Class: Integer
Overview
******************************************************************
Holds Integer values. You cannot add a singleton method to an
Integer object, any attempt to do so will raise a TypeError.
Constant Summary collapse
- GMP_VERSION =
The version of loaded GMP.
rb_sprintf("GMP %s", gmp_version)
Class Method Summary collapse
-
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer
n
, i.e.
Instance Method Summary collapse
-
#%(y) ⇒ Object
Returns
int
moduloother
. -
#&(other_int) ⇒ Integer
Bitwise AND.
-
#*(numeric) ⇒ Object
Performs multiplication: the class of the resulting object depends on the class of
numeric
. -
#**(numeric) ⇒ Object
Raises
int
to the power ofnumeric
, which may be negative or fractional. -
#+(numeric) ⇒ Object
Performs addition: the class of the resulting object depends on the class of
numeric
. -
#-(numeric) ⇒ Object
Performs subtraction: the class of the resulting object depends on the class of
numeric
. -
#/(numeric) ⇒ Object
Performs division: the class of the resulting object depends on the class of
numeric
. -
#<(real) ⇒ Boolean
Returns
true
if the value ofint
is less than that ofreal
. -
#<<(count) ⇒ Integer
Returns
int
shifted leftcount
positions, or right ifcount
is negative. -
#<=(real) ⇒ Boolean
Returns
true
if the value ofint
is less than or equal to that ofreal
. -
#<=>(numeric) ⇒ -1, ...
Comparison—Returns -1, 0, or +1 depending on whether
int
is less than, equal to, or greater thannumeric
. -
#==(other) ⇒ Boolean
Returns
true
ifint
equalsother
numerically. - #===(y) ⇒ Object
-
#>(real) ⇒ Boolean
Returns
true
if the value ofint
is greater than that ofreal
. -
#>=(real) ⇒ Boolean
Returns
true
if the value ofint
is greater than or equal to that ofreal
. -
#>>(count) ⇒ Integer
Returns
int
shifted rightcount
positions, or left ifcount
is negative. -
#[](*, const) ⇒ Object
Bit Reference—Returns the
n
th bit in the binary representation ofint
, whereint[0]
is the least significant bit. -
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
-
#allbits?(mask) ⇒ Boolean
Returns
true
if all bits ofint & mask
are 1. -
#anybits?(mask) ⇒ Boolean
Returns
true
if any bits ofint & mask
are 1. -
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
int
with a precision ofndigits
decimal digits (default: 0). -
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the
int
‘s value according toencoding
. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numeric
and abig
represented as Bignum objects. -
#denominator ⇒ 1
Returns 1.
-
#digits(*args) ⇒ Object
Returns the digits of
int
‘s place-value representation with radixbase
(default: 10). -
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing
int
bynumeric
. -
#divmod(numeric) ⇒ Array
See Numeric#divmod.
-
#downto(to) ⇒ Object
Iterates the given block, passing in decreasing values from
int
down to and includinglimit
. -
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing
int
bynumeric
. -
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
int
with a precision ofndigits
decimal digits (default: 0). -
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers.
-
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
-
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers.
-
#modulo(y) ⇒ Object
Returns
int
moduloother
. -
#next ⇒ Object
Returns the successor of
int
, i.e. -
#nobits?(mask) ⇒ Boolean
Returns
true
if no bits ofint & mask
are 1. -
#numerator ⇒ self
Returns self.
-
#pow(*, const) ⇒ Object
Returns (modular) exponentiation as:.
- #pred ⇒ Object
-
#rationalize([eps]) ⇒ Object
Returns the value as a rational.
-
#remainder(numeric) ⇒ Object
Returns the remainder after dividing
int
bynumeric
. -
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns
int
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#size ⇒ Integer
Returns the number of bytes in the machine representation of
int
(machine dependent). -
#succ ⇒ Object
Returns the successor of
int
, i.e. -
#times ⇒ Object
Iterates the given block
int
times, passing in values from zero toint - 1
. -
#to_f ⇒ Float
Converts
int
to a Float. -
#to_r ⇒ Object
Returns the value as a rational.
-
#to_s(base = 10) ⇒ String
(also: #inspect)
Returns a string containing the place-value representation of
int
with radixbase
(between 2 and 36). -
#truncate([ndigits]) ⇒ Integer, Float
Returns
int
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). -
#upto(to) ⇒ Object
Iterates the given block, passing in integer values from
int
up to and includinglimit
. -
#|(other_int) ⇒ Integer
Bitwise OR.
