Class: Range
Overview
A Range
represents an interval—a set of values with a beginning and an end. Ranges may be constructed using the s..
e and s...
e literals, or with Range::new. Ranges constructed using ..
run from the beginning to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.
(-1..-5).to_a #=> []
(-5..-1).to_a #=> [-5, -4, -3, -2, -1]
('a'..'e').to_a #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a #=> ["a", "b", "c", "d"]
Custom Objects in Ranges
Ranges can be constructed using any objects that can be compared using the <=>
operator. Methods that treat the range as a sequence (#each and methods inherited from Enumerable) expect the begin object to implement a succ
method to return the next object in sequence. The #step and #include? methods require the begin object to implement succ
or to be numeric.
In the Xs
class below both <=>
and succ
are implemented so Xs
can be used to construct ranges. Note that the Comparable module is included so the ==
method is defined in terms of <=>
.
class Xs # represent a string of 'x's
include Comparable
attr :length
def initialize(n)
@length = n
end
def succ
Xs.new(@length + 1)
end
def <=>(other)
@length <=> other.length
end
def to_s
sprintf "%2d #{inspect}", @length
end
def inspect
'x' * @length
end
end
An example of using Xs
to construct a range:
r = Xs.new(3)..Xs.new(6) #=> xxx..xxxxxx
r.to_a #=> [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5)) #=> true
Instance Method Summary collapse
-
#==(obj) ⇒ Boolean
Returns
true
only ifobj
is a Range, has equivalent begin and end items (by comparing them with==
), and has the same #exclude_end? setting as the range. -
#===(obj) ⇒ Boolean
Returns
true
ifobj
is an element of the range,false
otherwise. -
#begin ⇒ Object
Returns the object that defines the beginning of the range.
-
#bsearch {|obj| ... } ⇒ Object
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
-
#cover?(obj) ⇒ Boolean
Returns
true
ifobj
is between the begin and end of the range. -
#each ⇒ Object
Iterates over the elements of range, passing each in turn to the block.
-
#end ⇒ Object
Returns the object that defines the end of the range.
-
#eql?(obj) ⇒ Boolean
Returns
true
only ifobj
is a Range, has equivalent begin and end items (by comparing them witheql?
), and has the same #exclude_end? setting as the range. -
#exclude_end? ⇒ Boolean
Returns
true
if the range excludes its end value. -
#first(*args) ⇒ Object
Returns the first object in the range, or an array of the first
n
elements. -
#hash ⇒ Fixnum
Compute a hash-code for this range.
-
#include?(val) ⇒ Boolean
Returns
true
ifobj
is an element of the range,false
otherwise. -
#new ⇒ Object
constructor
Constructs a range using the given
begin
andend
. -
#initialize_copy(orig) ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Convert this range object to a printable form (using
inspect
to convert the begin and end objects). -
#last(*args) ⇒ Object
Returns the last object in the range, or an array of the last
n
elements. -
#max(*args) ⇒ Object
Returns the maximum value in the range.
-
#member?(val) ⇒ Boolean
Returns
true
ifobj
is an element of the range,false
otherwise. -
#min(*args) ⇒ Object
Returns the minimum value in the range.
-
#size ⇒ Numeric
Returns the number of elements in the range.
-
#step(*args) ⇒ Object
Iterates over the range, passing each
n
th element to the block. -
#to_s ⇒ String
Convert this range object to a printable form (using #to_s to convert the begin and end objects).
Methods included from Enumerable
#all?, #any?, #chunk, #chunk_while, #collect, #collect_concat, #count, #cycle, #detect, #drop, #drop_while, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #find, #find_all, #find_index, #flat_map, #grep, #grep_v, #group_by, #inject, #lazy, #map, #max_by, #min_by, #minmax, #minmax_by, #none?, #one?, #partition, #reduce, #reject, #reverse_each, #select, #slice_after, #slice_before, #slice_when, #sort, #sort_by, #take, #take_while, #to_a, #to_h, #zip
Constructor Details
#new ⇒ Object
Constructs a range using the given begin
and end
. If the exclude_end
parameter is omitted or is false
, the rng
will include the end object; otherwise, it will be excluded.
