Class: Float
Overview
******************************************************************
Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. See following:
- https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
- https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constant Summary collapse
- RADIX =
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
INT2FIX(FLT_RADIX)
- MANT_DIG =
The number of base digits for the
double
data type.Usually defaults to 53.
INT2FIX(DBL_MANT_DIG)
- DIG =
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
INT2FIX(DBL_DIG)
- MIN_EXP =
The smallest possible exponent value in a double-precision floating point.
Usually defaults to -1021.
INT2FIX(DBL_MIN_EXP)
- MAX_EXP =
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
INT2FIX(DBL_MAX_EXP)
- MIN_10_EXP =
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
INT2FIX(DBL_MIN_10_EXP)
- MAX_10_EXP =
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
INT2FIX(DBL_MAX_10_EXP)
- MIN =
:MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
The smallest positive normalized number in a double-precision floating point. Usually defaults to 2.2250738585072014e-308. If the platform supports denormalized numbers, there are numbers between zero and Float
- MAX =
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
DBL2NUM(DBL_MAX)
- EPSILON =
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
DBL2NUM(DBL_EPSILON)
- INFINITY =
An expression representing positive infinity.
DBL2NUM(HUGE_VAL)
- NAN =
An expression representing a value which is “not a number”.
DBL2NUM(nan(""))
Instance Method Summary collapse
-
#%(y) ⇒ Object
Returns the modulo after division of
float
byother
. -
#*(other) ⇒ Float
Returns a new Float which is the product of
float
andother
. -
#**(other) ⇒ Float
Raises
float
to the power ofother
. -
#+(other) ⇒ Float
Returns a new Float which is the sum of
float
andother
. -
#-(other) ⇒ Float
Returns a new Float which is the difference of
float
andother
. -
#- ⇒ Float
Returns
float
, negated. -
#/(other) ⇒ Float
Returns a new Float which is the result of dividing
float
byother
. -
#<(real) ⇒ Boolean
Returns
true
iffloat
is less thanreal
. -
#<=(real) ⇒ Boolean
Returns
true
iffloat
is less than or equal toreal
. -
#<=>(real) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether
float
is less than, equal to, or greater thanreal
. - #== ⇒ Object
- #=== ⇒ Object
-
#>(real) ⇒ Boolean
Returns
true
iffloat
is greater thanreal
. -
#>=(real) ⇒ Boolean
Returns
true
iffloat
is greater than or equal toreal
. -
#abs ⇒ Object
Returns the absolute value of
float
. -
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
float
with a precision ofndigits
decimal digits (default: 0). -
#coerce(numeric) ⇒ Array
Returns an array with both
numeric
andfloat
represented as Float objects. -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#divmod(numeric) ⇒ Array
See Numeric#divmod.
- #eql? ⇒ Boolean
-
#fdiv(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#finite? ⇒ Boolean
Returns
true
iffloat
is a valid IEEE floating point number, i.e. -
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
float
with a precision ofndigits
decimal digits (default: 0). -
#hash ⇒ Integer
Returns a hash code for this float.
-
#infinite? ⇒ -1, ...
Returns
nil
, -1, or 1 depending on whether the value is finite,-Infinity
, or+Infinity
. -
#magnitude ⇒ Object
Returns the absolute value of
float
. -
#modulo(y) ⇒ Object
Returns the modulo after division of
float
byother
. -
#nan? ⇒ Boolean
Returns
true
iffloat
is an invalid IEEE floating point number. -
#negative? ⇒ Boolean
Returns
true
iffloat
is less than 0. -
#next_float ⇒ Float
Returns the next representable floating point number.
-
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#positive? ⇒ Boolean
Returns
true
iffloat
is greater than 0. -
#prev_float ⇒ Float
Returns the previous representable floating point number.
-
#quo(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|).
-
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns
float
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#to_f ⇒ self
Since
float
is already a Float, returnsself
. -
#to_i ⇒ Object
Returns the
float
truncated to an Integer. -
#to_int ⇒ Object
Returns the
float
truncated to an Integer. -
#to_r ⇒ Object
Returns the value as a rational.
-
#to_s ⇒ String
(also: #inspect)
Returns a string containing a representation of
self
. -
#truncate([ndigits]) ⇒ Integer, Float
Returns
float
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). -
#zero? ⇒ Boolean
Returns
true
iffloat
is 0.0.
