit (in pages) of the process’s resident set.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RSS)
RLIMIT_RTPRIO =

Specifies a ceiling on the real-time priority that may be set for this process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RTPRIO)
RLIMIT_RTTIME =

Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RTTIME)
RLIMIT_SBSIZE =

Maximum size of the socket buffer.

INT2FIX(RLIMIT_SBSIZE)
RLIMIT_SIGPENDING =

Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_SIGPENDING)
RLIMIT_STACK =

Maximum size of the stack, in bytes.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_STACK)
CLOCK_REALTIME =

see Process.clock_gettime

RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
CLOCK_MONOTONIC =

see Process.clock_gettime

RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
CLOCK_PROCESS_CPUTIME_ID =

see Process.clock_gettime

RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
CLOCK_THREAD_CPUTIME_ID =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)
CLOCK_VIRTUAL =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_VIRTUAL)
CLOCK_PROF =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_PROF)
CLOCK_REALTIME_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_FAST)
CLOCK_REALTIME_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_PRECISE)
CLOCK_REALTIME_COARSE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_COARSE)
CLOCK_REALTIME_ALARM =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_ALARM)
CLOCK_MONOTONIC_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_FAST)
CLOCK_MONOTONIC_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)
CLOCK_MONOTONIC_RAW =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_RAW)
CLOCK_MONOTONIC_RAW_APPROX =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_RAW_APPROX)
CLOCK_MONOTONIC_COARSE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)
CLOCK_BOOTTIME =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_BOOTTIME)
CLOCK_BOOTTIME_ALARM =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)
CLOCK_UPTIME =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME)
CLOCK_UPTIME_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_FAST)
CLOCK_UPTIME_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_PRECISE)
CLOCK_UPTIME_RAW =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_RAW)
CLOCK_UPTIME_RAW_APPROX =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_RAW_APPROX)
CLOCK_SECOND =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_SECOND)
CLOCK_TAI =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_TAI)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.abort(*a, _) ⇒ Object



4301
4302
4303
4304
4305
# File 'process.c', line 4301

static VALUE
f_abort(int c, const VALUE *a, VALUE _)
{
    return rb_f_abort(c, a);
}

.argv0Object

Returns the name of the script being executed. The value is not affected by assigning a new value to $0.

This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.



2211
2212
2213
2214
2215
# File 'ruby.c', line 2211

static VALUE
proc_argv0(VALUE process)
{
    return rb_orig_progname;
}

.clock_getres(clock_id[, unit]) ⇒ Numeric

Returns the time resolution returned by POSIX clock_getres() function.

clock_id specifies a kind of clock. See the document of Process.clock_gettime for details.

clock_id can be a symbol as Process.clock_gettime. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value. Process.clock_getres accepts unit as Process.clock_gettime. The default value, :float_second, is also same as Process.clock_gettime.

Process.clock_getres also accepts :hertz as unit. :hertz means a the reciprocal of :float_second.

:hertz can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.

Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.

Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.

p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09

Returns:



7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
# File 'process.c', line 7966

static VALUE
rb_clock_getres(int argc, VALUE *argv, VALUE _)
{
    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            tt.giga_count = 1;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }
#endif

#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
      const mach_timebase_info_data_t *info = get_mach_timebase_info();
            tt.count = 1;
            tt.giga_count = 0;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETRES)
        struct timespec ts;
        clockid_t c = NUM2CLOCKID(clk_id);
        int ret = clock_getres(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_getres");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_getres behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    if (unit == ID2SYM(id_hertz)) {
        return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
    }
    else {
        return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
    }
}

.clock_gettime(clock_id[, unit]) ⇒ Numeric

Returns a time returned by POSIX clock_gettime() function.

p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096

clock_id specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_ such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.

The supported constants depends on OS and version. Ruby provides following types of clock_id if available.

CLOCK_REALTIME

SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12

CLOCK_MONOTONIC

SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12

CLOCK_PROCESS_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12

CLOCK_THREAD_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12

CLOCK_VIRTUAL

FreeBSD 3.0, OpenBSD 2.1

CLOCK_PROF

FreeBSD 3.0, OpenBSD 2.1

CLOCK_REALTIME_FAST

FreeBSD 8.1

CLOCK_REALTIME_PRECISE

FreeBSD 8.1

CLOCK_REALTIME_COARSE

Linux 2.6.32

CLOCK_REALTIME_ALARM

Linux 3.0

CLOCK_MONOTONIC_FAST

FreeBSD 8.1

CLOCK_MONOTONIC_PRECISE

FreeBSD 8.1

CLOCK_MONOTONIC_COARSE

Linux 2.6.32

CLOCK_MONOTONIC_RAW

Linux 2.6.28, macOS 10.12

CLOCK_MONOTONIC_RAW_APPROX

macOS 10.12

CLOCK_BOOTTIME

Linux 2.6.39

CLOCK_BOOTTIME_ALARM

Linux 3.0

CLOCK_UPTIME

FreeBSD 7.0, OpenBSD 5.5

CLOCK_UPTIME_FAST

FreeBSD 8.1

CLOCK_UPTIME_RAW

macOS 10.12

CLOCK_UPTIME_RAW_APPROX

macOS 10.12

CLOCK_UPTIME_PRECISE

FreeBSD 8.1

CLOCK_SECOND

FreeBSD 8.1

CLOCK_TAI

Linux 3.10

Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.

Also, several symbols are accepted as clock_id. There are emulations for clock_gettime().

For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME when clock_gettime() is not available.

Emulations for CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME

Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.

:TIME_BASED_CLOCK_REALTIME

Use time() defined by ISO C. The resolution is 1 second.

Emulations for CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC

Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.

:TIMES_BASED_CLOCK_MONOTONIC

Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.

Emulations for CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID

Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID

Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID

Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value.

:float_second

number of seconds as a float (default)

:float_millisecond

number of milliseconds as a float

:float_microsecond

number of microseconds as a float

:second

number of seconds as an integer

:millisecond

number of milliseconds as an integer

:microsecond

number of microseconds as an integer

:nanosecond

number of nanoseconds as an integer

The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds as the unit.

The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.

The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.

