Module: Enumerable
- Included in:
- Array, Dir, Enumerator, Enumerator::Generator, Hash, IO, ObjectSpace::WeakMap, Range, Struct
- Defined in:
- enum.c
Overview
The Enumerable
mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method each
, which yields successive members of the collection. If Enumerable#max
, #min
, or #sort
is used, the objects in the collection must also implement a meaningful <=>
operator, as these methods rely on an ordering between members of the collection.
Instance Method Summary collapse
-
#all? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block.
-
#any? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block.
-
#chunk {|elt| ... } ⇒ Object
Enumerates over the items, chunking them together based on the return value of the block.
-
#chunk_while {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements.
-
#collect ⇒ Object
Returns a new array with the results of running block once for every element in enum.
-
#collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
-
#count(*args) ⇒ Object
Returns the number of items in
enum
through enumeration. -
#cycle(*args) ⇒ Object
Calls block for each element of enum repeatedly n times or forever if none or
nil
is given. -
#detect(*args) ⇒ Object
Passes each entry in enum to block.
-
#drop(n) ⇒ Array
Drops first n elements from enum, and returns rest elements in an array.
-
#drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns
nil
orfalse
and returns an array containing the remaining elements. -
#each_cons(n) ⇒ Object
Iterates the given block for each array of consecutive <n> elements.
-
#each_entry(*args) ⇒ Object
Calls block once for each element in
self
, passing that element as a parameter, converting multiple values from yield to an array. -
#each_slice(n) ⇒ Object
Iterates the given block for each slice of <n> elements.
-
#each_with_index(*args) ⇒ Object
Calls block with two arguments, the item and its index, for each item in enum.
-
#each_with_object(memo) ⇒ Object
Iterates the given block for each element with an arbitrary object given, and returns the initially given object.
-
#entries(*args) ⇒ Object
Returns an array containing the items in enum.
-
#find(*args) ⇒ Object
Passes each entry in enum to block.
-
#find_all ⇒ Object
Returns an array containing all elements of
enum
for which the givenblock
returns a true value. -
#find_index(*args) ⇒ Object
Compares each entry in enum with value or passes to block.
-
#first(*args) ⇒ Object
Returns the first element, or the first
n
elements, of the enumerable. -
#flat_map ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
-
#grep(pat) ⇒ Object
Returns an array of every element in enum for which
Pattern === element
. -
#grep_v(pat) ⇒ Object
Inverted version of Enumerable#grep.
-
#group_by ⇒ Object
Groups the collection by result of the block.
-
#include?(val) ⇒ Boolean
Returns
true
if any member of enum equals obj. -
#inject(*args) ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
-
#lazy ⇒ Object
Returns a lazy enumerator, whose methods map/collect, flat_map/collect_concat, select/find_all, reject, grep, grep_v, zip, take, take_while, drop, and drop_while enumerate values only on an as-needed basis.
-
#map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
-
#max(*args) ⇒ Object
Returns the object in enum with the maximum value.
-
#max_by(*args) ⇒ Object
Returns the object in enum that gives the maximum value from the given block.
-
#member?(val) ⇒ Boolean
Returns
true
if any member of enum equals obj. -
#min(*args) ⇒ Object
Returns the object in enum with the minimum value.
-
#min_by(*args) ⇒ Object
Returns the object in enum that gives the minimum value from the given block.
-
#minmax ⇒ Object
Returns a two element array which contains the minimum and the maximum value in the enumerable.
-
#minmax_by ⇒ Object
Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.
-
#none? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block.
-
#one? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block.
-
#partition ⇒ Object
Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.
-
#reduce(*args) ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
-
#reject ⇒ Object
Returns an array for all elements of
enum
for which the givenblock
returns false. -
#reverse_each(*args) ⇒ Object
Builds a temporary array and traverses that array in reverse order.
-
#select ⇒ Object
Returns an array containing all elements of
enum
for which the givenblock
returns a true value. -
#slice_after(*args) ⇒ Object
Creates an enumerator for each chunked elements.
-
#slice_before(*args) ⇒ Object
Creates an enumerator for each chunked elements.
-
#slice_when {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements.
-
#sort ⇒ Object
Returns an array containing the items in enum sorted, either according to their own
<=>
method, or by using the results of the supplied block. -
#sort_by ⇒ Object
Sorts enum using a set of keys generated by mapping the values in enum through the given block.
-
#take(n) ⇒ Array
Returns first n elements from enum.
-
#take_while ⇒ Object
Passes elements to the block until the block returns
nil
orfalse
, then stops iterating and returns an array of all prior elements. -
#to_a(*args) ⇒ Object
Returns an array containing the items in enum.
-
#to_h(*args) ⇒ Hash
Returns the result of interpreting enum as a list of
[key, value]
pairs. -
#zip(*args) ⇒ Object
Takes one element from enum and merges corresponding elements from each args.
