Class: Rational
Overview
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.
In Ruby, you can create rational objects with the Kernel#Rational, to_r, or rationalize methods or by suffixing r
to a literal. The return values will be irreducible fractions.
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3)
3.to_r #=> (3/1)
2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Defined Under Namespace
Classes: compatible
Instance Method Summary collapse
-
#*(numeric) ⇒ Numeric
Performs multiplication.
- #** ⇒ Object
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#- ⇒ Object
Negates
rat
. -
#/(other) ⇒ Object
Performs division.
-
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether
rational
is less than, equal to, or greater thannumeric
. -
#==(object) ⇒ Boolean
Returns
true
ifrat
equalsobject
numerically. -
#abs ⇒ Object
Returns the absolute value of
rat
. -
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). -
#coerce(other) ⇒ Object
:nodoc:.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a Float.
-
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). -
#hash ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Object
Returns the absolute value of
rat
. -
#marshal_dump ⇒ Object
private
:nodoc:.
-
#negative? ⇒ Boolean
Returns
true
ifrat
is less than 0. -
#numerator ⇒ Integer
Returns the numerator.
-
#positive? ⇒ Boolean
Returns
true
ifrat
is greater than 0. -
#quo(other) ⇒ Object
Performs division.
-
#rationalize(*args) ⇒ Object
Returns a simpler approximation of the value if the optional argument
eps
is given (rat-|eps| <= result <= rat+|eps|), self otherwise. -
#round([ndigits][, half: mode]) ⇒ Integer
Returns
rat
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#to_f ⇒ Float
Returns the value as a Float.
-
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate([ndigits]) ⇒ Integer
Returns
rat
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0).
Methods inherited from Numeric
#%, #+@, #abs2, #angle, #arg, #clone, #conj, #conjugate, #div, #divmod, #dup, #eql?, #finite?, #i, #imag, #imaginary, #infinite?, #integer?, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?
Methods included from Comparable
#<, #<=, #>, #>=, #between?, #clamp
Instance Method Details
#*(numeric) ⇒ Numeric
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
# File 'rational.c', line 882
VALUE
rb_rational_mul(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
}
else {
return rb_num_coerce_bin(self, other, '*');
}
}
|
#** ⇒ Object
#+(numeric) ⇒ Numeric
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# File 'rational.c', line 745
VALUE
rb_rational_plus(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
}
else {
return rb_num_coerce_bin(self, other, '+');
}
}
|
#-(numeric) ⇒ Numeric
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# File 'rational.c', line 786
static VALUE
nurat_sub(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
}
else {
return rb_num_coerce_bin(self, other, '-');
}
}
|
#- ⇒ Object
Negates rat
.
632 633 634 635 636 637 638 639 |
# File 'rational.c', line 632
VALUE
rb_rational_uminus(VALUE self)
{
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
get_dat1(self);
(void)unused;
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
# File 'rational.c', line 924
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
VALUE v = nurat_to_f(self);
return rb_flo_div_flo(v, other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether rational
is less than, equal to, or greater than numeric
.
nil
is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2, 3) <=> Rational(1, 3) #=> 1
Rational(1, 3) <=> 1 #=> -1
Rational(1, 3) <=> 0.3 #=> 1
Rational(1, 3) <=> "0.3" #=> nil
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 |
# File 'rational.c', line 1105
VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
if (dat->den == LONG2FIX(1))
return rb_int_cmp(dat->num, other); /* c14n */
other = f_rational_new_bang1(CLASS_OF(self), other);
goto other_is_rational;
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
other_is_rational:
{
VALUE num1, num2;
get_dat2(self, other);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
}
else {
num1 = rb_int_mul(adat->num, bdat->den);
num2 = rb_int_mul(bdat->num, adat->den);
}
return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
}
}
else {
return rb_num_coerce_cmp(self, other, rb_intern("<=>"));
}
}
|
#==(object) ⇒ Boolean
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 |
# File 'rational.c', line 1157
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
get_dat1(self);
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
return rb_int_equal(dat->num, other);
}
else {
const double d = nurat_to_double(self);
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
}
}
else if (RB_FLOAT_TYPE_P(other)) {
const double d = nurat_to_double(self);
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
return Qtrue;
return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
rb_int_equal(adat->den, bdat->den));
}
}
else {
return rb_equal(other, self);
}
}
|
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat
.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
Rational#magnitude is an alias for Rational#abs.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
# File 'rational.c', line 1263
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num);
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
}
return self;
}
|
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').ceil(+1).to_f #=> -123.4
Rational('-123.456').ceil(-1) #=> -120
1477 1478 1479 1480 1481 |
# File 'rational.c', line 1477
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil);
}
|
#coerce(other) ⇒ Object
:nodoc:
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 |