98 99 100 101 102 103 104 105 106 107 |
# File 'range.c', line 98
static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
VALUE beg, end, flags;
rb_scan_args(argc, argv, "21", &beg, &end, &flags);
range_modify(range);
range_init(range, beg, end, RBOOL(RTEST(flags)));
return Qnil;
}
|
Instance Method Details
#==(obj) ⇒ Boolean
163 164 165 166 167 168 169 170 171 172 |
# File 'range.c', line 163
static VALUE
range_eq(VALUE range, VALUE obj)
{
if (range == obj)
return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
return Qfalse;
return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}
|
#===(obj) ⇒ Boolean
Returns true
if obj
is an element of the range, false
otherwise. Conveniently, ===
is the comparison operator used by case
statements.
case 79
when 1..50 then print "low\n"
when 51..75 then print "medium\n"
when 76..100 then print "high\n"
end
produces:
high
1134 1135 1136 1137 1138 |
# File 'range.c', line 1134
static VALUE
range_eqq(VALUE range, VALUE val)
{
return rb_funcall(range, rb_intern("include?"), 1, val);
}
|
#begin ⇒ Object
Returns the object that defines the beginning of the range.
(1..10).begin #=> 1
812 813 814 815 816 |
# File 'range.c', line 812
static VALUE
range_begin(VALUE range)
{
return RANGE_BEG(range);
}
|
#bsearch {|obj| ... } ⇒ Object
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.
In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:
-
the block returns false for any value which is less than x, and
-
the block returns true for any value which is greater than or equal to x.
If x is within the range, this method returns the value x. Otherwise, it returns nil.
ary = [0, 4, 7, 10, 12]
(0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
(0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
(0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
(0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil
(0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0
In find-any mode (this behaves like libc’s bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:
-
the block returns a positive number for v if v < x,
-
the block returns zero for v if x <= v < y, and
-
the block returns a negative number for v if y <= v.
This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.
ary = [0, 100, 100, 100, 200]
(0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3
(0..4).bsearch {|i| 300 - ary[i] } #=> nil
(0..4).bsearch {|i| 50 - ary[i] } #=> nil
You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
# File 'range.c', line 574
static VALUE
range_bsearch(VALUE range)
{
VALUE beg, end, satisfied = Qnil;
int smaller;
/* Implementation notes:
* Floats are handled by mapping them to 64 bits integers.
* Apart from sign issues, floats and their 64 bits integer have the
* same order, assuming they are represented as exponent followed
* by the mantissa. This is true with or without implicit bit.
*
* Finding the average of two ints needs to be careful about
* potential overflow (since float to long can use 64 bits)
* as well as the fact that -1/2 can be 0 or -1 in C89.
*
* Note that -0.0 is mapped to the same int as 0.0 as we don't want
* (-1...0.0).bsearch to yield -0.0.
*/
#define BSEARCH_CHECK(expr) \
do { \
VALUE val = (expr); \
VALUE v = rb_yield(val); \
if (FIXNUM_P(v)) { \
if (v == INT2FIX(0)) return val; \
smaller = (SIGNED_VALUE)v < 0; \
} \
else if (v == Qtrue) { \
satisfied = val; \
smaller = 1; \
} \
else if (v == Qfalse || v == Qnil) { \
smaller = 0; \
} \
else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \
int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \
if (!cmp) return val; \
smaller = cmp < 0; \
} \
else { \
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \
" (must be numeric, true, false or nil)", \
rb_obj_class(v)); \
} \
} while (0)
#define BSEARCH(conv) \
do { \
RETURN_ENUMERATOR(range, 0, 0); \
if (EXCL(range)) high--; \
org_high = high; \
while (low < high) { \
mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
: (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \
BSEARCH_CHECK(conv(mid)); \
if (smaller) { \
high = mid; \
} \
else { \
low = mid + 1; \
} \
} \
if (low == org_high) { \
BSEARCH_CHECK(conv(low)); \
if (!smaller) return Qnil; \
} \
return satisfied; \
} while (0)
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (FIXNUM_P(beg) && FIXNUM_P(end)) {
long low = FIX2LONG(beg);
long high = FIX2LONG(end);
long mid, org_high;
BSEARCH(INT2FIX);
}
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) {
int64_t low = double_as_int64(RFLOAT_VALUE(rb_Float(beg)));
int64_t high = double_as_int64(RFLOAT_VALUE(rb_Float(end)));
int64_t mid, org_high;
BSEARCH(int64_as_double_to_num);
}
#endif
else if (is_integer_p(beg) && is_integer_p(end)) {
VALUE low = rb_to_int(beg);
VALUE high = rb_to_int(end);
VALUE mid, org_high;
RETURN_ENUMERATOR(range, 0, 0);
if (EXCL(range)) high = rb_funcall(high, '-', 1, INT2FIX(1));
org_high = high;
while (rb_cmpint(rb_funcall(low, id_cmp, 1, high), low, high) < 0) {
mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2));
BSEARCH_CHECK(mid);
if (smaller) {
high = mid;
}
else {
low = rb_funcall(mid, '+', 1, INT2FIX(1));
}
}
if (rb_equal(low, org_high)) {
BSEARCH_CHECK(low);
if (!smaller) return Qnil;
}
return satisfied;
}
else {
rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
}
return range;
}
|
#cover?(obj) ⇒ Boolean
Returns true
if obj
is between the begin and end of the range.