Instance Method Details
#all? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block never returns false
or nil
. If the block is not given, Ruby adds an implicit block of { |obj| obj }
which will cause #all? to return true
when none of the collection members are false
or nil
.
%w[ant bear cat].all? { |word| word.length >= 3 } #=> true
%w[ant bear cat].all? { |word| word.length >= 4 } #=> false
[nil, true, 99].all? #=> false
1093 1094 1095 1096 1097 1098 1099 |
# File 'enum.c', line 1093
static VALUE
enum_all(VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qtrue, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
return memo->v1;
}
|
#any? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block ever returns a value other than false
or nil
. If the block is not given, Ruby adds an implicit block of { |obj| obj }
that will cause #any? to return true
if at least one of the collection members is not false
or nil
.
%w[ant bear cat].any? { |word| word.length >= 3 } #=> true
%w[ant bear cat].any? { |word| word.length >= 4 } #=> true
[nil, true, 99].any? #=> true
1127 1128 1129 1130 1131 1132 1133 |
# File 'enum.c', line 1127
static VALUE
enum_any(VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qfalse, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
return memo->v1;
}
|
#chunk {|elt| ... } ⇒ Object
Enumerates over the items, chunking them together based on the return value of the block.
Consecutive elements which return the same block value are chunked together.
For example, consecutive even numbers and odd numbers can be chunked as follows.
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
n.even?
}.each { |even, ary|
p [even, ary]
}
#=> [false, [3, 1]]
# [true, [4]]
# [false, [1, 5, 9]]
# [true, [2, 6]]
# [false, [5, 3, 5]]
This method is especially useful for sorted series of elements. The following example counts words for each initial letter.
open("/usr/share/dict/words", "r:iso-8859-1") { |f|
f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
}
#=> ["\n", 1]
# ["A", 1327]
# ["B", 1372]
# ["C", 1507]
# ["D", 791]
# ...
The following key values have special meaning:
-
nil
and:_separator
specifies that the elements should be dropped. -
:_alone
specifies that the element should be chunked by itself.
Any other symbols that begin with an underscore will raise an error:
items.chunk { |item| :_underscore }
#=> RuntimeError: symbols beginning with an underscore are reserved
nil
and :_separator
can be used to ignore some elements.
For example, the sequence of hyphens in svn log can be eliminated as follows:
sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
f.chunk { |line|
line != sep || nil
}.each { |_, lines|
pp lines
}
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
# "\n",
# "* README, README.ja: Update the portability section.\n",
# "\n"]
# ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
# "\n",
# "* README, README.ja: Add a note about default C flags.\n",
# "\n"]
# ...
Paragraphs separated by empty lines can be parsed as follows:
File.foreach("README").chunk { |line|
/\A\s*\z/ !~ line || nil
}.each { |_, lines|
pp lines
}
:_alone
can be used to force items into their own chunk. For example, you can put lines that contain a URL by themselves, and chunk the rest of the lines together, like this:
pattern = /http/
open(filename) { |f|
f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
pp lines
}
}
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 |
# File 'enum.c', line 2904
static VALUE
enum_chunk(VALUE enumerable)
{
VALUE enumerator;
if (!rb_block_given_p())
rb_raise(rb_eArgError, "no block given");
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
return enumerator;
}
|
#chunk_while {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.
This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns false.
The block is called the length of the receiver enumerator minus one.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as to_a
, map
, etc., are also usable.
For example, one-by-one increasing subsequence can be chunked as follows:
a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.chunk_while {|i, j| i+1 == j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"
Increasing (non-decreasing) subsequence can be chunked as follows:
a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.chunk_while {|i, j| i <= j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)
a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.chunk_while {|i, j| i.even? == j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 |
# File 'enum.c', line 3454
static VALUE
enum_chunk_while(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
|
#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collect ⇒ Object #map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
(1..4).map { |i| i*i } #=> [1, 4, 9, 16]
(1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
468 469 470 471 472 473 474 475 476 477 478 479 |
# File 'enum.c', line 468
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, collect_i, ary);
return ary;
}
|
#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_map ⇒ Object #collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
515 516 517 518 519 520 521 522 523 524 525 526 |
# File 'enum.c', line 515
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
|
#count ⇒ Integer #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer
Returns the number of items in enum
through enumeration. If an argument is given, the number of items in enum
that are equal to item
are counted. If a block is given, it counts the number of elements yielding a true value.
ary = [1, 2, 4, 2]
ary.count #=> 4
ary.count(2) #=> 2
ary.count{ |x| x%2==0 } #=> 3
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'enum.c', line 172
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE item = Qnil;
struct MEMO *memo;
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &item);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo = MEMO_NEW(item, 0, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return INT2NUM(memo->u3.cnt);
}
|
#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object
Calls block for each element of enum repeatedly n times or forever if none or nil
is given. If a non-positive number is given or the collection is empty, does nothing. Returns nil
if the loop has finished without getting interrupted.