Methods inherited from Numeric
#+@, #abs2, #clone, #conj, #conjugate, #div, #dup, #i, #imag, #imaginary, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c
Methods included from Comparable
Instance Method Details
#%(other) ⇒ Float #modulo(other) ⇒ Float
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
# File 'numeric.c', line 1255
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#*(other) ⇒ Float
Returns a new Float which is the product of float
and other
.
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 |
# File 'numeric.c', line 1101
VALUE
rb_float_mul(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
|
#**(other) ⇒ Float
Raises float
to the power of other
.
2.0**3 #=> 8.0
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 |
# File 'numeric.c', line 1327
VALUE
rb_float_pow(VALUE x, VALUE y)
{
double dx, dy;
if (y == INT2FIX(2)) {
dx = RFLOAT_VALUE(x);
return DBL2NUM(dx * dx);
}
else if (RB_TYPE_P(y, T_FIXNUM)) {
dx = RFLOAT_VALUE(x);
dy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
dx = RFLOAT_VALUE(x);
dy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
}
else {
return rb_num_coerce_bin(x, y, idPow);
}
return DBL2NUM(pow(dx, dy));
}
|
#+(other) ⇒ Float
Returns a new Float which is the sum of float
and other
.
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
# File 'numeric.c', line 1053
VALUE
rb_float_plus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
|
#-(other) ⇒ Float
Returns a new Float which is the difference of float
and other
.
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 |
# File 'numeric.c', line 1077
VALUE
rb_float_minus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
|
#- ⇒ Float
Returns float
, negated.
1040 1041 1042 1043 1044 |
# File 'numeric.c', line 1040
VALUE
rb_float_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
|
#/(other) ⇒ Float
Returns a new Float which is the result of dividing float
by other
.
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 |
# File 'numeric.c', line 1155
VALUE
rb_float_div(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
double den;
double ret;
if (RB_TYPE_P(y, T_FIXNUM)) {
den = FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
den = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
den = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '/');
}
ret = double_div_double(num, den);
return DBL2NUM(ret);
}
|
#<(real) ⇒ Boolean
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so an implementation-dependent value is returned.
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 |
# File 'numeric.c', line 1610
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '<');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
return (a < b)?Qtrue:Qfalse;
}
|
#<=(real) ⇒ Boolean
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so an implementation-dependent value is returned.
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 |
# File 'numeric.c', line 1647
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
return (a <= b)?Qtrue:Qfalse;
}
|
#<=>(real) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in the Comparable module.
The result of NaN <=> NaN
is undefined, so an implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 |
# File 'numeric.c', line 1488
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return LONG2FIX(-FIX2LONG(rel));
return rel;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
|
#== ⇒ Object
#=== ⇒ Object
#>(real) ⇒ Boolean
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so an implementation-dependent value is returned.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 |
# File 'numeric.c', line 1536
VALUE
rb_float_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '>');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
return (a > b)?Qtrue:Qfalse;
}
|
#>=(real) ⇒ Boolean
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so an implementation-dependent value is returned.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 |
# File 'numeric.c', line 1573
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
return (a >= b)?Qtrue:Qfalse;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56
Float#magnitude is an alias for Float#abs.
1731 1732 1733 1734 1735 1736 |
# File 'numeric.c', line 1731
VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2272 2273 2274 2275 2276 2277 2278 2279 2280 |
# File 'complex.c', line 2272
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2272 2273 2274 2275 2276 2277 2278 2279 2280 |
# File 'complex.c', line 2272
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.ceil #=> 2
2.0.ceil #=> 2
(-1.2).ceil #=> -1
(-2.0).ceil #=> -2
1.234567.ceil(2) #=> 1.24
1.234567.ceil(3) #=> 1.235
1.234567.ceil(4) #=> 1.2346
1.234567.ceil(5) #=> 1.23457
34567.89.ceil(-5) #=> 100000
34567.89.ceil(-4) #=> 40000
34567.89.ceil(-3) #=> 35000
34567.89.ceil(-2) #=> 34600
34567.89.ceil(-1) #=> 34570
34567.89.ceil(0) #=> 34568
34567.89.ceil(1) #=> 34567.9
34567.89.ceil(2) #=> 34567.89
34567.89.ceil(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(2.1 / 0.7).ceil #=> 4 (!)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 |
# File 'numeric.c', line 2047
static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
int ndigits = 0;
if (rb_check_arity(argc, 0, 1)) {
ndigits = NUM2INT(argv[0]);
}
return rb_float_ceil(num, ndigits);
}
|
#coerce(numeric) ⇒ Array
Returns an array with both numeric
and float
represented as Float objects.