Methods inherited from Numeric
#+@, #-@, #abs, #abs2, #angle, #arg, #clone, #conj, #conjugate, #dup, #eql?, #finite?, #i, #imag, #imaginary, #infinite?, #integer?, #magnitude, #negative?, #nonzero?, #phase, #polar, #positive?, #quo, #real, #real?, #rect, #rectangular, #singleton_method_added, #step, #to_c, #to_int, #zero?
Methods included from Comparable
Class Method Details
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer n
, i.e. the largest non-negative integer less than or equal to the square root of n
.
Integer.sqrt(0) #=> 0
Integer.sqrt(1) #=> 1
Integer.sqrt(24) #=> 4
Integer.sqrt(25) #=> 5
Integer.sqrt(10**400) #=> 10**200
Equivalent to Math.sqrt(n).floor
, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) #=> 100000000000000000000000
Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
If n
is not an Integer, it is converted to an Integer first. If n
is negative, a Math::DomainError is raised.
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 |
# File 'numeric.c', line 5353
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
if (FIXNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
n = FIX2ULONG(num);
sq = rb_ulong_isqrt(n);
return LONG2FIX(sq);
}
else {
size_t biglen;
if (RBIGNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
biglen = BIGNUM_LEN(num);
if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
/* short-circuit */
if (biglen == 1) {
n = BIGNUM_DIGITS(num)[0];
sq = rb_ulong_isqrt(n);
return ULONG2NUM(sq);
}
#endif
return rb_big_isqrt(num);
}
}
|
Instance Method Details
#%(other) ⇒ Object #modulo(other) ⇒ Object
Returns int
modulo other
.
See Numeric#divmod for more information.
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 |
# File 'numeric.c', line 3872
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
|
#&(other_int) ⇒ Integer
Bitwise AND.
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 |
# File 'numeric.c', line 4435
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_and(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_and(x, y);
}
return Qnil;
}
|
#*(numeric) ⇒ Object
Performs multiplication: the class of the resulting object depends on the class of numeric
.
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 |
# File 'numeric.c', line 3685
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mul(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
|
#**(numeric) ⇒ Object
Raises int
to the power of numeric
, which may be negative or fractional. The result may be an Integer, a Float, a Rational, or a complex number.
2 ** 3 #=> 8
2 ** -1 #=> (1/2)
2 ** 0.5 #=> 1.4142135623730951
(-1) ** 0.5 #=> (0.0+1.0i)
123456789 ** 2 #=> 15241578750190521
123456789 ** 1.2 #=> 5126464716.0993185
123456789 ** -2 #=> (1/15241578750190521)
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 |
# File 'numeric.c', line 4087
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_pow(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_pow(x, y);
}
return Qnil;
}
|
#+(numeric) ⇒ Object
Performs addition: the class of the resulting object depends on the class of numeric
.
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'numeric.c', line 3596
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_plus(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
|
#-(numeric) ⇒ Object
Performs subtraction: the class of the resulting object depends on the class of numeric
.
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 |
# File 'numeric.c', line 3635
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_minus(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
|
#/(numeric) ⇒ Object
Performs division: the class of the resulting object depends on the class of numeric
.
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 |
# File 'numeric.c', line 3802
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_div(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_div(x, y);
}
return Qnil;
}
|
#<(real) ⇒ Boolean
Returns true
if the value of int
is less than that of real
.
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 |
# File 'numeric.c', line 4313
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_lt(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_lt(x, y);
}
return Qnil;
}
|
#<<(count) ⇒ Integer
Returns int
shifted left count
positions, or right if count
is negative.
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 |
# File 'numeric.c', line 4551
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_lshift(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_lshift(x, y);
}
return Qnil;
}
|
#<=(real) ⇒ Boolean
Returns true
if the value of int
is less than or equal to that of real
.
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 |
# File 'numeric.c', line 4353
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_le(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_le(x, y);
}
return Qnil;
}
|
#<=>(numeric) ⇒ -1, ...
Comparison—Returns -1, 0, or +1 depending on whether int
is less than, equal to, or greater than numeric
.
This is the basis for the tests in the Comparable module.
nil
is returned if the two values are incomparable.