Enumerable#cycle saves elements in an internal array so changes to enum after the first pass have no effect.
If no block is given, an enumerator is returned instead.
a = ["a", "b", "c"]
a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 |
# File 'enum.c', line 2713
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_scan_args(argc, argv, "01", &nv);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
if (NIL_P(nv)) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
RBASIC_CLEAR_CLASS(ary);
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; i<len; i++) {
rb_yield(RARRAY_AREF(ary, i));
}
}
return Qnil;
}
|
#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object
Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil
otherwise.
If no block is given, an enumerator is returned instead.
(1..10).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
(1..100).find { |i| i % 5 == 0 and i % 7 == 0 } #=> 35
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'enum.c', line 233
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE if_none;
rb_scan_args(argc, argv, "01", &if_none);
RETURN_ENUMERATOR(obj, argc, argv);
memo = MEMO_NEW(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->v1;
}
if (!NIL_P(if_none)) {
return rb_funcallv(if_none, id_call, 0, 0);
}
return Qnil;
}
|
#drop(n) ⇒ Array
Drops first n elements from enum, and returns rest elements in an array.
a = [1, 2, 3, 4, 5, 0]
a.drop(3) #=> [4, 5, 0]
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'enum.c', line 2602
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE result;
struct MEMO *memo;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
result = rb_ary_new();
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
return result;
}
|
#drop_while {|arr| ... } ⇒ Array #drop_while ⇒ Object
Drops elements up to, but not including, the first element for which the block returns nil
or false
and returns an array containing the remaining elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 |
# File 'enum.c', line 2651
static VALUE
enum_drop_while(VALUE obj)
{
VALUE result;
struct MEMO *memo;
RETURN_ENUMERATOR(obj, 0, 0);
result = rb_ary_new();
memo = MEMO_NEW(result, 0, FALSE);
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
return result;
}
|
#each_cons(n) { ... } ⇒ nil #each_cons(n) ⇒ Object
Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.
e.g.:
(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 |
# File 'enum.c', line 2302
static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
arity = rb_block_arity();
if (enum_size_over_p(obj, size)) return Qnil;
memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
return Qnil;
}
|
#each_entry {|obj| ... } ⇒ Enumerator #each_entry ⇒ Object
Calls block once for each element in self
, passing that element as a parameter, converting multiple values from yield to an array.
If no block is given, an enumerator is returned instead.
class Foo
include Enumerable
def each
yield 1
yield 1, 2
yield
end
end
Foo.new.each_entry{ |o| p o }
produces:
1
[1, 2]
nil
2159 2160 2161 2162 2163 2164 2165 |
# File 'enum.c', line 2159
static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
return obj;
}
|
#each_slice(n) { ... } ⇒ nil #each_slice(n) ⇒ Object
Iterates the given block for each slice of <n> elements. If no block is given, returns an enumerator.
(1..10).each_slice(3) { |a| p a }
# outputs below
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 |
# File 'enum.c', line 2224
static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE ary;
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
size = limit_by_enum_size(obj, size);
ary = rb_ary_new2(size);
arity = rb_block_arity();
memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
ary = memo->v1;
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
return Qnil;
}
|
#each_with_index(*args) {|obj, i| ... } ⇒ Enumerator #each_with_index(*args) ⇒ Object
Calls block with two arguments, the item and its index, for each item in enum. Given arguments are passed through to #each().
If no block is given, an enumerator is returned instead.
hash = Hash.new
%w(cat dog wombat).each_with_index { |item, index|
hash[item] = index
}
hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 |
# File 'enum.c', line 2073
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
memo = MEMO_NEW(0, 0, 0);
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
return obj;
}
|
#each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object #each_with_object(obj) ⇒ Object
Iterates the given block for each element with an arbitrary object given, and returns the initially given object.
If no block is given, returns an enumerator.
evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
#=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
2340 2341 2342 2343 2344 2345 2346 2347 2348 |
# File 'enum.c', line 2340
static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
return memo;
}
|
#to_a(*args) ⇒ Array #entries(*args) ⇒ Array
Returns an array containing the items in enum.
(1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
require 'prime'
Prime.entries 10 #=> [2, 3, 5, 7]
541 542 543 544 545 546 547 548 549 550 |
# File 'enum.c', line 541
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
OBJ_INFECT(ary, obj);
return ary;
}
|
#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object
Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil
otherwise.
If no block is given, an enumerator is returned instead.
(1..10).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
(1..100).find { |i| i % 5 == 0 and i % 7 == 0 } #=> 35
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'enum.c', line 233
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE if_none;
rb_scan_args(argc, argv, "01", &if_none);
RETURN_ENUMERATOR(obj, argc, argv);
memo = MEMO_NEW(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->v1;
}
if (!NIL_P(if_none)) {
return rb_funcallv(if_none, id_call, 0, 0);
}
return Qnil;
}
|
#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_all ⇒ Object #select ⇒ Object
Returns an array containing all elements of enum
for which the given block
returns a true value.