Returns:



7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
# File 'process.c', line 7769

static VALUE
rb_clock_gettime(int argc, VALUE *argv, VALUE _)
{
    int ret;

    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
        /*
         * Non-clock_gettime clocks are provided by symbol clk_id.
         */
#ifdef HAVE_GETTIMEOFDAY
        /*
         * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
         * CLOCK_REALTIME if clock_gettime is not available.
         */
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            struct timeval tv;
            ret = gettimeofday(&tv, 0);
            if (ret != 0)
                rb_sys_fail("gettimeofday");
            tt.giga_count = tv.tv_sec;
            tt.count = (int32_t)tv.tv_usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            time_t t;
            t = time(NULL);
            if (t == (time_t)-1)
                rb_sys_fail("time");
            tt.giga_count = t;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC          ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            struct tms buf;
            clock_t c;
            unsigned_clock_t uc;
            c = times(&buf);
            if (c ==  (clock_t)-1)
                rb_sys_fail("times");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = (uc / 1000000000);
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct rusage usage;
            int32_t usec;
            ret = getrusage(RUSAGE_SELF, &usage);
            if (ret != 0)
                rb_sys_fail("getrusage");
            tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
            usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
            if (1000000 <= usec) {
                tt.giga_count++;
                usec -= 1000000;
            }
            tt.count = usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct tms buf;
            unsigned_clock_t utime, stime;
            if (times(&buf) ==  (clock_t)-1)
                rb_sys_fail("times");
            utime = (unsigned_clock_t)buf.tms_utime;
            stime = (unsigned_clock_t)buf.tms_stime;
            tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
            tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
            if (1000000000 <= tt.count) {
                tt.count -= 1000000000;
                tt.giga_count++;
            }
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            clock_t c;
            unsigned_clock_t uc;
            errno = 0;
            c = clock();
            if (c == (clock_t)-1)
                rb_sys_fail("clock");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = uc / 1000000000;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }

#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
      const mach_timebase_info_data_t *info = get_mach_timebase_info();
            uint64_t t = mach_absolute_time();
            tt.count = (int32_t)(t % 1000000000);
            tt.giga_count = t / 1000000000;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETTIME)
        struct timespec ts;
        clockid_t c;
        c = NUM2CLOCKID(clk_id);
        ret = clock_gettime(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_gettime");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}

.daemon0 .daemon(nochdir = nil, noclose = nil) ⇒ 0

Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.

Overloads:

  • .daemon0

    Returns:

    • (0)
  • .daemon(nochdir = nil, noclose = nil) ⇒ 0

    Returns:

    • (0)


6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
# File 'process.c', line 6508

static VALUE
proc_daemon(int argc, VALUE *argv, VALUE _)
{
    int n, nochdir = FALSE, noclose = FALSE;

    switch (rb_check_arity(argc, 0, 2)) {
      case 2: noclose = TO_BOOL(argv[1], "noclose");
      case 1: nochdir = TO_BOOL(argv[0], "nochdir");
    }

    prefork();
    n = rb_daemon(nochdir, noclose);
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
}

.detach(pid) ⇒ Object

Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()). If the parent never collects this status, the child stays around as a zombie process. Process::detach prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use #detach only when you do not intend to explicitly wait for the child to terminate.

The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join to know the result. If specified pid is not a valid child process ID, the thread returns nil immediately.

The waiting thread has #pid method which returns the pid.

In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

produces:

27389 Z

In the next example, Process::detach is used to reap the child automatically.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

(produces no output)



1478
1479
1480
1481
1482
# File 'process.c', line 1478

static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    return rb_detach_process(NUM2PIDT(pid));
}

.egidInteger .Process::GID.eidInteger .Process::Sys.geteidInteger

Returns the effective group ID for this process. Not available on all platforms.

Process.egid   #=> 500

Overloads:



6900
6901
6902
6903
6904
6905
6906
# File 'process.c', line 6900

static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();

    return GIDT2NUM(egid);
}

.egid=Object

.euidInteger .Process::UID.eidInteger .Process::Sys.geteuidInteger

Returns the effective user ID for this process.

Process.euid   #=> 501

Overloads:



6776
6777
6778
6779
6780
6781
# File 'process.c', line 6776

static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}

.euid=(user) ⇒ Object

Sets the effective user ID for this process. Not available on all platforms.



6815
6816
6817
6818
6819
6820
6821
# File 'process.c', line 6815

static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
    check_uid_switch();
    proc_seteuid(OBJ2UID(euid));
    return euid;
}

.exec([env,][,options]) ⇒ Object

Replaces the current process by running the given external command, which can take one of the following forms:

exec(commandline)

command line string which is passed to the standard shell

exec(cmdname, arg1, ...)

command name and one or more arguments (no shell)

exec([cmdname, argv0], arg1, ...)

command name, argv and zero or more arguments (no shell)

In the first form, the string is taken as a command line that is subject to shell expansion before being executed.

The standard shell always means "/bin/sh" on Unix-like systems, same as ENV["RUBYSHELL"] (or ENV["COMSPEC"] on Windows NT series), and similar.

If the string from the first form (exec("command")) follows these simple rules:

  • no meta characters

  • no shell reserved word and no special built-in

  • Ruby invokes the command directly without shell

You can force shell invocation by adding “;” to the string (because “;” is a meta character).

Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.

In the second form (exec("command1", "arg1", ...)), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.

In the third form (exec(["command", "argv0"], "arg1", ...)), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0] value, which may show up in process listings.

In order to execute the command, one of the exec(2) system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).

This behavior is modified by the given env and options parameters. See ::spawn for details.

If the command fails to execute (typically Errno::ENOENT when it was not found) a SystemCallError exception is raised.

This method modifies process attributes according to given options before exec(2) system call. See ::spawn for more details about the given options.

The modified attributes may be retained when exec(2) system call fails.

For example, hard resource limits are not restorable.

Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.

exec "echo *"       # echoes list of files in current directory
# never get here

exec "echo", "*"    # echoes an asterisk
# never get here


2979
2980
2981
2982
2983
# File 'process.c', line 2979

static VALUE
f_exec(int c, const VALUE *a, VALUE _)
{
    return rb_f_exec(c, a);
}

.exit(status = true) ⇒ Object .Kernel::exit(status = true) ⇒ Object .Process::exit(status = true) ⇒ Object

Initiates the termination of the Ruby script by raising the SystemExit exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true and FALSE of status means success and failure respectively. The interpretation of other integer values are system dependent.

begin
  exit
  puts "never get here"
rescue SystemExit
  puts "rescued a SystemExit exception"
end
puts "after begin block"

produces:

rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string",  proc { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer


4259
4260
4261
4262
4263
# File 'process.c', line 4259

static VALUE
f_exit(int c, const VALUE *a, VALUE _)
{
    return rb_f_exit(c, a);
}

.exit!(status = false) ⇒ Object

Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.

