Class: Rational

Inherits:
Numeric show all
Defined in:
rational.c

Overview

A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.

In Ruby, you can create rational objects with the Kernel#Rational, to_r, or rationalize methods or by suffixing r to a literal. The return values will be irreducible fractions.

Rational(1)      #=> (1/1)
Rational(2, 3)   #=> (2/3)
Rational(4, -6)  #=> (-2/3)
3.to_r           #=> (3/1)
2/3r             #=> (2/3)

You can also create rational objects from floating-point numbers or strings.

Rational(0.3)    #=> (5404319552844595/18014398509481984)
Rational('0.3')  #=> (3/10)
Rational('2/3')  #=> (2/3)

0.3.to_r         #=> (5404319552844595/18014398509481984)
'0.3'.to_r       #=> (3/10)
'2/3'.to_r       #=> (2/3)
0.3.rationalize  #=> (3/10)

A rational object is an exact number, which helps you to write programs without any rounding errors.

10.times.inject(0) {|t| t + 0.1 }              #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') }  #=> (1/1)

However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.

Rational(10) / 3   #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335

Rational(-8) ** Rational(1, 3)
                   #=> (1.0000000000000002+1.7320508075688772i)

Defined Under Namespace

Classes: compatible

Instance Method Summary collapse

Methods inherited from Numeric

#%, #+@, #abs2, #angle, #arg, #clone, #conj, #conjugate, #div, #divmod, #dup, #eql?, #finite?, #i, #imag, #imaginary, #infinite?, #integer?, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?, #clamp

Instance Method Details

#*(numeric) ⇒ Numeric

Performs multiplication.

Rational(2, 3)  * Rational(2, 3)   #=> (4/9)
Rational(900)   * Rational(1)      #=> (900/1)
Rational(-2, 9) * Rational(-9, 2)  #=> (1/1)
Rational(9, 8)  * 4                #=> (9/2)
Rational(20, 9) * 9.8              #=> 21.77777777777778

Returns:



855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# File 'rational.c', line 855

VALUE
rb_rational_mul(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '*');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '*');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '*');
    }
}

#**Object

#+(numeric) ⇒ Numeric

Performs addition.

Rational(2, 3)  + Rational(2, 3)   #=> (4/3)
Rational(900)   + Rational(1)      #=> (901/1)
Rational(-2, 9) + Rational(-9, 2)  #=> (-85/18)
Rational(9, 8)  + 4                #=> (41/8)
Rational(20, 9) + 9.8              #=> 12.022222222222222

Returns:



718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# File 'rational.c', line 718

VALUE
rb_rational_plus(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_rational_new_no_reduce2(CLASS_OF(self),
					     rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
					     dat->den);
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '+');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '+');
    }
}

#-(numeric) ⇒ Numeric

Performs subtraction.

Rational(2, 3)  - Rational(2, 3)   #=> (0/1)
Rational(900)   - Rational(1)      #=> (899/1)
Rational(-2, 9) - Rational(-9, 2)  #=> (77/18)
Rational(9, 8)  - 4                #=> (-23/8)
Rational(20, 9) - 9.8              #=> -7.577777777777778

Returns:



759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
# File 'rational.c', line 759

VALUE
rb_rational_minus(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	{
	    get_dat1(self);

	    return f_rational_new_no_reduce2(CLASS_OF(self),
					     rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
					     dat->den);
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '-');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '-');
    }
}

#-Object

Negates rat.



605
606
607
608
609
610
611
612
# File 'rational.c', line 605

VALUE
rb_rational_uminus(VALUE self)
{
    const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
    get_dat1(self);
    (void)unused;
    return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:



897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
# File 'rational.c', line 897

VALUE
rb_rational_div(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        VALUE v = nurat_to_f(self);
        return rb_flo_div_flo(v, other);
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '/');
    }
}

#<=>(numeric) ⇒ -1, ...

Returns -1, 0, or +1 depending on whether rational is less than, equal to, or greater than numeric.

nil is returned if the two values are incomparable.