If no block is given, an Enumerator is returned instead.
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
See also Enumerable#reject.
380 381 382 383 384 385 386 387 388 389 390 391 |
# File 'enum.c', line 380
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
|
#find_index(value) ⇒ Integer? #find_index {|obj| ... } ⇒ Integer? #find_index ⇒ Object
Compares each entry in enum with value or passes to block. Returns the index for the first for which the evaluated value is non-false. If no object matches, returns nil
If neither block nor argument is given, an enumerator is returned instead.
(1..10).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
(1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> 34
(1..100).find_index(50) #=> 49
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# File 'enum.c', line 299
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo; /* [return value, current index, ] */
VALUE condition_value = Qnil;
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &condition_value);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo = MEMO_NEW(Qnil, condition_value, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo->v1;
}
|
#first ⇒ Object? #first(n) ⇒ Array
Returns the first element, or the first n
elements, of the enumerable. If the enumerable is empty, the first form returns nil
, and the second form returns an empty array.
%w[foo bar baz].first #=> "foo"
%w[foo bar baz].first(2) #=> ["foo", "bar"]
%w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
[].first #=> nil
[].first(10) #=> []
835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
# File 'enum.c', line 835
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
rb_check_arity(argc, 0, 1);
if (argc > 0) {
return enum_take(obj, argv[0]);
}
else {
memo = MEMO_NEW(Qnil, 0, 0);
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
return memo->v1;
}
}
|
#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_map ⇒ Object #collect_concat ⇒ Object
Returns a new array with the concatenated results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
515 516 517 518 519 520 521 522 523 524 525 526 |
# File 'enum.c', line 515
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
|
#grep(pattern) ⇒ Array #grep(pattern) {|obj| ... } ⇒ Array
Returns an array of every element in enum for which Pattern === element
. If the optional block is supplied, each matching element is passed to it, and the block’s result is stored in the output array.
(1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) { |v| IO.const_get(v) }
res #=> [0, 1, 2]
84 85 86 87 88 89 90 91 92 93 |
# File 'enum.c', line 84
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
|
#grep_v(pattern) ⇒ Array #grep_v(pattern) {|obj| ... } ⇒ Array
Inverted version of Enumerable#grep. Returns an array of every element in enum for which not Pattern === element
.
(1..10).grep_v 2..5 #=> [1, 6, 7, 8, 9, 10]
res =(1..10).grep_v(2..5) { |v| v * 2 }
res #=> [2, 12, 14, 16, 18, 20]
110 111 112 113 114 115 116 117 118 119 |
# File 'enum.c', line 110
static VALUE
enum_grep_v(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
|
#group_by {|obj| ... } ⇒ Hash #group_by ⇒ Object
Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and the values are arrays of elements in the collection that correspond to the key.
If no block is given an enumerator is returned.
(1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
790 791 792 793 794 795 796 797 798 799 800 801 802 |
# File 'enum.c', line 790
static VALUE
enum_group_by(VALUE obj)
{
VALUE hash;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
hash = rb_hash_new();
rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
OBJ_INFECT(hash, obj);
return hash;
}
|
#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean
2037 2038 2039 2040 2041 2042 2043 2044 |
# File 'enum.c', line 2037
static VALUE
enum_member(VALUE obj, VALUE val)
{
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
|
#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.
If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.
# Sum some numbers
(5..10).reduce(:+) #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n } #=> 45
# Multiply some numbers
(5..10).reduce(1, :*) #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
memo.length > word.length ? memo : word
end
longest #=> "sheep"
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# File 'enum.c', line 674
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE init, op;
rb_block_call_func *iter = inject_i;
ID id;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
init = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
id = rb_check_id(&init);
op = id ? ID2SYM(id) : init;
init = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
id = rb_check_id(&op);
if (id) op = ID2SYM(id);
iter = inject_op_i;
break;
}
memo = MEMO_NEW(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo->v1 == Qundef) return Qnil;
return memo->v1;
}
|
#lazy ⇒ Object
Returns a lazy enumerator, whose methods map/collect, flat_map/collect_concat, select/find_all, reject, grep, grep_v, zip, take, take_while, drop, and drop_while enumerate values only on an as-needed basis. However, if a block is given to zip, values are enumerated immediately.
Example
The following program finds pythagorean triples:
def pythagorean_triples
(1..Float::INFINITY).lazy.flat_map {|z|
(1..z).flat_map {|x|
(x..z).select {|y|
x**2 + y**2 == z**2
}.map {|y|
[x, y, z]
}
}
}
end
# show first ten pythagorean triples
p pythagorean_triples.take(10).force # take is lazy, so force is needed
p pythagorean_triples.first(10) # first is eager
# show pythagorean triples less than 100
p pythagorean_triples.take_while { |*, z| z < 100 }.force
1452 1453 1454 1455 1456 1457 1458 1459 |
# File 'enumerator.c', line 1452
static VALUE
enumerable_lazy(VALUE obj)
{
VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size);
/* Qfalse indicates that the Enumerator::Lazy has no method name */
rb_ivar_set(result, id_method, Qfalse);
return result;
}
|
#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collect ⇒ Object #map ⇒ Object
Returns a new array with the results of running block once for every element in enum.