Process.exit!(true)


4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
# File 'process.c', line 4173

static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    int istatus;

    if (rb_check_arity(argc, 0, 1) == 1) {
  istatus = exit_status_code(argv[0]);
    }
    else {
  istatus = EXIT_FAILURE;
    }
    _exit(istatus);

    UNREACHABLE_RETURN(Qnil);
}

.forkObject

.getpgid(pid) ⇒ Integer

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid())   #=> 25527

Returns:



4959
4960
4961
4962
4963
4964
4965
4966
4967
# File 'process.c', line 4959

static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
    rb_pid_t i;

    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
}

.getpgrpInteger

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0)   #=> 25527
Process.getpgrp      #=> 25527

Returns:



4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
# File 'process.c', line 4900

static VALUE
proc_getpgrp(VALUE _)
{
    rb_pid_t pgrp;

#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#endif
}

.getpriority(kind, integer) ⇒ Integer

Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PROCESS. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0)      #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)   #=> 19

Returns:



5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
# File 'process.c', line 5105

static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
    int prio, iwhich, iwho;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);

    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
}

.getrlimit(resource) ⇒ Array

Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. See Process.setrlimit for details.

cur_limit and max_limit may be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See Process.setrlimit and the system getrlimit(2) manual for details.

Returns:



5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
# File 'process.c', line 5396

static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
    struct rlimit rlim;

    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
  rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}

.getsidInteger .getsid(pid) ⇒ Integer

Returns the session ID for the given process id. If not given, return current process sid. Not available on all platforms.

Process.getsid()                #=> 27422
Process.getsid(0)               #=> 27422
Process.getsid(Process.pid())   #=> 27422

Overloads:



5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
# File 'process.c', line 5011

static VALUE
proc_getsid(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t sid;
    rb_pid_t pid = 0;

    if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
  pid = NUM2PIDT(argv[0]);

    sid = getsid(pid);
    if (sid < 0) rb_sys_fail(0);
    return PIDT2NUM(sid);
}

.gidInteger .Process::GID.ridInteger .Process::Sys.getgidInteger

Returns the (real) group ID for this process.

Process.gid   #=> 500

Overloads:



6210
6211
6212
6213
6214
6215
# File 'process.c', line 6210

static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}

.gid=(integer) ⇒ Integer

Sets the group ID for this process.

Returns:



6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
# File 'process.c', line 6226

static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
  if (getegid() == gid) {
      if (setgid(gid) < 0) rb_sys_fail(0);
  }
  else {
      rb_notimplement();
  }
    }
#endif
    return GIDT2NUM(gid);
}

.groupsArray

Get an Array of the group IDs in the supplemental group access list for this process.

Process.groups   #=> [27, 6, 10, 11]

Note that this method is just a wrapper of getgroups(2). This means that the following characteristics of the result completely depend on your system:

  • the result is sorted

  • the result includes effective GIDs

  • the result does not include duplicated GIDs

You can make sure to get a sorted unique GID list of the current process by this expression:

Process.groups.uniq.sort

Returns:



6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
# File 'process.c', line 6330

static VALUE
proc_getgroups(VALUE obj)
{
    VALUE ary, tmp;
    int i, ngroups;
    rb_gid_t *groups;

    ngroups = getgroups(0, NULL);
    if (ngroups == -1)
  rb_sys_fail(0);

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    ngroups = getgroups(ngroups, groups);
    if (ngroups == -1)
  rb_sys_fail(0);

    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
  rb_ary_push(ary, GIDT2NUM(groups[i]));

    ALLOCV_END(tmp);

    return ary;
}

.groups=(array) ⇒ Array

Set the supplemental group access list to the given Array of group IDs.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.groups = [27, 6, 10, 11]   #=> [27, 6, 10, 11]
Process.groups   #=> [27, 6, 10, 11]

Returns:



6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
# File 'process.c', line 6374

static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
    int ngroups, i;
    rb_gid_t *groups;
    VALUE tmp;
    PREPARE_GETGRNAM;

    Check_Type(ary, T_ARRAY);

    ngroups = RARRAY_LENINT(ary);
    if (ngroups > maxgroups())
  rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    for (i = 0; i < ngroups; i++) {
  VALUE g = RARRAY_AREF(ary, i);

  groups[i] = OBJ2GID1(g);
    }
    FINISH_GETGRNAM;

    if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
  rb_sys_fail(0);

    ALLOCV_END(tmp);

    return proc_getgroups(obj);
}

.initgroups(username, gid) ⇒ Array

Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array of the gids of all the groups in the supplementary group access list. Not available on all platforms.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 )   #=> [30, 6, 10, 11]
Process.groups   #=> [30, 6, 10, 11]

Returns:



6427
6428
6429
6430
6431
6432
6433
6434
# File 'process.c', line 6427

static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
    if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) {
  rb_sys_fail(0);
    }
    return proc_getgroups(obj);
}

.kill(signal, pid, ...) ⇒ Integer

Sends the given signal to the specified process id(s) if pid is positive. If pid is zero, signal is sent to all processes whose group ID is equal to the group ID of the process. If pid is negative, results are dependent on the operating system. signal may be an integer signal number or a POSIX signal name (either with or without a SIG prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list are known signal names and numbers, respectively.

pid = fork do
   Signal.trap("HUP") { puts "Ouch!"; exit }
   # ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait

produces:

Ouch!

If signal is an integer but wrong for signal, Errno::EINVAL or RangeError will be raised. Otherwise unless signal is a String or a Symbol, and a known signal name, ArgumentError will be raised.

Also, Errno::ESRCH or RangeError for invalid pid, Errno::EPERM when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.

Returns:



8118
8119
8120
8121
8122
# File 'process.c', line 8118

static VALUE
proc_rb_f_kill(int c, const VALUE *v, VALUE _)
{
    return rb_f_kill(c, v);
}

.last_statusProcess::Status?

Returns the status of the last executed child process in the current thread.

Process.wait Process.spawn("ruby", "-e", "exit 13")
Process.last_status   #=> #<Process::Status: pid 4825 exit 13>

If no child process has ever been executed in the current thread, this returns nil.

Process.last_status   #=> nil

Returns:



538
539
540
541
542
# File 'process.c', line 538

static VALUE
proc_s_last_status(VALUE mod)
{
    return rb_last_status_get();
}

.maxgroupsInteger

Returns the maximum number of gids allowed in the supplemental group access list.

Process.maxgroups   #=> 32

Returns:



6450
6451
6452
6453
6454
# File 'process.c', line 6450

static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups());
}

.maxgroups=(integer) ⇒ Integer

Sets the maximum number of gids allowed in the supplemental group access list.