This is achieved by converting numeric
to a Float.
1.2.coerce(3) #=> [3.0, 1.2]
2.5.coerce(1.1) #=> [1.1, 2.5]
1027 1028 1029 1030 1031 |
# File 'numeric.c', line 1027
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
|
#denominator ⇒ Integer
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator.
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 |
# File 'rational.c', line 2098
VALUE
rb_float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
VALUE r;
if (isinf(d) || isnan(d))
return INT2FIX(1);
r = float_to_r(self);
return nurat_denominator(r);
}
|
#divmod(numeric) ⇒ Array
See Numeric#divmod.
42.0.divmod(6) #=> [7, 0.0]
42.0.divmod(5) #=> [8, 2.0]
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 |
# File 'numeric.c', line 1294
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
|
#eql? ⇒ Boolean
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
1187 1188 1189 1190 1191 |
# File 'numeric.c', line 1187
static VALUE
flo_quo(VALUE x, VALUE y)
{
return num_funcall1(x, '/', y);
}
|
#finite? ⇒ Boolean
Returns true
if float
is a valid IEEE floating point number, i.e. it is not infinite and Float#nan? is false
.
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 |
# File 'numeric.c', line 1803
VALUE
rb_flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE
if (!isfinite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
|
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.floor #=> 1
2.0.floor #=> 2
(-1.2).floor #=> -2
(-2.0).floor #=> -2
1.234567.floor(2) #=> 1.23
1.234567.floor(3) #=> 1.234
1.234567.floor(4) #=> 1.2345
1.234567.floor(5) #=> 1.23456
34567.89.floor(-5) #=> 0
34567.89.floor(-4) #=> 30000
34567.89.floor(-3) #=> 34000
34567.89.floor(-2) #=> 34500
34567.89.floor(-1) #=> 34560
34567.89.floor(0) #=> 34567
34567.89.floor(1) #=> 34567.8
34567.89.floor(2) #=> 34567.89
34567.89.floor(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).floor #=> 2 (!)
1998 1999 2000 2001 2002 2003 2004 2005 2006 |
# File 'numeric.c', line 1998
static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
int ndigits = 0;
if (rb_check_arity(argc, 0, 1)) {
ndigits = NUM2INT(argv[0]);
}
return rb_float_floor(num, ndigits);
}
|
#hash ⇒ Integer
Returns a hash code for this float.
See also Object#hash.
1452 1453 1454 1455 1456 |
# File 'numeric.c', line 1452
static VALUE
flo_hash(VALUE num)
{
return rb_dbl_hash(RFLOAT_VALUE(num));
}
|
#infinite? ⇒ -1, ...
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
(0.0).infinite? #=> nil
(-1.0/0.0).infinite? #=> -1
(+1.0/0.0).infinite? #=> 1
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 |
# File 'numeric.c', line 1783
VALUE
rb_flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56
Float#magnitude is an alias for Float#abs.
1731 1732 1733 1734 1735 1736 |
# File 'numeric.c', line 1731
VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#%(other) ⇒ Float #modulo(other) ⇒ Float
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
# File 'numeric.c', line 1255
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#nan? ⇒ Boolean
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0 #=> -1.0
a.nan? #=> false
a = 0.0/0.0 #=> NaN
a.nan? #=> true
1763 1764 1765 1766 1767 1768 1769 |
# File 'numeric.c', line 1763
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
|
#negative? ⇒ Boolean
Returns true
if float
is less than 0.
2461 2462 2463 2464 2465 2466 |
# File 'numeric.c', line 2461
static VALUE
flo_negative_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f < 0.0 ? Qtrue : Qfalse;
}
|
#next_float ⇒ Float
Returns the next representable floating point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
Float::NAN.next_float is Float::NAN.