If no block is given, an enumerator is returned instead.
(1..4).map { |i| i*i } #=> [1, 4, 9, 16]
(1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
468 469 470 471 472 473 474 475 476 477 478 479 |
# File 'enum.c', line 468
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, collect_i, ary);
return ary;
}
|
#max ⇒ Object #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object
Returns the object in enum with the maximum value. The first form assumes all objects implement Comparable
; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.max #=> "horse"
a.max { |a, b| a.length <=> b.length } #=> "albatross"
If the n
argument is given, maximum n
elements are returned as an array.
a = %w[albatross dog horse]
a.max(2) #=> ["horse", "dog"]
a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"]
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 |
# File 'enum.c', line 1565
static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
VALUE result;
VALUE num;
rb_scan_args(argc, argv, "01", &num);
if (!NIL_P(num))
return nmin_run(obj, num, 0, 1);
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
}
result = memo->v1;
if (result == Qundef) return Qnil;
return result;
}
|
#max_by {|obj| ... } ⇒ Object #max_by ⇒ Object #max_by(n) {|obj| ... } ⇒ Object #max_by(n) ⇒ Object
Returns the object in enum that gives the maximum value from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.max_by { |x| x.length } #=> "albatross"
If the n
argument is given, minimum n
elements are returned as an array.
a = %w[albatross dog horse]
a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
enum.max_by(n) can be used to implement weighted random sampling. Following example implements and use Enumerable#wsample.
module Enumerable
# weighted random sampling.
#
# Pavlos S. Efraimidis, Paul G. Spirakis
# Weighted random sampling with a reservoir
# Information Processing Letters
# Volume 97, Issue 5 (16 March 2006)
def wsample(n)
self.max_by(n) {|v| rand ** (1.0/yield(v)) }
end
end
e = (-20..20).to_a*10000
a = e.wsample(20000) {|x|
Math.exp(-(x/5.0)**2) # normal distribution
}
# a is 20000 samples from e.
p a.length #=> 20000
h = a.group_by {|x| x }
-10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
#=> *
# ***
# ******
# ***********
# ******************
# *****************************
# *****************************************
# ****************************************************
# ***************************************************************
# ********************************************************************
# ***********************************************************************
# ***********************************************************************
# **************************************************************
# ****************************************************
# ***************************************
# ***************************
# ******************
# ***********
# *******
# ***
# *
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 |
# File 'enum.c', line 1886
static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_scan_args(argc, argv, "01", &num);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (!NIL_P(num))
return nmin_run(obj, num, 1, 1);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo->v2;
}
|
#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean
2037 2038 2039 2040 2041 2042 2043 2044 |
# File 'enum.c', line 2037
static VALUE
enum_member(VALUE obj, VALUE val)
{
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
|
#min ⇒ Object #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array
Returns the object in enum with the minimum value. The first form assumes all objects implement Comparable
; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.min #=> "albatross"
a.min { |a, b| a.length <=> b.length } #=> "dog"
If the n
argument is given, minimum n
elements are returned as an array.
a = %w[albatross dog horse]
a.min(2) #=> ["albatross", "dog"]
a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"]
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 |
# File 'enum.c', line 1479
static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
VALUE result;
VALUE num;
rb_scan_args(argc, argv, "01", &num);
if (!NIL_P(num))
return nmin_run(obj, num, 0, 0);
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)memo);
}
result = memo->v1;
if (result == Qundef) return Qnil;
return result;
}
|
#min_by {|obj| ... } ⇒ Object #min_by ⇒ Object #min_by(n) {|obj| ... } ⇒ Array #min_by(n) ⇒ Object
Returns the object in enum that gives the minimum value from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.min_by { |x| x.length } #=> "dog"
If the n
argument is given, minimum n
elements are returned as an array.
a = %w[albatross dog horse]
p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 |
# File 'enum.c', line 1781
static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_scan_args(argc, argv, "01", &num);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (!NIL_P(num))
return nmin_run(obj, num, 1, 0);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo->v2;
}
|
#minmax ⇒ Array #minmax {|a, b| ... } ⇒ Array
Returns a two element array which contains the minimum and the maximum value in the enumerable. The first form assumes all objects implement Comparable
; the second uses the block to return a <=> b.
a = %w(albatross dog horse)
a.minmax #=> ["albatross", "horse"]
a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 |
# File 'enum.c', line 1715
static VALUE
enum_minmax(VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qundef, Qundef, Qundef);
struct minmax_t *m = (struct minmax_t *)&memo->v1;
m->min = Qundef;
m->last = Qundef;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)memo);
if (m->last != Qundef)
minmax_ii_update(m->last, m->last, m);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)memo);
if (m->last != Qundef)
minmax_i_update(m->last, m->last, m);
}
if (m->min != Qundef) {
return rb_assoc_new(m->min, m->max);
}
return rb_assoc_new(Qnil, Qnil);
}
|
#minmax_by {|obj| ... } ⇒ Array #minmax_by ⇒ Object
Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.