Returns:



6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
# File 'process.c', line 6468

static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    int ngroups = FIX2INT(val);
    int ngroups_max = get_sc_ngroups_max();

    if (ngroups <= 0)
  rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups);

    if (ngroups > RB_MAX_GROUPS)
  ngroups = RB_MAX_GROUPS;

    if (ngroups_max > 0 && ngroups > ngroups_max)
  ngroups = ngroups_max;

    _maxgroups = ngroups;

    return INT2FIX(_maxgroups);
}

.pidInteger

Returns the process id of this process. Not available on all platforms.

Process.pid   #=> 27415

Returns:



450
451
452
453
454
# File 'process.c', line 450

static VALUE
proc_get_pid(VALUE _)
{
    return get_pid();
}

.ppidInteger

Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27417
Dad is 27417

Returns:



478
479
480
481
482
# File 'process.c', line 478

static VALUE
proc_get_ppid(VALUE _)
{
    return get_ppid();
}

.setpgid(pid, integer) ⇒ 0

Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.

Returns:

  • (0)


4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
# File 'process.c', line 4982

static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
    rb_pid_t ipid, ipgrp;

    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);

    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
}

.setpgrp0

Equivalent to setpgid(0,0). Not available on all platforms.

Returns:

  • (0)


4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
# File 'process.c', line 4929

static VALUE
proc_setpgrp(VALUE _)
{
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#endif
    return INT2FIX(0);
}

.setpriority(kind, integer, priority) ⇒ 0

See Process.getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19)      #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19)   #=> 0
Process.getpriority(Process::PRIO_USER, 0)          #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)       #=> 19

Returns:

  • (0)


5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
# File 'process.c', line 5136

static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
    int iwhich, iwho, iprio;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);

    if (setpriority(iwhich, iwho, iprio) < 0)
  rb_sys_fail(0);
    return INT2FIX(0);
}

.setproctitle(string) ⇒ String

Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.

Calling this method does not affect the value of $0.

Process.setproctitle('myapp: worker #%d' % worker_id)

This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.

Returns:



2236
2237
2238
2239
2240
# File 'ruby.c', line 2236

static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
    return ruby_setproctitle(title);
}

.setrlimit(resource, cur_limit, max_limit) ⇒ nil .setrlimit(resource, cur_limit) ⇒ nil

Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

If max_limit is not given, cur_limit is used.

resource indicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process’s nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process’s real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limit and max_limit may be :INFINITY, "INFINITY" or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Overloads:

  • .setrlimit(resource, cur_limit, max_limit) ⇒ nil

    Returns:

    • (nil)
  • .setrlimit(resource, cur_limit) ⇒ nil

    Returns:

    • (nil)


5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
# File 'process.c', line 5462

static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;

    rb_check_arity(argc, 2, 3);
    resource = argv[0];
    rlim_cur = argv[1];
    if (argc < 3 || NIL_P(rlim_max = argv[2]))
        rlim_max = rlim_cur;

    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);

    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
  rb_sys_fail("setrlimit");
    }
    return Qnil;
}

.setsidInteger

Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.

Process.setsid   #=> 27422

Returns:



5045
5046
5047
5048
5049
5050
5051
5052
5053
# File 'process.c', line 5045

static VALUE
proc_setsid(VALUE _)
{
    rb_pid_t pid;

    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
}

.spawn([env,][,options]) ⇒ Object .spawn([env,][,options]) ⇒ Object

spawn executes specified command and return its pid.

pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid

pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid

This method is similar to Kernel#system but it doesn’t wait for the command to finish.

The parent process should use Process.wait to collect the termination status of its child or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

spawn has bunch of options to specify process attributes:

env: hash
  name => val : set the environment variable
  name => nil : unset the environment variable

  the keys and the values except for +nil+ must be strings.
command...:
  commandline                 : command line string which is passed to the standard shell
  cmdname, arg1, ...          : command name and one or more arguments (This form does not use the shell. See below for caveats.)
  [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
  clearing environment variables:
    :unsetenv_others => true   : clear environment variables except specified by env
    :unsetenv_others => false  : don't clear (default)
  process group:
    :pgroup => true or 0 : make a new process group
    :pgroup => pgid      : join the specified process group
    :pgroup => nil       : don't change the process group (default)
  create new process group: Windows only
    :new_pgroup => true  : the new process is the root process of a new process group
    :new_pgroup => false : don't create a new process group (default)
  resource limit: resourcename is core, cpu, data, etc.  See Process.setrlimit.
    :rlimit_resourcename => limit
    :rlimit_resourcename => [cur_limit, max_limit]
  umask:
    :umask => int
  redirection:
    key:
      FD              : single file descriptor in child process
      [FD, FD, ...]   : multiple file descriptor in child process
    value:
      FD                        : redirect to the file descriptor in parent process
      string                    : redirect to file with open(string, "r" or "w")
      [string]                  : redirect to file with open(string, File::RDONLY)
      [string, open_mode]       : redirect to file with open(string, open_mode, 0644)
      [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
      [:child, FD]              : redirect to the redirected file descriptor
      :close                    : close the file descriptor in child process
    FD is one of follows
      :in     : the file descriptor 0 which is the standard input
      :out    : the file descriptor 1 which is the standard output
      :err    : the file descriptor 2 which is the standard error
      integer : the file descriptor of specified the integer
      io      : the file descriptor specified as io.fileno
  file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
    :close_others => false  : inherit
  current directory:
    :chdir => str

The cmdname, arg1, ... form does not use the shell. However, on different OSes, different things are provided as built-in commands. An example of this is ‘echo’, which is a built-in on Windows, but is a normal program on Linux and Mac OS X. This means that Process.spawn 'echo', '%Path%' will display the contents of the %Path% environment variable on Windows, but Process.spawn 'echo', '$PATH' prints the literal $PATH.

If a hash is given as env, the environment is updated by env before exec(2) in the child process. If a pair in env has nil as the value, the variable is deleted.

# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)

If a hash is given as options, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.

The :unsetenv_others key in options specifies to clear environment variables, other than specified by env.

pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only

The :pgroup key in options specifies a process group. The corresponding value should be true, zero, a positive integer, or nil. true and zero cause the process to be a process leader of a new process group. A non-zero positive integer causes the process to join the provided process group. The default value, nil, causes the process to remain in the same process group.

pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10

The :new_pgroup key in options specifies to pass CREATE_NEW_PROCESS_GROUP flag to CreateProcessW() that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid) on the subprocess. :new_pgroup is false by default.

pid = spawn(command, :new_pgroup=>true)  # new process group
pid = spawn(command, :new_pgroup=>false) # same process group

The :rlimit_foo key specifies a resource limit. foo should be one of resource types such as core. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.

cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.

The :umask key in options specifies the umask.

pid = spawn(command, :umask=>077)

The :in, :out, :err, an integer, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.