Rational(2, 3) <=> Rational(2, 3)  #=> 0
Rational(5)    <=> 5               #=> 0
Rational(2, 3) <=> Rational(1, 3)  #=> 1
Rational(1, 3) <=> 1               #=> -1
Rational(1, 3) <=> 0.3             #=> 1

Rational(1, 3) <=> "0.3"           #=> nil

Returns:

  • (-1, 0, +1, nil)


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
# File 'rational.c', line 1069

VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    if (dat->den == LONG2FIX(1))
		return rb_int_cmp(dat->num, other); /* c14n */
	    other = f_rational_new_bang1(CLASS_OF(self), other);
            /* FALLTHROUGH */
	}

      case T_RATIONAL:
	{
	    VALUE num1, num2;

	    get_dat2(self, other);

	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
	    }
	    else {
		num1 = rb_int_mul(adat->num, bdat->den);
		num2 = rb_int_mul(bdat->num, adat->den);
	    }
	    return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
	}

      case T_FLOAT:
        return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));

      default:
	return rb_num_coerce_cmp(self, other, rb_intern("<=>"));
    }
}

#==(object) ⇒ Boolean

Returns true if rat equals object numerically.

Rational(2, 3)  == Rational(2, 3)   #=> true
Rational(5)     == 5                #=> true
Rational(0)     == 0.0              #=> true
Rational('1/3') == 0.33             #=> false
Rational('1/2') == '1/2'            #=> false

Returns:

  • (Boolean)


1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
# File 'rational.c', line 1122

static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
        get_dat1(self);

        if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
	    if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
		return Qtrue;

	    if (!FIXNUM_P(dat->den))
		return Qfalse;
	    if (FIX2LONG(dat->den) != 1)
		return Qfalse;
	    return rb_int_equal(dat->num, other);
	}
        else {
            const double d = nurat_to_double(self);
            return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
        }
    }
    else if (RB_FLOAT_TYPE_P(other)) {
	const double d = nurat_to_double(self);
	return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	{
	    get_dat2(self, other);

	    if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
		return Qtrue;

	    return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
			      rb_int_equal(adat->den, bdat->den));
	}
    }
    else {
	return rb_equal(other, self);
    }
}

#absObject #magnitudeObject

Returns the absolute value of rat.

(1/2r).abs    #=> (1/2)
(-1/2r).abs   #=> (1/2)

Rational#magnitude is an alias for Rational#abs.



1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
# File 'rational.c', line 1228

VALUE
rb_rational_abs(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num)) {
        VALUE num = rb_int_abs(dat->num);
        return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
    }
    return self;
}

#ceil([ndigits]) ⇒ Integer

Returns the smallest number greater than or equal to rat with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).ceil      #=> 3
Rational(2, 3).ceil   #=> 1
Rational(-3, 2).ceil  #=> -1

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').ceil(+1).to_f  #=> -123.4
Rational('-123.456').ceil(-1)       #=> -120

Returns:



1454
1455
1456
1457
1458
# File 'rational.c', line 1454

static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_ceil);
}

#coerce(other) ⇒ Object

:nodoc:



1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
# File 'rational.c', line 1164

static VALUE
nurat_coerce(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        return rb_assoc_new(other, nurat_to_f(self));
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	return rb_assoc_new(other, self);
    }
    else if (RB_TYPE_P(other, T_COMPLEX)) {
	if (k_exact_zero_p(RCOMPLEX(other)->imag))
	    return rb_assoc_new(f_rational_new_bang1
				(CLASS_OF(self), RCOMPLEX(other)->real), self);
	else
	    return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
    }

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
	     rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}

#denominatorInteger

Returns the denominator (always positive).

Rational(7).denominator             #=> 1
Rational(7, 1).denominator          #=> 1
Rational(9, -4).denominator         #=> 4
Rational(-2, -10).denominator       #=> 5

Returns:



592
593
594
595
596
597
# File 'rational.c', line 592

static VALUE
nurat_denominator(VALUE self)
{
    get_dat1(self);
    return dat->den;
}

#fdiv(numeric) ⇒ Float

Performs division and returns the value as a Float.