If no block is given, an enumerator is returned instead.
a = %w(albatross dog horse)
a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 |
# File 'enum.c', line 1989
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo;
struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
m->min_bv = Qundef;
m->max_bv = Qundef;
m->min = Qnil;
m->max = Qnil;
m->last_bv = Qundef;
m->last = Qundef;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
if (m->last_bv != Qundef)
minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
m = MEMO_FOR(struct minmax_by_t, memo);
return rb_assoc_new(m->min, m->max);
}
|
#none? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block never returns true
for all elements. If the block is not given, none?
will return true
only if none of the collection members is true.
%w{ant bear cat}.none? { |word| word.length == 5 } #=> true
%w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
[].none? #=> true
[nil].none? #=> true
[nil, false].none? #=> true
[nil, false, true].none? #=> false
1407 1408 1409 1410 1411 1412 1413 |
# File 'enum.c', line 1407
static VALUE
enum_none(VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qtrue, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
return memo->v1;
}
|
#one? {|obj| ... } ⇒ Boolean
Passes each element of the collection to the given block. The method returns true
if the block returns true
exactly once. If the block is not given, one?
will return true
only if exactly one of the collection members is true.
%w{ant bear cat}.one? { |word| word.length == 4 } #=> true
%w{ant bear cat}.one? { |word| word.length > 4 } #=> false
%w{ant bear cat}.one? { |word| word.length < 4 } #=> false
[ nil, true, 99 ].one? #=> false
[ nil, true, false ].one? #=> true
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
# File 'enum.c', line 1370
static VALUE
enum_one(VALUE obj)
{
struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
VALUE result;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
result = memo->v1;
if (result == Qundef) return Qfalse;
return result;
}
|
#partition {|obj| ... } ⇒ Array #partition ⇒ Object
Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.
If no block is given, an enumerator is returned instead.
(1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
742 743 744 745 746 747 748 749 750 751 752 753 |
# File 'enum.c', line 742
static VALUE
enum_partition(VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
return rb_assoc_new(memo->v1, memo->v2);
}
|
#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object
Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.
If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.
If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.
# Sum some numbers
(5..10).reduce(:+) #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n } #=> 45
# Multiply some numbers
(5..10).reduce(1, :*) #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
memo.length > word.length ? memo : word
end
longest #=> "sheep"
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# File 'enum.c', line 674
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE init, op;
rb_block_call_func *iter = inject_i;
ID id;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
init = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
id = rb_check_id(&init);
op = id ? ID2SYM(id) : init;
init = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
id = rb_check_id(&op);
if (id) op = ID2SYM(id);
iter = inject_op_i;
break;
}
memo = MEMO_NEW(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo->v1 == Qundef) return Qnil;
return memo->v1;
}
|
#reject {|obj| ... } ⇒ Array #reject ⇒ Object
Returns an array for all elements of enum
for which the given block
returns false.
If no block is given, an Enumerator is returned instead.
(1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
[1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
See also Enumerable#find_all.
421 422 423 424 425 426 427 428 429 430 431 432 |
# File 'enum.c', line 421
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
|
#reverse_each(*args) {|item| ... } ⇒ Enumerator #reverse_each(*args) ⇒ Object
Builds a temporary array and traverses that array in reverse order.
If no block is given, an enumerator is returned instead.
(1..3).reverse_each { |v| p v }
produces:
3
2
1
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 |
# File 'enum.c', line 2104
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long i;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
ary = enum_to_a(argc, argv, obj);
for (i = RARRAY_LEN(ary); --i >= 0; ) {
rb_yield(RARRAY_AREF(ary, i));
}
return obj;
}
|
#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_all ⇒ Object #select ⇒ Object
Returns an array containing all elements of enum
for which the given block
returns a true value.
If no block is given, an Enumerator is returned instead.
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
See also Enumerable#reject.
380 381 382 383 384 385 386 387 388 389 390 391 |
# File 'enum.c', line 380
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
|
#slice_after(pattern) ⇒ Object #slice_after {|elt| ... } ⇒ Object
Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.
If pattern === elt
returns true
or the block returns true
for the element, the element is end of a chunk.
The ===
and block is called from the first element to the last element of enum.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as map
, etc., are also usable.
For example, continuation lines (lines end with backslash) can be concatenated as follows:
lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 |
# File 'enum.c', line 3239
static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
VALUE pat = Qnil, pred = Qnil;
if (rb_block_given_p()) {
if (0 < argc)
rb_raise(rb_eArgError, "both pattern and block are given");
pred = rb_block_proc();
}
else {
rb_scan_args(argc, argv, "1", &pat);
}
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
return enumerator;
}
|
#slice_before(pattern) ⇒ Object #slice_before {|elt| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by pattern and the block.
