Class: Rational

Inherits:
Numeric show all
Defined in:
rational.c

Overview

A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.

In Ruby, you can create rational objects with the Kernel#Rational, to_r, or rationalize methods or by suffixing r to a literal. The return values will be irreducible fractions.

Rational(1)      #=> (1/1)
Rational(2, 3)   #=> (2/3)
Rational(4, -6)  #=> (-2/3)
3.to_r           #=> (3/1)
2/3r             #=> (2/3)

You can also create rational objects from floating-point numbers or strings.

Rational(0.3)    #=> (5404319552844595/18014398509481984)
Rational('0.3')  #=> (3/10)
Rational('2/3')  #=> (2/3)

0.3.to_r         #=> (5404319552844595/18014398509481984)
'0.3'.to_r       #=> (3/10)
'2/3'.to_r       #=> (2/3)
0.3.rationalize  #=> (3/10)

A rational object is an exact number, which helps you to write programs without any rounding errors.

10.times.inject(0) {|t| t + 0.1 }              #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') }  #=> (1/1)

However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.

Rational(10) / 3   #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335

Rational(-8) ** Rational(1, 3)
                   #=> (1.0000000000000002+1.7320508075688772i)

Defined Under Namespace

Classes: compatible

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #abs2, #angle, #arg, #clone, #conj, #conjugate, #div, #divmod, #dup, #eql?, #finite?, #i, #imag, #imaginary, #infinite?, #integer?, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?, #clamp

Instance Method Details

#*(numeric) ⇒ Numeric

Performs multiplication.

Rational(2, 3)  * Rational(2, 3)   #=> (4/9)
Rational(900)   * Rational(1)      #=> (900/1)
Rational(-2, 9) * Rational(-9, 2)  #=> (1/1)
Rational(9, 8)  * 4                #=> (9/2)
Rational(20, 9) * 9.8              #=> 21.77777777777778

Returns:



882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
# File 'rational.c', line 882

VALUE
rb_rational_mul(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '*');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '*');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '*');
    }
}

#**Object

#+(numeric) ⇒ Numeric

Performs addition.

Rational(2, 3)  + Rational(2, 3)   #=> (4/3)
Rational(900)   + Rational(1)      #=> (901/1)
Rational(-2, 9) + Rational(-9, 2)  #=> (-85/18)
Rational(9, 8)  + 4                #=> (41/8)
Rational(20, 9) + 9.8              #=> 12.022222222222222

Returns:



745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
# File 'rational.c', line 745

VALUE
rb_rational_plus(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_rational_new_no_reduce2(CLASS_OF(self),
					     rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
					     dat->den);
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '+');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '+');
    }
}

#-(numeric) ⇒ Numeric

Performs subtraction.

Rational(2, 3)  - Rational(2, 3)   #=> (0/1)
Rational(900)   - Rational(1)      #=> (899/1)
Rational(-2, 9) - Rational(-9, 2)  #=> (77/18)
Rational(9, 8)  - 4                #=> (-23/8)
Rational(20, 9) - 9.8              #=> -7.577777777777778

Returns:



786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
# File 'rational.c', line 786

static VALUE
nurat_sub(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_rational_new_no_reduce2(CLASS_OF(self),
					     rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
					     dat->den);
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '-');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '-');
    }
}

#-Object

Negates rat.



632
633
634
635
636
637
638
639
# File 'rational.c', line 632

VALUE
rb_rational_uminus(VALUE self)
{
    const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
    get_dat1(self);
    (void)unused;
    return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:



924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
# File 'rational.c', line 924

static VALUE
nurat_div(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        VALUE v = nurat_to_f(self);
        return rb_flo_div_flo(v, other);
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '/');
    }
}

#<=>(numeric) ⇒ -1, ...

Returns -1, 0, or +1 depending on whether rational is less than, equal to, or greater than numeric.

nil is returned if the two values are incomparable.

Rational(2, 3) <=> Rational(2, 3)  #=> 0
Rational(5)    <=> 5               #=> 0
Rational(2, 3) <=> Rational(1, 3)  #=> 1
Rational(1, 3) <=> 1               #=> -1
Rational(1, 3) <=> 0.3             #=> 1

Rational(1, 3) <=> "0.3"           #=> nil

Returns:

  • (-1, 0, +1, nil)


1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
# File 'rational.c', line 1105

VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    if (dat->den == LONG2FIX(1))
		return rb_int_cmp(dat->num, other); /* c14n */
	    other = f_rational_new_bang1(CLASS_OF(self), other);
	    goto other_is_rational;
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	other_is_rational:
	{
	    VALUE num1, num2;

	    get_dat2(self, other);

	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
	    }
	    else {
		num1 = rb_int_mul(adat->num, bdat->den);
		num2 = rb_int_mul(bdat->num, adat->den);
	    }
	    return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
	}
    }
    else {
	return rb_num_coerce_cmp(self, other, rb_intern("<=>"));
    }
}

#==(object) ⇒ Boolean

Returns true if rat equals object numerically.