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 |
# File 'numeric.c', line 4195
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_cmp(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_cmp(x, y);
}
else {
rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
}
}
|
#==(other) ⇒ Boolean
Returns true
if int
equals other
numerically. Contrast this with Integer#eql?, which requires other
to be an Integer.
1 == 2 #=> false
1 == 1.0 #=> true
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 |
# File 'numeric.c', line 4146
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_eq(x, y);
}
return Qnil;
}
|
#===(y) ⇒ Object
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 |
# File 'numeric.c', line 4146
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_eq(x, y);
}
return Qnil;
}
|
#>(real) ⇒ Boolean
Returns true
if the value of int
is greater than that of real
.
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 |
# File 'numeric.c', line 4235
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_gt(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_gt(x, y);
}
return Qnil;
}
|
#>=(real) ⇒ Boolean
Returns true
if the value of int
is greater than or equal to that of real
.
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 |
# File 'numeric.c', line 4275
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_ge(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_ge(x, y);
}
return Qnil;
}
|
#>>(count) ⇒ Integer
Returns int
shifted right count
positions, or left if count
is negative.
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 |
# File 'numeric.c', line 4598
static VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_rshift(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_rshift(x, y);
}
return Qnil;
}
|
#[](n) ⇒ 0, 1 #[](n, m) ⇒ Numeric #[](range) ⇒ Numeric
Bit Reference—Returns the n
th bit in the binary representation of int
, where int[0]
is the least significant bit.
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
#=> 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
#=> 000101110110100000111000011110010100111100010111001
In principle, n[i]
is equivalent to (n >> i) & 1
. Thus, any negative index always returns zero:
p 255[-1] #=> 0
Range operations n[i, len]
and n[i..j]
are naturally extended.
-
n[i, len]
equals to(n >> i) & ((1 << len) - 1)
. -
n[i..j]
equals to(n >> i) & ((1 << (j - i + 1)) - 1)
. -
n[i...j]
equals to(n >> i) & ((1 << (j - i)) - 1)
. -
n[i..]
equals to(n >> i)
. -
n[..j]
is zero ifn & ((1 << (j + 1)) - 1)
is zero. Otherwise, raises an ArgumentError. -
n[...j]
is zero ifn & ((1 << j) - 1)
is zero. Otherwise, raises an ArgumentError.
Note that range operation may exhaust memory. For example, -1[0, 1000000000000]
will raise NoMemoryError.
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 |
# File 'numeric.c', line 4758
static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 2) {
return int_aref2(num, argv[0], argv[1]);
}
return int_aref1(num, argv[0]);
return Qnil;
}
|
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 |
# File 'numeric.c', line 4505
static VALUE
int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_xor(x, y);
}
return Qnil;
}
|
#allbits?(mask) ⇒ Boolean
Returns true
if all bits of int & mask
are 1.
3285 3286 3287 3288 3289 3290 |
# File 'numeric.c', line 3285
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return rb_int_equal(rb_int_and(num, mask), mask);
}
|
#anybits?(mask) ⇒ Boolean
Returns true
if any bits of int & mask
are 1.
3299 3300 3301 3302 3303 3304 |
# File 'numeric.c', line 3299
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
}
|
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.ceil #=> 1
1.ceil(2) #=> 1
18.ceil(-1) #=> 20
(-18).ceil(-1) #=> -10
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 |
# File 'numeric.c', line 5239
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_ceil(num, ndigits);
}
|
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the int
‘s value according to encoding
.
65.chr #=> "A"
230.chr #=> "\xE6"
255.chr(Encoding::UTF_8) #=> "\u00FF"
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 |
# File 'numeric.c', line 3412
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%u out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_error_arity(argc, 0, 1);
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
|
#coerce(numeric) ⇒ Array
Returns an array with both a numeric
and a big
represented as Bignum objects.
This is achieved by converting numeric
to a Bignum.
A TypeError is raised if the numeric
is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 |
# File 'bignum.c', line 6745
static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y)) {
return rb_assoc_new(y, x);
}
else {
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
}
|
#denominator ⇒ 1
Returns 1.
2059 2060 2061 2062 2063 |
# File 'rational.c', line 2059
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
|
#digits ⇒ Array #digits(base) ⇒ Array
Returns the digits of int
‘s place-value representation with radix base
(default: 10). The digits are returned as an array with the least significant digit as the first array element.
base
must be greater than or equal to 2.