If pattern === elt
returns true
or the block returns true
for the element, the element is beginning of a chunk.
The ===
and block is called from the first element to the last element of enum. The result for the first element is ignored.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_before(pattern).each { |ary| ... }
enum.slice_before { |elt| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.
For example, iteration over ChangeLog entries can be implemented as follows:
# iterate over ChangeLog entries.
open("ChangeLog") { |f|
f.slice_before(/\A\S/).each { |e| pp e }
}
# same as above. block is used instead of pattern argument.
open("ChangeLog") { |f|
f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
}
“svn proplist -R” produces multiline output for each file. They can be chunked as follows:
IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
f.lines.slice_before(/\AProp/).each { |lines| p lines }
}
#=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
# ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
# ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
# ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
# ...
If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows:
a = [0, 2, 3, 4, 6, 7, 9]
prev = a[0]
p a.slice_before { |e|
prev, prev2 = e, prev
prev2 + 1 != e
}.map { |es|
es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
}.join(",")
#=> "0,2-4,6,7,9"
However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new can be used to do it.
# Word wrapping. This assumes all characters have same width.
def wordwrap(words, maxwidth)
Enumerator.new {|y|
# cols is initialized in Enumerator.new.
cols = 0
words.slice_before { |w|
cols += 1 if cols != 0
cols += w.length
if maxwidth < cols
cols = w.length
true
else
false
end
}.each {|ws| y.yield ws }
}
end
text = (1..20).to_a.join(" ")
enum = wordwrap(text.split(/\s+/), 10)
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # first enumeration.
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
puts "-"*10
#=> ----------
# 1 2 3 4 5
# 6 7 8 9 10
# 11 12 13
# 14 15 16
# 17 18 19
# 20
# ----------
# 1 2 3 4 5
# 6 7 8 9 10
# 11 12 13
# 14 15 16
# 17 18 19
# 20
# ----------
mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.
# parse mbox
open("mbox") { |f|
f.slice_before { |line|
line.start_with? "From "
}.each { |mail|
unix_from = mail.shift
i = mail.index("\n")
header = mail[0...i]
body = mail[(i+1)..-1]
body.pop if body.last == "\n"
fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
p unix_from
pp fields
pp body
}
}
# split mails in mbox (slice before Unix From line after an empty line)
open("mbox") { |f|
f.slice_before(emp: true) { |line, h|
prevemp = h[:emp]
h[:emp] = line == "\n"
prevemp && line.start_with?("From ")
}.each { |mail|
mail.pop if mail.last == "\n"
pp mail
}
}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 |
# File 'enum.c', line 3117
static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
if (rb_block_given_p()) {
if (argc != 0)
rb_error_arity(argc, 0, 0);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
}
else {
VALUE sep_pat;
rb_scan_args(argc, argv, "1", &sep_pat);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
}
rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
return enumerator;
}
|
#slice_when {|elt_before, elt_after| ... } ⇒ Object
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.
This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true.
The block is called the length of the receiver enumerator minus one.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
Other methods of the Enumerator class and Enumerable module, such as to_a
, map
, etc., are also usable.
For example, one-by-one increasing subsequence can be chunked as follows:
a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.slice_when {|i, j| i+1 != j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"
Near elements (threshold: 6) in sorted array can be chunked as follows:
a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
p a.slice_when {|i, j| 6 < j - i }.to_a
#=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
Increasing (non-decreasing) subsequence can be chunked as follows:
a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.slice_when {|i, j| i > j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)
a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.slice_when {|i, j| i.even? != j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk to ignore empty lines.)
lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
#=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 |
# File 'enum.c', line 3390
static VALUE
enum_slice_when(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
|
#sort ⇒ Array #sort {|a, b| ... } ⇒ Array
Returns an array containing the items in enum sorted, either according to their own <=>
method, or by using the results of the supplied block. The block should return -1, 0, or +1 depending on the comparison between a and b. As of Ruby 1.8, the method Enumerable#sort_by
implements a built-in Schwartzian Transform, useful when key computation or comparison is expensive.
%w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
(1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
868 869 870 871 872 |
# File 'enum.c', line 868
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort(enum_to_a(0, 0, obj));
}
|
#sort_by {|obj| ... } ⇒ Array #sort_by ⇒ Object
Sorts enum using a set of keys generated by mapping the values in enum through the given block.
If no block is given, an enumerator is returned instead.