Rational(2, 3).fdiv(1)       #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5)     #=> 1.3333333333333333
Rational(2).fdiv(3)          #=> 0.6666666666666666

Returns:



945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
# File 'rational.c', line 945

static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
    VALUE div;
    if (f_zero_p(other))
        return rb_rational_div(self, rb_float_new(0.0));
    if (FIXNUM_P(other) && other == LONG2FIX(1))
	return nurat_to_f(self);
    div = rb_rational_div(self, other);
    if (RB_TYPE_P(div, T_RATIONAL))
	return nurat_to_f(div);
    if (RB_FLOAT_TYPE_P(div))
	return div;
    return rb_funcall(div, idTo_f, 0);
}

#floor([ndigits]) ⇒ Integer

Returns the largest number less than or equal to rat with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).floor      #=> 3
Rational(2, 3).floor   #=> 0
Rational(-3, 2).floor  #=> -2

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').floor(+1).to_f  #=> -123.5
Rational('-123.456').floor(-1)       #=> -130

Returns:



1424
1425
1426
1427
1428
# File 'rational.c', line 1424

static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_floor);
}

#hashObject

:nodoc:



1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
# File 'rational.c', line 1740

static VALUE
nurat_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->num);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->den);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return ST2FIX(v);
}

#inspectString

Returns the value as a string for inspection.

Rational(2).inspect      #=> "(2/1)"
Rational(-8, 6).inspect  #=> "(-4/3)"
Rational('1/2').inspect  #=> "(1/2)"

Returns:



1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
# File 'rational.c', line 1794

static VALUE
nurat_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#absObject #magnitudeObject

Returns the absolute value of rat.

(1/2r).abs    #=> (1/2)
(-1/2r).abs   #=> (1/2)

Rational#magnitude is an alias for Rational#abs.



1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
# File 'rational.c', line 1228

VALUE
rb_rational_abs(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num)) {
        VALUE num = rb_int_abs(dat->num);
        return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
    }
    return self;
}

#marshal_dumpObject (private)

:nodoc:



1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
# File 'rational.c', line 1833

static VALUE
nurat_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->num, dat->den);
    rb_copy_generic_ivar(a, self);
    return a;
}

#negative?Boolean

Returns true if rat is less than 0.

Returns:

  • (Boolean)


1208
1209
1210
1211
1212
1213
# File 'rational.c', line 1208

static VALUE
nurat_negative_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(INT_NEGATIVE_P(dat->num));
}

#numeratorInteger

Returns the numerator.

Rational(7).numerator        #=> 7
Rational(7, 1).numerator     #=> 7
Rational(9, -4).numerator    #=> -9
Rational(-2, -10).numerator  #=> 1

Returns:



574
575
576
577
578
579
# File 'rational.c', line 574

static VALUE
nurat_numerator(VALUE self)
{
    get_dat1(self);
    return dat->num;
}

#positive?Boolean

Returns true if rat is greater than 0.

Returns:

  • (Boolean)


1195
1196
1197
1198
1199
1200
# File 'rational.c', line 1195

static VALUE
nurat_positive_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(INT_POSITIVE_P(dat->num));
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:



897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
# File 'rational.c', line 897

VALUE
rb_rational_div(VALUE self, VALUE other)
{
    if (RB_INTEGER_TYPE_P(other)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
    }
    else if (RB_FLOAT_TYPE_P(other)) {
        VALUE v = nurat_to_f(self);
        return rb_flo_div_flo(v, other);
    }
    else if (RB_TYPE_P(other, T_RATIONAL)) {
	if (f_zero_p(other))
            rb_num_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
    }
    else {
	return rb_num_coerce_bin(self, other, '/');
    }
}

#rationalizeself #rationalize(eps) ⇒ Object

Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.

r = Rational(5033165, 16777216)
r.rationalize                    #=> (5033165/16777216)
r.rationalize(Rational('0.01'))  #=> (3/10)
r.rationalize(Rational('0.1'))   #=> (1/3)

Overloads:

  • #rationalizeself

    Returns:

    • (self)