For example:
0.01.next_float #=> 0.010000000000000002
1.0.next_float #=> 1.0000000000000002
100.0.next_float #=> 100.00000000000001
0.01.next_float - 0.01 #=> 1.734723475976807e-18
1.0.next_float - 1.0 #=> 2.220446049250313e-16
100.0.next_float - 100.0 #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147cp-7 0.010000000000000002
# 0x1.47ae147ae147dp-7 0.010000000000000004
# 0x1.47ae147ae147ep-7 0.010000000000000005
# 0x1.47ae147ae147fp-7 0.010000000000000007
# 0x1.47ae147ae148p-7 0.010000000000000009
# 0x1.47ae147ae1481p-7 0.01000000000000001
# 0x1.47ae147ae1482p-7 0.010000000000000012
# 0x1.47ae147ae1483p-7 0.010000000000000014
# 0x1.47ae147ae1484p-7 0.010000000000000016
# 0x1.47ae147ae1485p-7 0.010000000000000018
# 0x1.47ae147ae1486p-7 0.01000000000000002
# 0x1.47ae147ae1487p-7 0.010000000000000021
# 0x1.47ae147ae1488p-7 0.010000000000000023
# 0x1.47ae147ae1489p-7 0.010000000000000024
# 0x1.47ae147ae148ap-7 0.010000000000000026
# 0x1.47ae147ae148bp-7 0.010000000000000028
# 0x1.47ae147ae148cp-7 0.01000000000000003
# 0x1.47ae147ae148dp-7 0.010000000000000031
# 0x1.47ae147ae148ep-7 0.010000000000000033
f = 0.0
100.times { f += 0.1 }
f #=> 9.99999999999998 # should be 10.0 in the ideal world.
10-f #=> 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
(10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
"%a" % 10 #=> "0x1.4p+3"
"%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
1880 1881 1882 1883 1884 |
# File 'numeric.c', line 1880
static VALUE
flo_next_float(VALUE vx)
{
return flo_nextafter(vx, HUGE_VAL);
}
|
#numerator ⇒ Integer
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595
d = 0.3.denominator #=> 18014398509481984
n.fdiv(d) #=> 0.3
See also Float#denominator.
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 |
# File 'rational.c', line 2078
VALUE
rb_float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
VALUE r;
if (isinf(d) || isnan(d))
return self;
r = float_to_r(self);
return nurat_numerator(r);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2272 2273 2274 2275 2276 2277 2278 2279 2280 |
# File 'complex.c', line 2272
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#positive? ⇒ Boolean
Returns true
if float
is greater than 0.
2447 2448 2449 2450 2451 2452 |
# File 'numeric.c', line 2447
static VALUE
flo_positive_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f > 0.0 ? Qtrue : Qfalse;
}
|
#prev_float ⇒ Float
Returns the previous representable floating point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN.
For example:
0.01.prev_float #=> 0.009999999999999998
1.0.prev_float #=> 0.9999999999999999
100.0.prev_float #=> 99.99999999999999
0.01 - 0.01.prev_float #=> 1.734723475976807e-18
1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147ap-7 0.009999999999999998
# 0x1.47ae147ae1479p-7 0.009999999999999997
# 0x1.47ae147ae1478p-7 0.009999999999999995
# 0x1.47ae147ae1477p-7 0.009999999999999993
# 0x1.47ae147ae1476p-7 0.009999999999999992
# 0x1.47ae147ae1475p-7 0.00999999999999999
# 0x1.47ae147ae1474p-7 0.009999999999999988
# 0x1.47ae147ae1473p-7 0.009999999999999986
# 0x1.47ae147ae1472p-7 0.009999999999999985
# 0x1.47ae147ae1471p-7 0.009999999999999983
# 0x1.47ae147ae147p-7 0.009999999999999981
# 0x1.47ae147ae146fp-7 0.00999999999999998
# 0x1.47ae147ae146ep-7 0.009999999999999978
# 0x1.47ae147ae146dp-7 0.009999999999999976
# 0x1.47ae147ae146cp-7 0.009999999999999974
# 0x1.47ae147ae146bp-7 0.009999999999999972
# 0x1.47ae147ae146ap-7 0.00999999999999997
# 0x1.47ae147ae1469p-7 0.009999999999999969
# 0x1.47ae147ae1468p-7 0.009999999999999967
1928 1929 1930 1931 1932 |
# File 'numeric.c', line 1928
static VALUE
flo_prev_float(VALUE vx)
{
return flo_nextafter(vx, -HUGE_VAL);
}
|
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
1187 1188 1189 1190 1191 |
# File 'numeric.c', line 1187
static VALUE
flo_quo(VALUE x, VALUE y)
{
return num_funcall1(x, '/', y);
}
|
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps
is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10)
1.333.rationalize #=> (1333/1000)
1.333.rationalize(0.01) #=> (4/3)
See also Float#to_r.
