Class: Random

Inherits:
Object show all
Includes:
Formatter
Defined in:
random.c,
random.c

Overview

Random provides an interface to Ruby’s pseudo-random number generator, or PRNG. The PRNG produces a deterministic sequence of bits which approximate true randomness. The sequence may be represented by integers, floats, or binary strings.

The generator may be initialized with either a system-generated or user-supplied seed value by using Random.srand.

The class method Random.rand provides the base functionality of Kernel.rand along with better handling of floating point values. These are both interfaces to Random::DEFAULT, the Ruby system PRNG.

Random.new will create a new PRNG with a state independent of Random::DEFAULT, allowing multiple generators with different seed values or sequence positions to exist simultaneously. Random objects can be marshaled, allowing sequences to be saved and resumed.

PRNGs are currently implemented as a modified Mersenne Twister with a period of 2**19937-1.

Defined Under Namespace

Modules: Formatter

Constant Summary collapse

DEFAULT =

The default Pseudorandom number generator. Used by class methods of Random.

rand_default

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Formatter

#random_number

Constructor Details

#new(seed = Random.new_seed) ⇒ Object

Creates a new PRNG using seed to set the initial state. If seed is omitted, the generator is initialized with Random.new_seed.

See Random.srand for more information on the use of seed values.



274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# File 'random.c', line 274

static VALUE
random_init(int argc, VALUE *argv, VALUE obj)
{
    VALUE vseed;
    rb_random_t *rnd = get_rnd(obj);

    if (rb_check_arity(argc, 0, 1) == 0) {
	rb_check_frozen(obj);
        vseed = random_seed(obj);
    }
    else {
	vseed = argv[0];
	rb_check_copyable(obj, vseed);
	vseed = rb_to_int(vseed);
    }
    rnd->seed = rand_init(&rnd->mt, vseed);
    return obj;
}

Class Method Details

.bytes(size) ⇒ String

Returns a random binary string. The argument size specifies the length of the returned string.

Returns:



1050
1051
1052
1053
1054
1055
# File 'random.c', line 1050

static VALUE
random_s_bytes(VALUE obj, VALUE len)
{
    rb_random_t *rnd = rand_start(&default_rand);
    return genrand_bytes(rnd, NUM2LONG(rb_to_int(len)));
}

.new_seedInteger

Returns an arbitrary seed value. This is used by Random.new when no seed value is specified as an argument.

Random.new_seed  #=> 115032730400174366788466674494640623225

Returns:



514
515
516
517
518
519
520
521
522
523
# File 'random.c', line 514

static VALUE
random_seed(VALUE _)
{
    VALUE v;
    uint32_t buf[DEFAULT_SEED_CNT+1];
    fill_random_seed(buf, DEFAULT_SEED_CNT);
    v = make_seed_value(buf, DEFAULT_SEED_CNT);
    explicit_bzero(buf, DEFAULT_SEED_LEN);
    return v;
}

.randFloat .rand(max) ⇒ Numeric

Alias of Random::DEFAULT.rand.

Overloads:



1402
1403
1404
1405
1406
1407
1408
# File 'random.c', line 1402

static VALUE
random_s_rand(int argc, VALUE *argv, VALUE obj)
{
    VALUE v = rand_random(argc, argv, Qnil, rand_start(&default_rand));
    check_random_number(v, argv);
    return v;
}

.srand(number = Random.new_seed) ⇒ Object

Seeds the system pseudo-random number generator, Random::DEFAULT, with number. The previous seed value is returned.

If number is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.

srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.

srand 1234               # => 268519324636777531569100071560086917274
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234               # => 1234
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]


701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# File 'random.c', line 701

static VALUE
rb_f_srand(int argc, VALUE *argv, VALUE obj)
{
    VALUE seed, old;
    rb_random_t *r = &default_rand;

    if (rb_check_arity(argc, 0, 1) == 0) {
        seed = random_seed(obj);
    }
    else {
	seed = rb_to_int(argv[0]);
    }
    old = r->seed;
    r->seed = rand_init(&r->mt, seed);

    return old;
}

.urandom(size) ⇒ String

Returns a string, using platform providing features. Returned value is expected to be a cryptographically secure pseudo-random number in binary form. This method raises a RuntimeError if the feature provided by platform failed to prepare the result.

In 2017, Linux manpage random(7) writes that “no cryptographic primitive available today can hope to promise more than 256 bits of security”. So it might be questionable to pass size > 32 to this method.

Random.urandom(8)  #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"

Returns:



541
542
543
544
545
546
547
548
549
550
# File 'random.c', line 541

static VALUE
random_raw_seed(VALUE self, VALUE size)
{
    long n = NUM2ULONG(size);
    VALUE buf = rb_str_new(0, n);
    if (n == 0) return buf;
    if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE))
	rb_raise(rb_eRuntimeError, "failed to get urandom");
    return buf;
}

Instance Method Details

#==(prng2) ⇒ Boolean

Returns true if the two generators have the same internal state, otherwise false. Equivalent generators will return the same sequence of pseudo-random numbers. Two generators will generally have the same state only if they were initialized with the same seed

Random.new == Random.new             # => false
Random.new(1234) == Random.new(1234) # => true

and have the same invocation history.