1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
# File 'rational.c', line 1708

static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e, a, b, p, q;
    VALUE rat = self;
    get_dat1(self);

    if (rb_check_arity(argc, 0, 1) == 0)
	return self;

    e = f_abs(argv[0]);

    if (INT_NEGATIVE_P(dat->num)) {
        rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den);
    }

    a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e);
    b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e);

    if (f_eqeq_p(a, b))
	return self;

    nurat_rationalize_internal(a, b, &p, &q);
    if (rat != self) {
        RATIONAL_SET_NUM(rat, rb_int_uminus(p));
        RATIONAL_SET_DEN(rat, q);
        return rat;
    }
    return f_rational_new2(CLASS_OF(self), p, q);
}

#round([ndigits][, half: mode]) ⇒ Integer

Returns rat rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).round      #=> 3
Rational(2, 3).round   #=> 1
Rational(-3, 2).round  #=> -2

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').round(+1).to_f  #=> -123.5
Rational('-123.456').round(-1)       #=> -120

The optional half keyword argument is available similar to Float#round.

Rational(25, 100).round(1, half: :up)    #=> (3/10)
Rational(25, 100).round(1, half: :down)  #=> (1/5)
Rational(25, 100).round(1, half: :even)  #=> (1/5)
Rational(35, 100).round(1, half: :up)    #=> (2/5)
Rational(35, 100).round(1, half: :down)  #=> (3/10)
Rational(35, 100).round(1, half: :even)  #=> (2/5)
Rational(-25, 100).round(1, half: :up)   #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)

Returns:



1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
# File 'rational.c', line 1527

static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
    VALUE opt;
    enum ruby_num_rounding_mode mode = (
        argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
	rb_num_get_rounding_option(opt));
    VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
    return f_round_common(argc, argv, self, round_func);
}

#to_fFloat

Returns the value as a Float.

Rational(2).to_f      #=> 2.0
Rational(9, 4).to_f   #=> 2.25
Rational(-3, 4).to_f  #=> -0.75
Rational(20, 3).to_f  #=> 6.666666666666667

Returns:



1559
1560
1561
1562
1563
# File 'rational.c', line 1559

static VALUE
nurat_to_f(VALUE self)
{
    return DBL2NUM(nurat_to_double(self));
}

#to_iInteger

Returns the truncated value as an integer.

Equivalent to Rational#truncate.

Rational(2, 3).to_i    #=> 0
Rational(3).to_i       #=> 3
Rational(300.6).to_i   #=> 300
Rational(98, 71).to_i  #=> 1
Rational(-31, 2).to_i  #=> -15

Returns:



1267
1268
1269
1270
1271
1272
1273
1274
# File 'rational.c', line 1267

static VALUE
nurat_truncate(VALUE self)
{
    get_dat1(self);
    if (INT_NEGATIVE_P(dat->num))
	return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
    return rb_int_idiv(dat->num, dat->den);
}

#to_rself

Returns self.

Rational(2).to_r      #=> (2/1)
Rational(-8, 6).to_r  #=> (-4/3)

Returns:

  • (self)


1574
1575
1576
1577
1578
# File 'rational.c', line 1574

static VALUE
nurat_to_r(VALUE self)
{
    return self;
}

#to_sString

Returns the value as a string.

Rational(2).to_s      #=> "2/1"
Rational(-8, 6).to_s  #=> "-4/3"
Rational('1/2').to_s  #=> "1/2"

Returns:



1778
1779
1780
1781
1782
# File 'rational.c', line 1778

static VALUE
nurat_to_s(VALUE self)
{
    return f_format(self, f_to_s);
}

#truncate([ndigits]) ⇒ Integer

Returns rat truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a rational when ndigits is positive, otherwise returns an integer.

Rational(3).truncate      #=> 3
Rational(2, 3).truncate   #=> 0
Rational(-3, 2).truncate  #=> -1

  #    decimal      -  1  2  3 . 4  5  6
  #                   ^  ^  ^  ^   ^  ^
  #   precision      -3 -2 -1  0  +1 +2

Rational('-123.456').truncate(+1).to_f  #=> -123.4
Rational('-123.456').truncate(-1)       #=> -120

Returns:



1484
1485
1486
1487
1488
# File 'rational.c', line 1484

static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_truncate);
}