For example, stderr can be merged into stdout as follows:

pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)

The hash keys specifies a file descriptor in the child process started by #spawn. :err, 2 and STDERR specifies the standard error stream (stderr).

The hash values specifies a file descriptor in the parent process which invokes #spawn. :out, 1 and STDOUT specifies the standard output stream (stdout).

In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.

The standard input stream (stdin) can be specified by :in, 0 and STDIN.

A filename can be specified as a hash value.

pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode

For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.

For specifying flags and permission of file creation explicitly, an array is used instead.

pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])

The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.

If an array of IOs and integers are specified as a hash key, all the elements are redirected.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])

Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])

[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.

io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"

The :chdir key in options specifies the current directory.

pid = spawn(command, :chdir=>"/var/tmp")

spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.

pid = spawn(command, :close_others=>true)  # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...

:close_others is false by default for spawn and IO.popen.

Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.

So IO.pipe and spawn can be used as IO.popen.

# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w)   # r, w is closed in the child process.
w.close

:close is specified as a hash value to close a fd individually.

f = open(foo)
system(command, f=>:close)        # don't inherit f.

If a file descriptor need to be inherited, io=>io can be used.

# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read

It is also possible to exchange file descriptors.

pid = spawn(command, :out=>:err, :err=>:out)

The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn uses an extra file descriptor to resolve such cyclic file descriptor mapping.

See Kernel.exec for the standard shell.



4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
# File 'process.c', line 4824

static VALUE
rb_f_spawn(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t pid;
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;

    execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
    eargp = rb_execarg_get(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

    pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg));

    if (pid == -1) {
  int err = errno;
  rb_exec_fail(eargp, err, errmsg);
  RB_GC_GUARD(execarg_obj);
  rb_syserr_fail_str(err, fail_str);
    }
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}

.timesaProcessTms

Returns a Tms structure (see Process::Tms) that contains user and system CPU times for this process, and also for children processes.

t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ]   #=> [0.0, 0.02, 0.00, 0.00]

Returns:

  • (aProcessTms)


7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
# File 'process.c', line 7397

VALUE
rb_proc_times(VALUE obj)
{
    VALUE utime, stime, cutime, cstime, ret;
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN)
    struct rusage usage_s, usage_c;

    if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0)
  rb_sys_fail("getrusage");
    utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6);
    stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6);
    cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6);
    cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6);
#else
    const double hertz = (double)get_clk_tck();
    struct tms buf;

    times(&buf);
    utime = DBL2NUM(buf.tms_utime / hertz);
    stime = DBL2NUM(buf.tms_stime / hertz);
    cutime = DBL2NUM(buf.tms_cutime / hertz);
    cstime = DBL2NUM(buf.tms_cstime / hertz);
#endif
    ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
    RB_GC_GUARD(utime);
    RB_GC_GUARD(stime);
    RB_GC_GUARD(cutime);
    RB_GC_GUARD(cstime);
    return ret;
}

.uidInteger .Process::UID.ridInteger .Process::Sys.getuidInteger

Returns the (real) user ID of this process.

Process.uid   #=> 501

Overloads:



5807
5808
5809
5810
5811
5812
# File 'process.c', line 5807

static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}

.uid=(user) ⇒ Numeric

Sets the (user) user ID for this process. Not available on all platforms.

Returns:



5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
# File 'process.c', line 5824

static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
  if (geteuid() == uid) {
      if (setuid(uid) < 0) rb_sys_fail(0);
  }
  else {
      rb_notimplement();
  }
    }
#endif
    return id;
}

.waitInteger .wait(pid = -1, flags = 0) ⇒ Integer .waitpid(pid = -1, flags = 0) ⇒ Integer

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1327
1328
1329
1330
1331
# File 'process.c', line 1327

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • .wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • .waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1350
1351
1352
1353
1354
1355
1356
# File 'process.c', line 1350

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

.waitallArray

Waits for all children, returning an array of pid/status pairs (where status is a Process::Status object).

fork { sleep 0.2; exit 2 }   #=> 27432
fork { sleep 0.1; exit 1 }   #=> 27433
fork {            exit 0 }   #=> 27434
p Process.waitall

produces:

[[30982, #<Process::Status: pid 30982 exit 0>],
 [30979, #<Process::Status: pid 30979 exit 1>],
 [30976, #<Process::Status: pid 30976 exit 2>]]

Returns:



1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
# File 'process.c', line 1379

static VALUE
proc_waitall(VALUE _)
{
    VALUE result;
    rb_pid_t pid;
    int status;

    result = rb_ary_new();
    rb_last_status_clear();

    for (pid = -1;;) {
  pid = rb_waitpid(-1, &status, 0);
  if (pid == -1) {
      int e = errno;
      if (e == ECHILD)
    break;
      rb_syserr_fail(e, 0);
  }
  rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}

.waitInteger .wait(pid = -1, flags = 0) ⇒ Integer .waitpid(pid = -1, flags = 0) ⇒ Integer

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1327
1328
1329
1330
1331
# File 'process.c', line 1327

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • .wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • .waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1350
1351
1352
1353
1354
1355
1356
# File 'process.c', line 1350

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

Instance Method Details

#argv0Object (private)

Returns the name of the script being executed. The value is not affected by assigning a new value to $0.

This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.



2211
2212
2213
2214
2215
# File 'ruby.c', line 2211

static VALUE
proc_argv0(VALUE process)
{
    return rb_orig_progname;
}

#clock_getres(clock_id[, unit]) ⇒ Numeric (private)

Returns the time resolution returned by POSIX clock_getres() function.

clock_id specifies a kind of clock. See the document of Process.clock_gettime for details.

clock_id can be a symbol as Process.clock_gettime. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value. Process.clock_getres accepts unit as Process.clock_gettime. The default value, :float_second, is also same as Process.clock_gettime.

Process.clock_getres also accepts :hertz as unit. :hertz means a the reciprocal of :float_second.

:hertz can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.

Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.

Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.

p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09

Returns:



7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
# File 'process.c', line 7966

static VALUE
rb_clock_getres(int argc, VALUE *argv, VALUE _)
{
    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            tt.giga_count = 1;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }
#endif

#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
      const mach_timebase_info_data_t *info = get_mach_timebase_info();
            tt.count = 1;
            tt.giga_count = 0;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETRES)
        struct timespec ts;
        clockid_t c = NUM2CLOCKID(clk_id);
        int ret = clock_getres(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_getres");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_getres behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    if (unit == ID2SYM(id_hertz)) {
        return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
    }
    else {
        return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
    }
}

#clock_gettime(clock_id[, unit]) ⇒ Numeric (private)

Returns a time returned by POSIX clock_gettime() function.

p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096

clock_id specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_ such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.