Rational(2, 3)  == Rational(2, 3)   #=> true
Rational(5)     == 5                #=> true
Rational(0)     == 0.0              #=> true
Rational('1/3') == 0.33             #=> false
Rational('1/2') == '1/2'            #=> false

Returns:

  • (Boolean)


1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
# File 'rational.c', line 1157

static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
        get_dat1(self);

        if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
	    if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
		return Qtrue;

	    if (!FIXNUM_P(dat->den))
		return Qfalse;
	    if (FIX2LONG(dat->den) != 1)
		return Qfalse;
	    return rb_int_equal(dat->num, other);
	}
        else {
            const double d = nurat_to_double(self);
            return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
        }
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	const double d = nurat_to_double(self);
	return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
		return Qtrue;

	    return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
			      rb_int_equal(adat->den, bdat->den));
	}
    }
    else {
	return rb_equal(other, self);
    }
}

#absObject #magnitudeObject

Returns the absolute value of rat.

(1/2r).abs    #=> (1/2)
(-1/2r).abs   #=> (1/2)

Rational#magnitude is an alias for Rational#abs.



1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
# File 'rational.c', line 1263

VALUE
rb_rational_abs(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num)) {
        VALUE num = rb_int_abs(dat->num);
        return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
    }
    return self;
}

#ceil([ndigits]) ⇒ Integer

Returns the smallest number greater than or equal to rat with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).ceil      #=> 3
Rational(2, 3).ceil   #=> 1
Rational(-3, 2).ceil  #=> -1

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').ceil(+1).to_f  #=> -123.4
Rational('-123.456').ceil(-1)       #=> -120

Returns:



1477
1478
1479
1480
1481
# File 'rational.c', line 1477

static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_ceil);
}

#coerce(other) ⇒ Object

:nodoc:



1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
# File 'rational.c', line 1199

static VALUE
nurat_coerce(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        return rb_assoc_new(other, nurat_to_f(self));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	return rb_assoc_new(other, self);
    }
    else if (RB_TYPE_P(other, T_COMPLEX)) {
	if (k_exact_zero_p(RCOMPLEX(other)->imag))
	    return rb_assoc_new(f_rational_new_bang1
				(CLASS_OF(self), RCOMPLEX(other)->real), self);
	else
	    return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
    }

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
	     rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}

#denominatorInteger

Returns the denominator (always positive).

Rational(7).denominator             #=> 1
Rational(7, 1).denominator          #=> 1
Rational(9, -4).denominator         #=> 4
Rational(-2, -10).denominator       #=> 5

Returns:



619
620
621
622
623
624
# File 'rational.c', line 619

static VALUE
nurat_denominator(VALUE self)
{
    get_dat1(self);
    return dat->den;
}

#fdiv(numeric) ⇒ Float

Performs division and returns the value as a Float.

Rational(2, 3).fdiv(1)       #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5)     #=> 1.3333333333333333
Rational(2).fdiv(3)          #=> 0.6666666666666666

Returns:



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
# File 'rational.c', line 972

static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
    VALUE div;
    if (f_zero_p(other))
        return nurat_div(self, rb_float_new(0.0));
    if (FIXNUM_P(other) && other == LONG2FIX(1))
	return nurat_to_f(self);
    div = nurat_div(self, other);
    if (RB_TYPE_P(div, T_RATIONAL))
	return nurat_to_f(div);
    if (RB_FLOAT_TYPE_P(div))
	return div;
    return rb_funcall(div, idTo_f, 0);
}

#floor([ndigits]) ⇒ Integer

Returns the largest number less than or equal to rat with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).floor      #=> 3
Rational(2, 3).floor   #=> 0
Rational(-3, 2).floor  #=> -2

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').floor(+1).to_f  #=> -123.5
Rational('-123.456').floor(-1)       #=> -130

Returns:



1447
1448
1449
1450
1451
# File 'rational.c', line 1447

static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_floor);
}

#hashObject

:nodoc:



1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
# File 'rational.c', line 1754

static VALUE
nurat_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->num);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->den);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return ST2FIX(v);
}

#inspectString

Returns the value as a string for inspection.

Rational(2).inspect      #=> "(2/1)"
Rational(-8, 6).inspect  #=> "(-4/3)"
Rational('1/2').inspect  #=> "(1/2)"

Returns:



1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
# File 'rational.c', line 1808

static VALUE
nurat_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#absObject #magnitudeObject

Returns the absolute value of rat.

(1/2r).abs    #=> (1/2)
(-1/2r).abs   #=> (1/2)

Rational#magnitude is an alias for Rational#abs.



1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
# File 'rational.c', line 1263

VALUE
rb_rational_abs(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num)) {
        VALUE num = rb_int_abs(dat->num);
        return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
    }
    return self;
}

#marshal_dumpObject (private)

:nodoc:



1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
# File 'rational.c', line 1847

static VALUE
nurat_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->num, dat->den);
    rb_copy_generic_ivar(a, self);
    return a;
}

#negative?Boolean

Returns true if rat is less than 0.

Returns:

  • (Boolean)


1243
1244
1245
1246
1247
1248
# File 'rational.c', line 1243

static VALUE
nurat_negative_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(INT_NEGATIVE_P(dat->num));
}

#numeratorInteger

Returns the numerator.