12345.digits #=> [5, 4, 3, 2, 1]
12345.digits(7) #=> [4, 6, 6, 0, 5]
12345.digits(100) #=> [45, 23, 1]
-12345.digits(7) #=> Math::DomainError
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 |
# File 'numeric.c', line 4965
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
VALUE base_value;
long base;
if (rb_num_negative_p(num))
rb_raise(rb_eMathDomainError, "out of domain");
if (rb_check_arity(argc, 0, 1)) {
base_value = rb_to_int(argv[0]);
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
if (RB_TYPE_P(base_value, T_BIGNUM))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
if (base < 0)
rb_raise(rb_eArgError, "negative radix");
else if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
}
else
base = 10;
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
else if (RB_TYPE_P(num, T_BIGNUM))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
|
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing int
by numeric
.
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 |
# File 'numeric.c', line 3829
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_idiv(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_idiv(x, y);
}
return num_div(x, y);
}
|
#divmod(numeric) ⇒ Array
See Numeric#divmod.
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 |
# File 'numeric.c', line 3949
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_divmod(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_divmod(x, y);
}
return Qnil;
}
|
#downto(limit) {|i| ... } ⇒ self #downto(limit) ⇒ Object
Iterates the given block, passing in decreasing values from int
down to and including limit
.
If no block is given, an Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
puts "Liftoff!"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 |
# File 'numeric.c', line 5065
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
|
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing int
by numeric
.
654321.fdiv(13731) #=> 47.652829364212366
654321.fdiv(13731.24) #=> 47.65199646936475
-654321.fdiv(13731) #=> -47.652829364212366
3747 3748 3749 3750 3751 3752 3753 3754 |
# File 'numeric.c', line 3747
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
return DBL2NUM(rb_int_fdiv_double(x, y));
}
return Qnil;
}
|
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.floor #=> 1
1.floor(2) #=> 1
18.floor(-1) #=> 10
(-18).floor(-1) #=> -20
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 |
# File 'numeric.c', line 5207
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_floor(num, ndigits);
}
|
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
1888 1889 1890 1891 1892 1893 |
# File 'rational.c', line 1888
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
|
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180]
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
1926 1927 1928 1929 1930 1931 |
# File 'rational.c', line 1926
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
|
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
1907 1908 1909 1910 1911 1912 |
# File 'rational.c', line 1907
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
|
#%(other) ⇒ Object #modulo(other) ⇒ Object
Returns int
modulo other
.
See Numeric#divmod for more information.
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 |
# File 'numeric.c', line 3872
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
|
#next ⇒ Integer #succ ⇒ Integer
Returns the successor of int
, i.e. the Integer equal to int+1
.
1.next #=> 2
(-1).next #=> 0
1.succ #=> 2
(-1).succ #=> 0
#nobits?(mask) ⇒ Boolean
Returns true
if no bits of int & mask
are 1.
3313 3314 3315 3316 3317 3318 |
# File 'numeric.c', line 3313
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return int_zero_p(rb_int_and(num, mask));
}
|
#numerator ⇒ self
Returns self.
2047 2048 2049 2050 2051 |
# File 'rational.c', line 2047
static VALUE
integer_numerator(VALUE self)
{
return self;
}
|
#pow(numeric) ⇒ Numeric #pow(integer, integer) ⇒ Integer
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b
a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 |
# File 'bignum.c', line 7107
VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 1) {
return rb_int_pow(num, argv[0]);
}
else {
VALUE const a = num;
VALUE const b = argv[0];
VALUE m = argv[1];
int nega_flg = 0;
if ( ! RB_INTEGER_TYPE_P(b)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
}
if (rb_int_negative_p(b)) {
rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
}
if (!RB_INTEGER_TYPE_P(m)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
}
if (rb_int_negative_p(m)) {
m = rb_int_uminus(m);
nega_flg = 1;
}
if (FIXNUM_P(m)) {
long const half_val = (long)HALF_LONG_MSB;
long const mm = FIX2LONG(m);
if (!mm) rb_num_zerodiv();
if (mm == 1) return INT2FIX(0);
if (mm <= half_val) {
return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
}
else {
return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
}
}
else {
if (rb_bigzero_p(m)) rb_num_zerodiv();
if (bignorm(m) == INT2FIX(1)) return INT2FIX(0);
return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
}
}
UNREACHABLE_RETURN(Qnil);
}
|
#pred ⇒ Object
#rationalize([eps]) ⇒ Object
Returns the value as a rational. The optional argument eps
is always ignored.