The supported constants depends on OS and version. Ruby provides following types of clock_id if available.

CLOCK_REALTIME

SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12

CLOCK_MONOTONIC

SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12

CLOCK_PROCESS_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12

CLOCK_THREAD_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12

CLOCK_VIRTUAL

FreeBSD 3.0, OpenBSD 2.1

CLOCK_PROF

FreeBSD 3.0, OpenBSD 2.1

CLOCK_REALTIME_FAST

FreeBSD 8.1

CLOCK_REALTIME_PRECISE

FreeBSD 8.1

CLOCK_REALTIME_COARSE

Linux 2.6.32

CLOCK_REALTIME_ALARM

Linux 3.0

CLOCK_MONOTONIC_FAST

FreeBSD 8.1

CLOCK_MONOTONIC_PRECISE

FreeBSD 8.1

CLOCK_MONOTONIC_COARSE

Linux 2.6.32

CLOCK_MONOTONIC_RAW

Linux 2.6.28, macOS 10.12

CLOCK_MONOTONIC_RAW_APPROX

macOS 10.12

CLOCK_BOOTTIME

Linux 2.6.39

CLOCK_BOOTTIME_ALARM

Linux 3.0

CLOCK_UPTIME

FreeBSD 7.0, OpenBSD 5.5

CLOCK_UPTIME_FAST

FreeBSD 8.1

CLOCK_UPTIME_RAW

macOS 10.12

CLOCK_UPTIME_RAW_APPROX

macOS 10.12

CLOCK_UPTIME_PRECISE

FreeBSD 8.1

CLOCK_SECOND

FreeBSD 8.1

CLOCK_TAI

Linux 3.10

Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.

Also, several symbols are accepted as clock_id. There are emulations for clock_gettime().

For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME when clock_gettime() is not available.

Emulations for CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME

Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.

:TIME_BASED_CLOCK_REALTIME

Use time() defined by ISO C. The resolution is 1 second.

Emulations for CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC

Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.

:TIMES_BASED_CLOCK_MONOTONIC

Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.

Emulations for CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID

Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID

Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID

Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value.

:float_second

number of seconds as a float (default)

:float_millisecond

number of milliseconds as a float

:float_microsecond

number of microseconds as a float

:second

number of seconds as an integer

:millisecond

number of milliseconds as an integer

:microsecond

number of microseconds as an integer

:nanosecond

number of nanoseconds as an integer

The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds as the unit.

The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.

The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.

Returns:



7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
# File 'process.c', line 7769

static VALUE
rb_clock_gettime(int argc, VALUE *argv, VALUE _)
{
    int ret;

    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
        /*
         * Non-clock_gettime clocks are provided by symbol clk_id.
         */
#ifdef HAVE_GETTIMEOFDAY
        /*
         * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
         * CLOCK_REALTIME if clock_gettime is not available.
         */
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            struct timeval tv;
            ret = gettimeofday(&tv, 0);
            if (ret != 0)
                rb_sys_fail("gettimeofday");
            tt.giga_count = tv.tv_sec;
            tt.count = (int32_t)tv.tv_usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            time_t t;
            t = time(NULL);
            if (t == (time_t)-1)
                rb_sys_fail("time");
            tt.giga_count = t;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC          ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            struct tms buf;
            clock_t c;
            unsigned_clock_t uc;
            c = times(&buf);
            if (c ==  (clock_t)-1)
                rb_sys_fail("times");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = (uc / 1000000000);
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct rusage usage;
            int32_t usec;
            ret = getrusage(RUSAGE_SELF, &usage);
            if (ret != 0)
                rb_sys_fail("getrusage");
            tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
            usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
            if (1000000 <= usec) {
                tt.giga_count++;
                usec -= 1000000;
            }
            tt.count = usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct tms buf;
            unsigned_clock_t utime, stime;
            if (times(&buf) ==  (clock_t)-1)
                rb_sys_fail("times");
            utime = (unsigned_clock_t)buf.tms_utime;
            stime = (unsigned_clock_t)buf.tms_stime;
            tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
            tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
            if (1000000000 <= tt.count) {
                tt.count -= 1000000000;
                tt.giga_count++;
            }
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID          ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            clock_t c;
            unsigned_clock_t uc;
            errno = 0;
            c = clock();
            if (c == (clock_t)-1)
                rb_sys_fail("clock");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = uc / 1000000000;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }

#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
      const mach_timebase_info_data_t *info = get_mach_timebase_info();
            uint64_t t = mach_absolute_time();
            tt.count = (int32_t)(t % 1000000000);
            tt.giga_count = t / 1000000000;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETTIME)
        struct timespec ts;
        clockid_t c;
        c = NUM2CLOCKID(clk_id);
        ret = clock_gettime(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_gettime");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}

#daemon0 (private) #daemon(nochdir = nil, noclose = nil) ⇒ 0 (private)

Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.

Overloads:

  • #daemon0

    Returns:

    • (0)
  • #daemon(nochdir = nil, noclose = nil) ⇒ 0

    Returns:

    • (0)


6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
# File 'process.c', line 6508

static VALUE
proc_daemon(int argc, VALUE *argv, VALUE _)
{
    int n, nochdir = FALSE, noclose = FALSE;

    switch (rb_check_arity(argc, 0, 2)) {
      case 2: noclose = TO_BOOL(argv[1], "noclose");
      case 1: nochdir = TO_BOOL(argv[0], "nochdir");
    }

    prefork();
    n = rb_daemon(nochdir, noclose);
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
}

#detach(pid) ⇒ Object (private)

Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()). If the parent never collects this status, the child stays around as a zombie process. Process::detach prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use #detach only when you do not intend to explicitly wait for the child to terminate.

The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join to know the result. If specified pid is not a valid child process ID, the thread returns nil immediately.

The waiting thread has #pid method which returns the pid.

In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

produces:

27389 Z

In the next example, Process::detach is used to reap the child automatically.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

(produces no output)



1478
1479
1480
1481
1482
# File 'process.c', line 1478

static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    return rb_detach_process(NUM2PIDT(pid));
}

#egidInteger (private) #Process::GID.eidInteger (private) #Process::Sys.geteidInteger (private)

Returns the effective group ID for this process. Not available on all platforms.

Process.egid   #=> 500

Overloads:



6900
6901
6902
6903
6904
6905
6906
# File 'process.c', line 6900

static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();

    return GIDT2NUM(egid);
}

#egid=Object (private)

#euidInteger (private) #Process::UID.eidInteger (private) #Process::Sys.geteuidInteger (private)

Returns the effective user ID for this process.