Rational(7).numerator        #=> 7
Rational(7, 1).numerator     #=> 7
Rational(9, -4).numerator    #=> -9
Rational(-2, -10).numerator  #=> 1

Returns:



601
602
603
604
605
606
# File 'rational.c', line 601

static VALUE
nurat_numerator(VALUE self)
{
    get_dat1(self);
    return dat->num;
}

#positive?Boolean

Returns true if rat is greater than 0.

Returns:

  • (Boolean)


1230
1231
1232
1233
1234
1235
# File 'rational.c', line 1230

static VALUE
nurat_positive_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(INT_POSITIVE_P(dat->num));
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:



924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
# File 'rational.c', line 924

static VALUE
nurat_div(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        VALUE v = nurat_to_f(self);
        return rb_flo_div_flo(v, other);
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '/');
    }
}

#rationalizeself #rationalize(eps) ⇒ Object

Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.

r = Rational(5033165, 16777216)
r.rationalize                    #=> (5033165/16777216)
r.rationalize(Rational('0.01'))  #=> (3/10)
r.rationalize(Rational('0.1'))   #=> (1/3)

Overloads:

  • #rationalizeself

    Returns:

    • (self)


1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
# File 'rational.c', line 1731

static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e, a, b, p, q;

    if (rb_check_arity(argc, 0, 1) == 0)
	return self;

    if (nurat_negative_p(self))
	return rb_rational_uminus(nurat_rationalize(argc, argv, rb_rational_uminus(self)));

    e = f_abs(argv[0]);
    a = f_sub(self, e);
    b = f_add(self, e);

    if (f_eqeq_p(a, b))
	return self;

    nurat_rationalize_internal(a, b, &p, &q);
    return f_rational_new2(CLASS_OF(self), p, q);
}

#round([ndigits][, half: mode]) ⇒ Integer

Returns rat rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).round      #=> 3
Rational(2, 3).round   #=> 1
Rational(-3, 2).round  #=> -2

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').round(+1).to_f  #=> -123.5
Rational('-123.456').round(-1)       #=> -120

The optional half keyword argument is available similar to Float#round.

Rational(25, 100).round(1, half: :up)    #=> (3/10)
Rational(25, 100).round(1, half: :down)  #=> (1/5)
Rational(25, 100).round(1, half: :even)  #=> (1/5)
Rational(35, 100).round(1, half: :up)    #=> (2/5)
Rational(35, 100).round(1, half: :down)  #=> (3/10)
Rational(35, 100).round(1, half: :even)  #=> (2/5)
Rational(-25, 100).round(1, half: :up)   #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)

Returns:



1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
# File 'rational.c', line 1550

static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
    VALUE opt;
    enum ruby_num_rounding_mode mode = (
        argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
	rb_num_get_rounding_option(opt));
    VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
    return f_round_common(argc, argv, self, round_func);
}

#to_fFloat

Returns the value as a Float.

Rational(2).to_f      #=> 2.0
Rational(9, 4).to_f   #=> 2.25
Rational(-3, 4).to_f  #=> -0.75
Rational(20, 3).to_f  #=> 6.666666666666667

Returns:



1582
1583
1584
1585
1586
# File 'rational.c', line 1582

static VALUE
nurat_to_f(VALUE self)
{
    return DBL2NUM(nurat_to_double(self));
}

#to_iInteger

Returns the truncated value as an integer.

Equivalent to Rational#truncate.

Rational(2, 3).to_i    #=> 0
Rational(3).to_i       #=> 3
Rational(300.6).to_i   #=> 300
Rational(98, 71).to_i  #=> 1
Rational(-31, 2).to_i  #=> -15

Returns:



1302
1303
1304
1305
1306
1307
1308
1309
# File 'rational.c', line 1302

static VALUE
nurat_truncate(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num))
	return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
    return rb_int_idiv(dat->num, dat->den);
}

#to_rself

Returns self.

Rational(2).to_r      #=> (2/1)
Rational(-8, 6).to_r  #=> (-4/3)

Returns:

  • (self)


1597
1598
1599
1600
1601
# File 'rational.c', line 1597

static VALUE
nurat_to_r(VALUE self)
{
    return self;
}

#to_sString

Returns the value as a string.

Rational(2).to_s      #=> "2/1"
Rational(-8, 6).to_s  #=> "-4/3"
Rational('1/2').to_s  #=> "1/2"

Returns:



1792
1793
1794
1795
1796
# File 'rational.c', line 1792

static VALUE
nurat_to_s(VALUE self)
{
    return f_format(self, f_to_s);
}

#truncate([ndigits]) ⇒ Integer

Returns rat truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).truncate      #=> 3
Rational(2, 3).truncate   #=> 0
Rational(-3, 2).truncate  #=> -1

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').truncate(+1).to_f  #=> -123.4
Rational('-123.456').truncate(-1)       #=> -120

Returns:



1507
1508
1509
1510
1511
# File 'rational.c', line 1507

static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_truncate);
}