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 |
# File 'rational.c', line 2280
static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
double d = RFLOAT_VALUE(self);
VALUE rat;
int neg = d < 0.0;
if (neg) self = DBL2NUM(-d);
if (rb_check_arity(argc, 0, 1)) {
rat = rb_flt_rationalize_with_prec(self, argv[0]);
}
else {
rat = rb_flt_rationalize(self);
}
if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
return rat;
}
|
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns float
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.4.round #=> 1
1.5.round #=> 2
1.6.round #=> 2
(-1.5).round #=> -2
1.234567.round(2) #=> 1.23
1.234567.round(3) #=> 1.235
1.234567.round(4) #=> 1.2346
1.234567.round(5) #=> 1.23457
34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0) #=> 34568
34567.89.round(1) #=> 34567.9
34567.89.round(2) #=> 34567.89
34567.89.round(3) #=> 34567.89
If the optional half
keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode
:
-
:up
ornil
: round half away from zero (default) -
:down
: round half toward zero -
:even
: round half toward the nearest even number2.5.round(half: :up) #=> 3 2.5.round(half: :down) #=> 2 2.5.round(half: :even) #=> 2 3.5.round(half: :up) #=> 4 3.5.round(half: :down) #=> 3 3.5.round(half: :even) #=> 4 (-2.5).round(half: :up) #=> -3 (-2.5).round(half: :down) #=> -2 (-2.5).round(half: :even) #=> -2
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 |
# File 'numeric.c', line 2307
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
double number, f, x;
VALUE nd, opt;
int ndigits = 0;
enum ruby_num_rounding_mode mode;
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
ndigits = NUM2INT(nd);
}
mode = rb_num_get_rounding_option(opt);
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits < 0) {
return rb_int_round(flo_to_i(num), ndigits, mode);
}
if (ndigits == 0) {
x = ROUND_CALL(mode, round, (number, 1.0));
return dbl2ival(x);
}
if (isfinite(number)) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
f = pow(10, ndigits);
x = ROUND_CALL(mode, round, (number, f));
return DBL2NUM(x / f);
}
return num;
}
|
#to_f ⇒ self
Since float
is already a Float, returns self
.
1711 1712 1713 1714 1715 |
# File 'numeric.c', line 1711
static VALUE
flo_to_f(VALUE num)
{
return num;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer
Returns the float
truncated to an Integer.
1.2.to_i #=> 1
(-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
#to_int is an alias for #to_i.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 |
# File 'numeric.c', line 2397
static VALUE
flo_to_i(VALUE num)
{
double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
|
#to_i ⇒ Integer #to_int ⇒ Integer
Returns the float
truncated to an Integer.
1.2.to_i #=> 1
(-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
#to_int is an alias for #to_i.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 |
# File 'numeric.c', line 2397
static VALUE
flo_to_i(VALUE num)
{
double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
|
#to_r ⇒ Object
Returns the value as a rational.
2.0.to_r #=> (2/1)
2.5.to_r #=> (5/2)
-0.75.to_r #=> (-3/4)
0.0.to_r #=> (0/1)
0.3.to_r #=> (5404319552844595/18014398509481984)
NOTE: 0.3.to_r isn’t the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn’t so.
0.3.to_r == 3/10r #=> false
"0.3".to_r == 3/10r #=> true
See also Float#rationalize.
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 |
# File 'rational.c', line 2195
static VALUE
float_to_r(VALUE self)
{
VALUE f;
int n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
if (n == 0)
return rb_rational_new1(f);
if (n > 0)
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
n = -n;
return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
#else
f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
if (RB_TYPE_P(f, T_RATIONAL))
return f;
return rb_rational_new1(f);
#endif
}
|
#to_s ⇒ String Also known as: inspect
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
# File 'numeric.c', line 940
static VALUE
flo_to_s(VALUE flt)
{
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value)) {
static const char minf[] = "-Infinity";
const int pos = (value > 0); /* skip "-" */
return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
}
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
goto exp;
}
return s;
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
return s;
}
|
#truncate([ndigits]) ⇒ Integer, Float
Returns float
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
2.8.truncate #=> 2
(-2.8).truncate #=> -2
1.234567.truncate(2) #=> 1.23
34567.89.truncate(-2) #=> 34500
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).truncate #=> 2 (!)
2431 2432 2433 2434 2435 2436 2437 2438 |
# File 'numeric.c', line 2431
static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
if (signbit(RFLOAT_VALUE(num)))
return flo_ceil(argc, argv, num);
else
return flo_floor(argc, argv, num);
}
|
#zero? ⇒ Boolean
Returns true
if float
is 0.0.
1745 1746 1747 1748 1749 |
# File 'numeric.c', line 1745
static VALUE
flo_zero_p(VALUE num)
{
return flo_iszero(num) ? Qtrue : Qfalse;
}
|