2157 2158 2159 2160 2161 2162 |
# File 'rational.c', line 2157
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 1);
return integer_to_r(self);
}
|
#remainder(numeric) ⇒ Object
Returns the remainder after dividing int
by numeric
.
x.remainder(y)
means x-y*(x/y).truncate
.
5.remainder(3) #=> 2
-5.remainder(3) #=> -2
5.remainder(-3) #=> 2
-5.remainder(-3) #=> -2
5.remainder(1.5) #=> 0.5
See Numeric#divmod.
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 |
# File 'numeric.c', line 3901
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return num_remainder(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_remainder(x, y);
}
return Qnil;
}
|
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns int
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.round #=> 1
1.round(2) #=> 1
15.round(-1) #=> 20
(-15).round(-1) #=> -20
The optional half
keyword argument is available similar to Float#round.
25.round(-1, half: :up) #=> 30
25.round(-1, half: :down) #=> 20
25.round(-1, half: :even) #=> 20
35.round(-1, half: :up) #=> 40
35.round(-1, half: :down) #=> 30
35.round(-1, half: :even) #=> 40
(-25).round(-1, half: :up) #=> -30
(-25).round(-1, half: :down) #=> -20
(-25).round(-1, half: :even) #=> -20
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 |
# File 'numeric.c', line 5172
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
int ndigits;
int mode;
VALUE nd, opt;
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
return num;
}
return rb_int_round(num, ndigits, mode);
}
|
#size ⇒ Integer
Returns the number of bytes in the machine representation of int
(machine dependent).
1.size #=> 8
-1.size #=> 8
2147483647.size #=> 8
(256**10 - 1).size #=> 10
(256**20 - 1).size #=> 20
(256**40 - 1).size #=> 40
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 |
# File 'numeric.c', line 4857
static VALUE
int_size(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_size(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_size_m(num);
}
return Qnil;
}
|
#next ⇒ Integer #succ ⇒ Integer
Returns the successor of int
, i.e. the Integer equal to int+1
.
1.next #=> 2
(-1).next #=> 0
1.succ #=> 2
(-1).succ #=> 0
#times {|i| ... } ⇒ self #times ⇒ Object
Iterates the given block int
times, passing in values from zero to int - 1
.
If no block is given, an Enumerator is returned instead.
5.times {|i| print i, " " } #=> 0 1 2 3 4
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 |
# File 'numeric.c', line 5115
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield_1(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(rb_funcall(i, '<', 1, num))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
}
return num;
}
|
#to_f ⇒ Float
Converts int
to a Float. If int
doesn’t fit in a Float, the result is infinity.
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 |
# File 'numeric.c', line 4779
static VALUE
int_to_f(VALUE num)
{
double val;
if (FIXNUM_P(num)) {
val = (double)FIX2LONG(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
val = rb_big2dbl(num);
}
else {
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
|
#to_r ⇒ Object
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
2144 2145 2146 2147 2148 |
# File 'rational.c', line 2144
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
|
#to_s(base = 10) ⇒ String Also known as: inspect
Returns a string containing the place-value representation of int
with radix base
(between 2 and 36).
12345.to_s #=> "12345"
12345.to_s(2) #=> "11000000111001"
12345.to_s(8) #=> "30071"
12345.to_s(10) #=> "12345"
12345.to_s(16) #=> "3039"
12345.to_s(36) #=> "9ix"
78546939656932.to_s(36) #=> "rubyrules"
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 |
# File 'numeric.c', line 3536
static VALUE
int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
base = NUM2INT(argv[0]);
else
base = 10;
return rb_int2str(x, base);
}
|
#truncate([ndigits]) ⇒ Integer, Float
Returns int
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.truncate #=> 1
1.truncate(2) #=> 1
18.truncate(-1) #=> 10
(-18).truncate(-1) #=> -10
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 |
# File 'numeric.c', line 5271
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_truncate(num, ndigits);
}
|
#upto(limit) {|i| ... } ⇒ self #upto(limit) ⇒ Object
Iterates the given block, passing in integer values from int
up to and including limit
.
If no block is given, an Enumerator is returned instead.
5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 |
# File 'numeric.c', line 5019
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
ensure_cmp(c, i, to);
}
return from;
}
|
#|(other_int) ⇒ Integer
Bitwise OR.
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 |
# File 'numeric.c', line 4470
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_or(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_or(x, y);
}
return Qnil;
}
|