Process.euid   #=> 501

Overloads:



6776
6777
6778
6779
6780
6781
# File 'process.c', line 6776

static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}

#euid=(user) ⇒ Object (private)

Sets the effective user ID for this process. Not available on all platforms.



6815
6816
6817
6818
6819
6820
6821
# File 'process.c', line 6815

static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
    check_uid_switch();
    proc_seteuid(OBJ2UID(euid));
    return euid;
}

#getpgid(pid) ⇒ Integer (private)

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid())   #=> 25527

Returns:



4959
4960
4961
4962
4963
4964
4965
4966
4967
# File 'process.c', line 4959

static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
    rb_pid_t i;

    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
}

#getpgrpInteger (private)

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0)   #=> 25527
Process.getpgrp      #=> 25527

Returns:



4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
# File 'process.c', line 4900

static VALUE
proc_getpgrp(VALUE _)
{
    rb_pid_t pgrp;

#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#endif
}

#getpriority(kind, integer) ⇒ Integer (private)

Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PROCESS. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0)      #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)   #=> 19

Returns:



5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
# File 'process.c', line 5105

static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
    int prio, iwhich, iwho;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);

    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
}

#getrlimit(resource) ⇒ Array (private)

Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. See Process.setrlimit for details.

cur_limit and max_limit may be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See Process.setrlimit and the system getrlimit(2) manual for details.

Returns:



5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
# File 'process.c', line 5396

static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
    struct rlimit rlim;

    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
  rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}

#getsidInteger (private) #getsid(pid) ⇒ Integer (private)

Returns the session ID for the given process id. If not given, return current process sid. Not available on all platforms.

Process.getsid()                #=> 27422
Process.getsid(0)               #=> 27422
Process.getsid(Process.pid())   #=> 27422

Overloads:



5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
# File 'process.c', line 5011

static VALUE
proc_getsid(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t sid;
    rb_pid_t pid = 0;

    if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
  pid = NUM2PIDT(argv[0]);

    sid = getsid(pid);
    if (sid < 0) rb_sys_fail(0);
    return PIDT2NUM(sid);
}

#gidInteger (private) #Process::GID.ridInteger (private) #Process::Sys.getgidInteger (private)

Returns the (real) group ID for this process.

Process.gid   #=> 500

Overloads:



6210
6211
6212
6213
6214
6215
# File 'process.c', line 6210

static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}

#gid=(integer) ⇒ Integer (private)

Sets the group ID for this process.

Returns:



6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
# File 'process.c', line 6226

static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
  if (getegid() == gid) {
      if (setgid(gid) < 0) rb_sys_fail(0);
  }
  else {
      rb_notimplement();
  }
    }
#endif
    return GIDT2NUM(gid);
}

#groupsArray (private)

Get an Array of the group IDs in the supplemental group access list for this process.

Process.groups   #=> [27, 6, 10, 11]

Note that this method is just a wrapper of getgroups(2). This means that the following characteristics of the result completely depend on your system:

  • the result is sorted

  • the result includes effective GIDs

  • the result does not include duplicated GIDs

You can make sure to get a sorted unique GID list of the current process by this expression:

Process.groups.uniq.sort

Returns:



6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
# File 'process.c', line 6330

static VALUE
proc_getgroups(VALUE obj)
{
    VALUE ary, tmp;
    int i, ngroups;
    rb_gid_t *groups;

    ngroups = getgroups(0, NULL);
    if (ngroups == -1)
  rb_sys_fail(0);

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    ngroups = getgroups(ngroups, groups);
    if (ngroups == -1)
  rb_sys_fail(0);

    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
  rb_ary_push(ary, GIDT2NUM(groups[i]));

    ALLOCV_END(tmp);

    return ary;
}

#groups=(array) ⇒ Array (private)

Set the supplemental group access list to the given Array of group IDs.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.groups = [27, 6, 10, 11]   #=> [27, 6, 10, 11]
Process.groups   #=> [27, 6, 10, 11]

Returns:



6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
# File 'process.c', line 6374

static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
    int ngroups, i;
    rb_gid_t *groups;
    VALUE tmp;
    PREPARE_GETGRNAM;

    Check_Type(ary, T_ARRAY);

    ngroups = RARRAY_LENINT(ary);
    if (ngroups > maxgroups())
  rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    for (i = 0; i < ngroups; i++) {
  VALUE g = RARRAY_AREF(ary, i);

  groups[i] = OBJ2GID1(g);
    }
    FINISH_GETGRNAM;

    if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
  rb_sys_fail(0);

    ALLOCV_END(tmp);

    return proc_getgroups(obj);
}

#initgroups(username, gid) ⇒ Array (private)

Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array of the gids of all the groups in the supplementary group access list. Not available on all platforms.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 )   #=> [30, 6, 10, 11]
Process.groups   #=> [30, 6, 10, 11]

Returns:



6427
6428
6429
6430
6431
6432
6433
6434
# File 'process.c', line 6427

static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
    if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) {
  rb_sys_fail(0);
    }
    return proc_getgroups(obj);
}

#kill(signal, pid, ...) ⇒ Integer (private)

Sends the given signal to the specified process id(s) if pid is positive. If pid is zero, signal is sent to all processes whose group ID is equal to the group ID of the process. If pid is negative, results are dependent on the operating system. signal may be an integer signal number or a POSIX signal name (either with or without a SIG prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list are known signal names and numbers, respectively.

pid = fork do
   Signal.trap("HUP") { puts "Ouch!"; exit }
   # ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait

produces:

Ouch!

If signal is an integer but wrong for signal, Errno::EINVAL or RangeError will be raised. Otherwise unless signal is a String or a Symbol, and a known signal name, ArgumentError will be raised.

Also, Errno::ESRCH or RangeError for invalid pid, Errno::EPERM when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.

Returns:



8118
8119
8120
8121
8122
# File 'process.c', line 8118

static VALUE
proc_rb_f_kill(int c, const VALUE *v, VALUE _)
{
    return rb_f_kill(c, v);
}

#maxgroupsInteger (private)

Returns the maximum number of gids allowed in the supplemental group access list.

Process.maxgroups   #=> 32

Returns:



6450
6451
6452
6453
6454
# File 'process.c', line 6450

static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups());
}

#maxgroups=(integer) ⇒ Integer (private)

Sets the maximum number of gids allowed in the supplemental group access list.