%w{apple pear fig}.sort_by { |word| word.length}
#=> ["fig", "pear", "apple"]
The current implementation of sort_by
generates an array of tuples containing the original collection element and the mapped value. This makes sort_by
fairly expensive when the keysets are simple.
require 'benchmark'
a = (1..100000).map { rand(100000) }
Benchmark.bm(10) do |b|
b.report("Sort") { a.sort }
b.report("Sort by") { a.sort_by { |a| a } }
end
produces:
user system total real
Sort 0.180000 0.000000 0.180000 ( 0.175469)
Sort by 1.980000 0.040000 2.020000 ( 2.013586)
However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic sort
method.
files = Dir["*"]
sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
sorted #=> ["mon", "tues", "wed", "thurs"]
This sort is inefficient: it generates two new File
objects during every comparison. A slightly better technique is to use the Kernel#test
method to generate the modification times directly.
files = Dir["*"]
sorted = files.sort { |a, b|
test(?M, a) <=> test(?M, b)
}
sorted #=> ["mon", "tues", "wed", "thurs"]
This still generates many unnecessary Time
objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian Transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.
sorted = Dir["*"].collect { |f|
[test(?M, f), f]
}.sort.collect { |f| f[1] }
sorted #=> ["mon", "tues", "wed", "thurs"]
This is exactly what sort_by
does internally.
sorted = Dir["*"].sort_by { |f| test(?M, f) }
sorted #=> ["mon", "tues", "wed", "thurs"]
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
# File 'enum.c', line 997
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary, buf;
struct MEMO *memo;
long i;
struct sort_by_data *data;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
ary = rb_ary_new2(RARRAY_LEN(obj)*2);
}
else {
ary = rb_ary_new();
}
RBASIC_CLEAR_CLASS(ary);
buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
memo = MEMO_NEW(0, 0, 0);
OBJ_INFECT(memo, obj);
data = (struct sort_by_data *)&memo->v1;
RB_OBJ_WRITE(memo, &data->ary, ary);
RB_OBJ_WRITE(memo, &data->buf, buf);
data->n = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
ary = data->ary;
buf = data->buf;
if (data->n) {
rb_ary_resize(buf, data->n*2);
rb_ary_concat(ary, buf);
}
if (RARRAY_LEN(ary) > 2) {
RARRAY_PTR_USE(ary, ptr,
ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
sort_by_cmp, (void *)ary));
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=1; i<RARRAY_LEN(ary); i+=2) {
RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
}
rb_ary_resize(ary, RARRAY_LEN(ary)/2);
RBASIC_SET_CLASS_RAW(ary, rb_cArray);
OBJ_INFECT(ary, memo);
return ary;
}
|
#take(n) ⇒ Array
Returns first n elements from enum.
a = [1, 2, 3, 4, 5, 0]
a.take(3) #=> [1, 2, 3]
a.take(30) #=> [1, 2, 3, 4, 5, 0]
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 |
# File 'enum.c', line 2524
static VALUE
enum_take(VALUE obj, VALUE n)
{
struct MEMO *memo;
VALUE result;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
result = rb_ary_new2(len);
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
|
#take_while {|arr| ... } ⇒ Array #take_while ⇒ Object
Passes elements to the block until the block returns nil
or false
, then stops iterating and returns an array of all prior elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 } #=> [1, 2]
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 |
# File 'enum.c', line 2566
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
return ary;
}
|
#to_a(*args) ⇒ Array #entries(*args) ⇒ Array
Returns an array containing the items in enum.
(1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
require 'prime'
Prime.entries 10 #=> [2, 3, 5, 7]
541 542 543 544 545 546 547 548 549 550 |
# File 'enum.c', line 541
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
OBJ_INFECT(ary, obj);
return ary;
}
|
#to_h(*args) ⇒ Hash
Returns the result of interpreting enum as a list of [key, value]
pairs.
%i[hello world].each_with_index.to_h
# => {:hello => 0, :world => 1}
582 583 584 585 586 587 588 589 |
# File 'enum.c', line 582
static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
VALUE hash = rb_hash_new();
rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash);
OBJ_INFECT(hash, obj);
return hash;
}
|
#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil
Takes one element from enum and merges corresponding elements from each args. This generates a sequence of n-element arrays, where n is one more than the count of arguments. The length of the resulting sequence will be enum#size
. If the size of any argument is less than enum#size
, nil
values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.
a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
a.zip(b) #=> [[4, 7], [5, 8], [6, 9]]
[1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
c = []
a.zip(b) { |x, y| c << x + y } #=> nil
c #=> [11, 13, 15]
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 |
# File 'enum.c', line 2463
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
struct MEMO *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = TRUE;
argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
VALUE ary = rb_check_array_type(argv[i]);
if (NIL_P(ary)) {
allary = FALSE;
break;
}
argv[i] = ary;
}
if (!allary) {
CONST_ID(conv, "to_enum");
for (i=0; i<argc; i++) {
if (!rb_respond_to(argv[i], id_each)) {
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
rb_obj_class(argv[i]));
}
argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
}
}
if (!rb_block_given_p()) {
result = rb_ary_new();
}
/* TODO: use NODE_DOT2 as memo(v, v, -) */
memo = MEMO_NEW(result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
}
|