This tests begin <= obj <= end
when #exclude_end? is false
and begin <= obj < end
when #exclude_end? is true
.
("a".."z").cover?("c") #=> true
("a".."z").cover?("5") #=> false
("a".."z").cover?("cc") #=> true
1192 1193 1194 1195 1196 1197 1198 1199 1200 |
# File 'range.c', line 1192
static VALUE
range_cover(VALUE range, VALUE val)
{
VALUE beg, end;
beg = RANGE_BEG(range);
end = RANGE_END(range);
return r_cover_p(range, beg, end, val);
}
|
#each {|i| ... } ⇒ Object #each ⇒ Object
Iterates over the elements of range, passing each in turn to the block.
The each
method can only be used if the begin object of the range supports the succ
method. A TypeError is raised if the object does not have succ
method defined (like Float).
If no block is given, an enumerator is returned instead.
(10..15).each {|n| print n, ' ' }
# prints: 10 11 12 13 14 15
(2.5..5).each {|n| print n, ' ' }
# raises: TypeError: can't iterate from Float
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
# File 'range.c', line 755
static VALUE
range_each(VALUE range)
{
VALUE beg, end;
RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
long lim = FIX2LONG(end);
long i;
if (!EXCL(range))
lim += 1;
for (i = FIX2LONG(beg); i < lim; i++) {
rb_yield(LONG2FIX(i));
}
}
else if (SYMBOL_P(beg) && SYMBOL_P(end)) { /* symbols are special */
VALUE args[2];
args[0] = rb_sym2str(end);
args[1] = EXCL(range) ? Qtrue : Qfalse;
rb_block_call(rb_sym2str(beg), rb_intern("upto"), 2, args, sym_each_i, 0);
}
else {
VALUE tmp = rb_check_string_type(beg);
if (!NIL_P(tmp)) {
VALUE args[2];
args[0] = end;
args[1] = EXCL(range) ? Qtrue : Qfalse;
rb_block_call(tmp, rb_intern("upto"), 2, args, each_i, 0);
}
else {
if (!discrete_object_p(beg)) {
rb_raise(rb_eTypeError, "can't iterate from %s",
rb_obj_classname(beg));
}
range_each_func(range, each_i, 0);
}
}
return range;
}
|
#end ⇒ Object
Returns the object that defines the end of the range.
(1..10).end #=> 10
(1...10).end #=> 10
830 831 832 833 834 |
# File 'range.c', line 830
static VALUE
range_end(VALUE range)
{
return RANGE_END(range);
}
|
#eql?(obj) ⇒ Boolean
217 218 219 220 221 222 223 224 225 |
# File 'range.c', line 217
static VALUE
range_eql(VALUE range, VALUE obj)
{
if (range == obj)
return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
return Qfalse;
return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}
|
#exclude_end? ⇒ Boolean
Returns true
if the range excludes its end value.
(1..5).exclude_end? #=> false
(1...5).exclude_end? #=> true
128 129 130 131 132 |
# File 'range.c', line 128
static VALUE
range_exclude_end_p(VALUE range)
{
return EXCL(range) ? Qtrue : Qfalse;
}
|
#first ⇒ Object #first(n) ⇒ Array
Returns the first object in the range, or an array of the first n
elements.
(10..20).first #=> 10
(10..20).first(3) #=> [10, 11, 12]
864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
# File 'range.c', line 864
static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
VALUE n, ary[2];
if (argc == 0) return RANGE_BEG(range);
rb_scan_args(argc, argv, "1", &n);
ary[0] = n;
ary[1] = rb_ary_new2(NUM2LONG(n));
rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);
return ary[1];
}
|
#hash ⇒ Fixnum
Compute a hash-code for this range. Two ranges with equal begin and end points (using eql?