Returns:



6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
# File 'process.c', line 6468

static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    int ngroups = FIX2INT(val);
    int ngroups_max = get_sc_ngroups_max();

    if (ngroups <= 0)
  rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups);

    if (ngroups > RB_MAX_GROUPS)
  ngroups = RB_MAX_GROUPS;

    if (ngroups_max > 0 && ngroups > ngroups_max)
  ngroups = ngroups_max;

    _maxgroups = ngroups;

    return INT2FIX(_maxgroups);
}

#pidInteger (private)

Returns the process id of this process. Not available on all platforms.

Process.pid   #=> 27415

Returns:



450
451
452
453
454
# File 'process.c', line 450

static VALUE
proc_get_pid(VALUE _)
{
    return get_pid();
}

#ppidInteger (private)

Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27417
Dad is 27417

Returns:



478
479
480
481
482
# File 'process.c', line 478

static VALUE
proc_get_ppid(VALUE _)
{
    return get_ppid();
}

#setpgid(pid, integer) ⇒ 0 (private)

Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.

Returns:

  • (0)


4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
# File 'process.c', line 4982

static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
    rb_pid_t ipid, ipgrp;

    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);

    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
}

#setpgrp0 (private)

Equivalent to setpgid(0,0). Not available on all platforms.

Returns:

  • (0)


4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
# File 'process.c', line 4929

static VALUE
proc_setpgrp(VALUE _)
{
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#endif
    return INT2FIX(0);
}

#setpriority(kind, integer, priority) ⇒ 0 (private)

See Process.getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19)      #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19)   #=> 0
Process.getpriority(Process::PRIO_USER, 0)          #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)       #=> 19

Returns:

  • (0)


5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
# File 'process.c', line 5136

static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
    int iwhich, iwho, iprio;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);

    if (setpriority(iwhich, iwho, iprio) < 0)
  rb_sys_fail(0);
    return INT2FIX(0);
}

#setproctitle(string) ⇒ String (private)

Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.

Calling this method does not affect the value of $0.

Process.setproctitle('myapp: worker #%d' % worker_id)

This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.

Returns:



2236
2237
2238
2239
2240
# File 'ruby.c', line 2236

static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
    return ruby_setproctitle(title);
}

#setrlimit(resource, cur_limit, max_limit) ⇒ nil (private) #setrlimit(resource, cur_limit) ⇒ nil (private)

Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

If max_limit is not given, cur_limit is used.

resource indicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process’s nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process’s real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limit and max_limit may be :INFINITY, "INFINITY" or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Overloads:

  • #setrlimit(resource, cur_limit, max_limit) ⇒ nil

    Returns:

    • (nil)
  • #setrlimit(resource, cur_limit) ⇒ nil

    Returns:

    • (nil)


5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
# File 'process.c', line 5462

static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;

    rb_check_arity(argc, 2, 3);
    resource = argv[0];
    rlim_cur = argv[1];
    if (argc < 3 || NIL_P(rlim_max = argv[2]))
        rlim_max = rlim_cur;

    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);

    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
  rb_sys_fail("setrlimit");
    }
    return Qnil;
}

#setsidInteger (private)

Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.

Process.setsid   #=> 27422

Returns:



5045
5046
5047
5048
5049
5050
5051
5052
5053
# File 'process.c', line 5045

static VALUE
proc_setsid(VALUE _)
{
    rb_pid_t pid;

    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
}

#timesaProcessTms (private)

Returns a Tms structure (see Process::Tms) that contains user and system CPU times for this process, and also for children processes.

t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ]   #=> [0.0, 0.02, 0.00, 0.00]

Returns:

  • (aProcessTms)


7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
# File 'process.c', line 7397

VALUE
rb_proc_times(VALUE obj)
{
    VALUE utime, stime, cutime, cstime, ret;
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN)
    struct rusage usage_s, usage_c;

    if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0)
  rb_sys_fail("getrusage");
    utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6);
    stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6);
    cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6);
    cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6);
#else
    const double hertz = (double)get_clk_tck();
    struct tms buf;

    times(&buf);
    utime = DBL2NUM(buf.tms_utime / hertz);
    stime = DBL2NUM(buf.tms_stime / hertz);
    cutime = DBL2NUM(buf.tms_cutime / hertz);
    cstime = DBL2NUM(buf.tms_cstime / hertz);
#endif
    ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
    RB_GC_GUARD(utime);
    RB_GC_GUARD(stime);
    RB_GC_GUARD(cutime);
    RB_GC_GUARD(cstime);
    return ret;
}

#uidInteger (private) #Process::UID.ridInteger (private) #Process::Sys.getuidInteger (private)

Returns the (real) user ID of this process.

Process.uid   #=> 501

Overloads:



5807
5808
5809
5810
5811
5812
# File 'process.c', line 5807

static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}

#uid=(user) ⇒ Numeric (private)

Sets the (user) user ID for this process. Not available on all platforms.

Returns:



5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
# File 'process.c', line 5824

static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
  if (geteuid() == uid) {
      if (setuid(uid) < 0) rb_sys_fail(0);
  }
  else {
      rb_notimplement();
  }
    }
#endif
    return id;
}

#waitInteger (private) #wait(pid = -1, flags = 0) ⇒ Integer (private) #waitpid(pid = -1, flags = 0) ⇒ Integer (private)

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1327
1328
1329
1330
1331
# File 'process.c', line 1327

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • #wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • #waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1350
1351
1352
1353
1354
1355
1356
# File 'process.c', line 1350

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

#waitallArray (private)

Waits for all children, returning an array of pid/status pairs (where status is a Process::Status object).

fork { sleep 0.2; exit 2 }   #=> 27432
fork { sleep 0.1; exit 1 }   #=> 27433
fork {            exit 0 }   #=> 27434
p Process.waitall

produces:

[[30982, #<Process::Status: pid 30982 exit 0>],
 [30979, #<Process::Status: pid 30979 exit 1>],
 [30976, #<Process::Status: pid 30976 exit 2>]]

Returns:



1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
# File 'process.c', line 1379

static VALUE
proc_waitall(VALUE _)
{
    VALUE result;
    rb_pid_t pid;
    int status;

    result = rb_ary_new();
    rb_last_status_clear();

    for (pid = -1;;) {
  pid = rb_waitpid(-1, &status, 0);
  if (pid == -1) {
      int e = errno;
      if (e == ECHILD)
    break;
      rb_syserr_fail(e, 0);
  }
  rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}

#waitInteger (private) #wait(pid = -1, flags = 0) ⇒ Integer (private) #waitpid(pid = -1, flags = 0) ⇒ Integer (private)

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1327
1328
1329
1330
1331
# File 'process.c', line 1327

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • #wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • #waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1350
1351
1352
1353
1354
1355
1356
# File 'process.c', line 1350

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}