prng1 = Random.new(1234)
prng2 = Random.new(1234)
prng1 == prng2 # => true

prng1.rand     # => 0.1915194503788923
prng1 == prng2 # => false

prng2.rand     # => 0.1915194503788923
prng1 == prng2 # => true

Returns:

  • (Boolean)


1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
# File 'random.c', line 1332

static VALUE
random_equal(VALUE self, VALUE other)
{
    rb_random_t *r1, *r2;
    if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
    r1 = get_rnd(self);
    r2 = get_rnd(other);
    if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
    if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
    if (r1->mt.left != r2->mt.left) return Qfalse;
    return rb_equal(r1->seed, r2->seed);
}

#bytes(size) ⇒ String

Returns a random binary string containing size bytes.

random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
random_string.size                   # => 10

Returns:



1001
1002
1003
1004
1005
# File 'random.c', line 1001

static VALUE
random_bytes(VALUE obj, VALUE len)
{
    return genrand_bytes(get_rnd(obj), NUM2LONG(rb_to_int(len)));
}

#initialize_copy(orig) ⇒ Object

:nodoc:



573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# File 'random.c', line 573

static VALUE
random_copy(VALUE obj, VALUE orig)
{
    rb_random_t *rnd1, *rnd2;
    struct MT *mt;

    if (!OBJ_INIT_COPY(obj, orig)) return obj;

    rnd1 = get_rnd(obj);
    rnd2 = get_rnd(orig);
    mt = &rnd1->mt;

    *rnd1 = *rnd2;
    mt->next = mt->state + numberof(mt->state) - mt->left + 1;
    return obj;
}

#leftObject (private)

:nodoc:



614
615
616
617
618
619
# File 'random.c', line 614

static VALUE
random_left(VALUE obj)
{
    rb_random_t *rnd = get_rnd(obj);
    return INT2FIX(rnd->mt.left);
}

#marshal_dumpObject (private)

:nodoc:



629
630
631
632
633
634
635
636
637
638
639
640
# File 'random.c', line 629

static VALUE
random_dump(VALUE obj)
{
    rb_random_t *rnd = get_rnd(obj);
    VALUE dump = rb_ary_new2(3);

    rb_ary_push(dump, mt_state(&rnd->mt));
    rb_ary_push(dump, INT2FIX(rnd->mt.left));
    rb_ary_push(dump, rnd->seed);

    return dump;
}

#marshal_load(dump) ⇒ Object (private)

:nodoc:



643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# File 'random.c', line 643

static VALUE
random_load(VALUE obj, VALUE dump)
{
    rb_random_t *rnd = get_rnd(obj);
    struct MT *mt = &rnd->mt;
    VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
    unsigned long x;

    rb_check_copyable(obj, dump);
    Check_Type(dump, T_ARRAY);
    switch (RARRAY_LEN(dump)) {
      case 3:
        seed = RARRAY_AREF(dump, 2);
      case 2:
        left = RARRAY_AREF(dump, 1);
      case 1:
        state = RARRAY_AREF(dump, 0);
	break;
      default:
	rb_raise(rb_eArgError, "wrong dump data");
    }
    rb_integer_pack(state, mt->state, numberof(mt->state),
        sizeof(*mt->state), 0,
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
    x = NUM2ULONG(left);
    if (x > numberof(mt->state)) {
	rb_raise(rb_eArgError, "wrong value");
    }
    mt->left = (unsigned int)x;
    mt->next = mt->state + numberof(mt->state) - x + 1;
    rnd->seed = rb_to_int(seed);

    return obj;
}

#randFloat #rand(max) ⇒ Numeric

When max is an Integer, rand returns a random integer greater than or equal to zero and less than max. Unlike Kernel.rand, when max is a negative integer or zero, rand raises an ArgumentError.

prng = Random.new
prng.rand(100)       # => 42

When max is a Float, rand returns a random floating point number between 0.0 and max, including 0.0 and excluding max.

prng.rand(1.5)       # => 1.4600282860034115

When max is a Range, rand returns a random number where range.member?(number) == true.

prng.rand(5..9)      # => one of [5, 6, 7, 8, 9]
prng.rand(5...9)     # => one of [5, 6, 7, 8]
prng.rand(5.0..9.0)  # => between 5.0 and 9.0, including 9.0
prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0

Both the beginning and ending values of the range must respond to subtract (-) and add (+)methods, or rand will raise an ArgumentError.

Overloads:



1251
1252
1253
1254
1255
1256
1257
# File 'random.c', line 1251

static VALUE
random_rand(int argc, VALUE *argv, VALUE obj)
{
    VALUE v = rand_random(argc, argv, obj, get_rnd(obj));
    check_random_number(v, argv);
    return v;
}

#seedInteger

Returns the seed value used to initialize the generator. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.

prng1 = Random.new(1234)
prng1.seed       #=> 1234
prng1.rand(100)  #=> 47

prng2 = Random.new(prng1.seed)
prng2.rand(100)  #=> 47

Returns:



566
567
568
569
570
# File 'random.c', line 566

static VALUE
random_get_seed(VALUE obj)
{
    return get_rnd(obj)->seed;
}

#stateObject (private)

:nodoc:



599
600
601
602
603
604
# File 'random.c', line 599

static VALUE
random_state(VALUE obj)
{
    rb_random_t *rnd = get_rnd(obj);
    return mt_state(&rnd->mt);
}