# File 'rational.c', line 1199
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_assoc_new(other, nurat_to_f(self));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
return rb_assoc_new(other, self);
}
else if (RB_TYPE_P(other, T_COMPLEX)) {
if (k_exact_zero_p(RCOMPLEX(other)->imag))
return rb_assoc_new(f_rational_new_bang1
(CLASS_OF(self), RCOMPLEX(other)->real), self);
else
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
}
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
rb_obj_classname(other), rb_obj_classname(self));
return Qnil;
}
|
#denominator ⇒ Integer
619 620 621 622 623 624 |
# File 'rational.c', line 619
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self);
return dat->den;
}
|
#fdiv(numeric) ⇒ Float
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
# File 'rational.c', line 972
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
VALUE div;
if (f_zero_p(other))
return nurat_div(self, rb_float_new(0.0));
if (FIXNUM_P(other) && other == LONG2FIX(1))
return nurat_to_f(self);
div = nurat_div(self, other);
if (RB_TYPE_P(div, T_RATIONAL))
return nurat_to_f(div);
if (RB_FLOAT_TYPE_P(div))
return div;
return rb_funcall(div, idTo_f, 0);
}
|
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').floor(+1).to_f #=> -123.5
Rational('-123.456').floor(-1) #=> -130
1447 1448 1449 1450 1451 |
# File 'rational.c', line 1447
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor);
}
|
#hash ⇒ Object
:nodoc:
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 |
# File 'rational.c', line 1754
static VALUE
nurat_hash(VALUE self)
{
st_index_t v, h[2];
VALUE n;
get_dat1(self);
n = rb_hash(dat->num);
h[0] = NUM2LONG(n);
n = rb_hash(dat->den);
h[1] = NUM2LONG(n);
v = rb_memhash(h, sizeof(h));
return ST2FIX(v);
}
|
#inspect ⇒ String
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 |
# File 'rational.c', line 1808
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, f_inspect));
rb_str_cat2(s, ")");
return s;
}
|
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat
.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
Rational#magnitude is an alias for Rational#abs.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
# File 'rational.c', line 1263
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num);
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
}
return self;
}
|
#marshal_dump ⇒ Object (private)
:nodoc:
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 |
# File 'rational.c', line 1847
static VALUE
nurat_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->num, dat->den);
rb_copy_generic_ivar(a, self);
return a;
}
|
#negative? ⇒ Boolean
Returns true
if rat
is less than 0.
1243 1244 1245 1246 1247 1248 |
# File 'rational.c', line 1243
static VALUE
nurat_negative_p(VALUE self)
{
get_dat1(self);
return f_boolcast(INT_NEGATIVE_P(dat->num));
}
|
#numerator ⇒ Integer
601 602 603 604 605 606 |
# File 'rational.c', line 601
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self);
return dat->num;
}
|
#positive? ⇒ Boolean
Returns true
if rat
is greater than 0.
1230 1231 1232 1233 1234 1235 |
# File 'rational.c', line 1230
static VALUE
nurat_positive_p(VALUE self)
{
get_dat1(self);
return f_boolcast(INT_POSITIVE_P(dat->num));
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
# File 'rational.c', line 924
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
VALUE v = nurat_to_f(self);
return rb_flo_div_flo(v, other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#rationalize ⇒ self #rationalize(eps) ⇒ Object
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
# File 'rational.c', line 1731
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (rb_check_arity(argc, 0, 1) == 0)
return self;
if (nurat_negative_p(self))
return rb_rational_uminus(nurat_rationalize(argc, argv, rb_rational_uminus(self)));
e = f_abs(argv[0]);
a = f_sub(self, e);
b = f_add(self, e);
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q);
return f_rational_new2(CLASS_OF(self), p, q);
}
|
#round([ndigits][, half: mode]) ⇒ Integer
Returns rat
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').round(+1).to_f #=> -123.5
Rational('-123.456').round(-1) #=> -120
The optional half
keyword argument is available similar to Float#round.
Rational(25, 100).round(1, half: :up) #=> (3/10)
Rational(25, 100).round(1, half: :down) #=> (1/5)
Rational(25, 100).round(1, half: :even) #=> (1/5)
Rational(35, 100).round(1, half: :up) #=> (2/5)
Rational(35, 100).round(1, half: :down) #=> (3/10)
Rational(35, 100).round(1, half: :even) #=> (2/5)
Rational(-25, 100).round(1, half: :up) #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 |
# File 'rational.c', line 1550
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
VALUE opt;
enum ruby_num_rounding_mode mode = (
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
rb_num_get_rounding_option(opt));
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
return f_round_common(argc, argv, self, round_func);
}
|
#to_f ⇒ Float
1582 1583 1584 1585 1586 |
# File 'rational.c', line 1582
static VALUE
nurat_to_f(VALUE self)
{
return DBL2NUM(nurat_to_double(self));
}
|
#to_i ⇒ Integer
1302 1303 1304 1305 1306 1307 1308 1309 |
# File 'rational.c', line 1302
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num))
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
return rb_int_idiv(dat->num, dat->den);
}
|
#to_r ⇒ self
1597 1598 1599 1600 1601 |
# File 'rational.c', line 1597
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
|
#to_s ⇒ String
1792 1793 1794 1795 1796 |
# File 'rational.c', line 1792
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s);
}
|
#truncate([ndigits]) ⇒ Integer
Returns rat
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').truncate(+1).to_f #=> -123.4
Rational('-123.456').truncate(-1) #=> -120
1507 1508 1509 1510 1511 |
# File 'rational.c', line 1507
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate);
}
|