), and the same #exclude_end? value will generate the same hash-code.
See also Object#hash.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# File 'range.c', line 238
static VALUE
range_hash(VALUE range)
{
st_index_t hash = EXCL(range);
VALUE v;
hash = rb_hash_start(hash);
v = rb_hash(RANGE_BEG(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
v = rb_hash(RANGE_END(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
hash = rb_hash_uint(hash, EXCL(range) << 24);
hash = rb_hash_end(hash);
return LONG2FIX(hash);
}
|
#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean
Returns true
if obj
is an element of the range, false
otherwise. If begin and end are numeric, comparison is done according to the magnitude of the values.
("a".."z").include?("g") #=> true
("a".."z").include?("A") #=> false
("a".."z").include?("cc") #=> false
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
# File 'range.c', line 1155
static VALUE
range_include(VALUE range, VALUE val)
{
VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int nv = FIXNUM_P(beg) || FIXNUM_P(end) ||
linear_object_p(beg) || linear_object_p(end);
if (nv ||
!NIL_P(rb_check_to_integer(beg, "to_int")) ||
!NIL_P(rb_check_to_integer(end, "to_int"))) {
return r_cover_p(range, beg, end, val);
}
else if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING)) {
VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive);
return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range));
}
/* TODO: ruby_frame->this_func = rb_intern("include?"); */
return rb_call_super(1, &val);
}
|
#initialize_copy(orig) ⇒ Object
:nodoc:
110 111 112 113 114 115 116 |
# File 'range.c', line 110
static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
range_modify(range);
rb_struct_init_copy(range, orig);
return range;
}
|
#inspect ⇒ String
Convert this range object to a printable form (using inspect
to convert the begin and end objects).
1109 1110 1111 1112 1113 |
# File 'range.c', line 1109
static VALUE
range_inspect(VALUE range)
{
return rb_exec_recursive(inspect_range, range, 0);
}
|
#last ⇒ Object #last(n) ⇒ Array
Returns the last object in the range, or an array of the last n
elements.
Note that with no arguments last
will return the object that defines the end of the range even if #exclude_end? is true
.
(10..20).last #=> 20
(10...20).last #=> 20
(10..20).last(3) #=> [18, 19, 20]
(10...20).last(3) #=> [17, 18, 19]
897 898 899 900 901 902 |
# File 'range.c', line 897
static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
if (argc == 0) return RANGE_END(range);
return rb_ary_last(argc, argv, rb_Array(range));
}
|
#max ⇒ Object #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object
Returns the maximum value in the range. Returns nil
if the begin value of the range larger than the end value.
Can be given an optional block to override the default comparison method a <=> b
.
(10..20).max #=> 20
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
# File 'range.c', line 958
static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
VALUE e = RANGE_END(range);
int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);
if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
return rb_call_super(argc, argv);
}
else {
VALUE b = RANGE_BEG(range);
int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e);
if (c > 0)
return Qnil;
if (EXCL(range)) {
if (!FIXNUM_P(e) && !rb_obj_is_kind_of(e, rb_cInteger)) {
rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
}
if (c == 0) return Qnil;
if (!FIXNUM_P(b) && !rb_obj_is_kind_of(b,rb_cInteger)) {
rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
}
if (FIXNUM_P(e)) {
return LONG2NUM(FIX2LONG(e) - 1);
}
return rb_funcall(e, '-', 1, INT2FIX(1));
}
return e;
}
}
|
#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean
Returns true
if obj
is an element of the range, false
otherwise. If begin and end are numeric, comparison is done according to the magnitude of the values.
("a".."z").include?("g") #=> true
("a".."z").include?("A") #=> false
("a".."z").include?("cc") #=> false
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
# File 'range.c', line 1155
static VALUE
range_include(VALUE range, VALUE val)
{
VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int nv = FIXNUM_P(beg) || FIXNUM_P(end) ||
linear_object_p(beg) || linear_object_p(end);
if (nv ||
!NIL_P(rb_check_to_integer(beg, "to_int")) ||
!NIL_P(rb_check_to_integer(end, "to_int"))) {
return r_cover_p(range, beg, end, val);
}
else if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING)) {
VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive);
return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range));
}
/* TODO: ruby_frame->this_func = rb_intern("include?"); */
return rb_call_super(1, &val);
}
|
#min ⇒ Object #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array
Returns the minimum value in the range. Returns nil
if the begin value of the range is larger than the end value.
Can be given an optional block to override the default comparison method a <=> b
.
(10..20).min #=> 10
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
# File 'range.c', line 922
static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
if (rb_block_given_p()) {
return rb_call_super(argc, argv);
}
else if (argc != 0) {
return range_first(argc, argv, range);
}
else {
VALUE b = RANGE_BEG(range);
VALUE e = RANGE_END(range);
int c = rb_cmpint(rb_funcall(b, id_cmp, 1, e), b, e);
if (c > 0 || (c == 0 && EXCL(range)))
return Qnil;
return b;
}
}
|
#size ⇒ Numeric
718 719 720 721 722 723 724 725 726 |
# File 'range.c', line 718
static VALUE
range_size(VALUE range)
{
VALUE b = RANGE_BEG(range), e = RANGE_END(range);
if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) {
return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
}
return Qnil;
}
|
#step(n = 1) {|obj| ... } ⇒ Object #step(n = 1) ⇒ Object
Iterates over the range, passing each n
th element to the block. If begin and end are numeric, n
is added for each iteration. Otherwise step
invokes succ
to iterate through range elements.
If no block is given, an enumerator is returned instead.
range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}
produces:
1 x
3 xxx
5 xxxxx
7 xxxxxxx
9 xxxxxxxxx
1 x
4 xxxx
7 xxxxxxx
10 xxxxxxxxxx
See Range for the definition of class Xs.
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# File 'range.c', line 394
static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
VALUE b, e, step, tmp;
RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
b = RANGE_BEG(range);
e = RANGE_END(range);
if (argc == 0) {
step = INT2FIX(1);
}
else {
rb_scan_args(argc, argv, "01", &step);
if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
step = rb_to_int(step);
}
if (rb_funcall(step, '<', 1, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be negative");
}
else if (!rb_funcall(step, '>', 1, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
long end = FIX2LONG(e);
long i, unit = FIX2LONG(step);
if (!EXCL(range))
end += 1;
i = FIX2LONG(b);
while (i < end) {
rb_yield(LONG2NUM(i));
if (i + unit < i) break;
i += unit;
}
}
else if (SYMBOL_P(b) && SYMBOL_P(e)) { /* symbols are special */
VALUE args[2], iter[2];
args[0] = rb_sym2str(e);
args[1] = EXCL(range) ? Qtrue : Qfalse;
iter[0] = INT2FIX(1);
iter[1] = step;
rb_block_call(rb_sym2str(b), rb_intern("upto"), 2, args, sym_step_i, (VALUE)iter);
}
else if (ruby_float_step(b, e, step, EXCL(range))) {
/* done */
}
else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
!NIL_P(rb_check_to_integer(b, "to_int")) ||
!NIL_P(rb_check_to_integer(e, "to_int"))) {
ID op = EXCL(range) ? '<' : idLE;
VALUE v = b;
int i = 0;
while (RTEST(rb_funcall(v, op, 1, e))) {
rb_yield(v);
i++;
v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
}
}
else {
tmp = rb_check_string_type(b);
if (!NIL_P(tmp)) {
VALUE args[2], iter[2];
b = tmp;
args[0] = e;
args[1] = EXCL(range) ? Qtrue : Qfalse;
iter[0] = INT2FIX(1);
iter[1] = step;
rb_block_call(b, rb_intern("upto"), 2, args, step_i, (VALUE)iter);
}
else {
VALUE args[2];
if (!discrete_object_p(b)) {
rb_raise(rb_eTypeError, "can't iterate from %s",
rb_obj_classname(b));
}
args[0] = INT2FIX(1);
args[1] = step;
range_each_func(range, step_i, (VALUE)args);
}
}
return range;
}
|
#to_s ⇒ String
Convert this range object to a printable form (using #to_s to convert the begin and end objects).
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 |
# File 'range.c', line 1066
static VALUE
range_to_s(VALUE range)
{
VALUE str, str2;
str = rb_obj_as_string(RANGE_BEG(range));
str2 = rb_obj_as_string(RANGE_END(range));
str = rb_str_dup(str);
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
rb_str_append(str, str2);
OBJ_INFECT(str, range);
return str;
}
|